3otb Citations

tRNA(His) guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases.

Proc Natl Acad Sci U S A 107 20305-10 (2010)
Related entries: 3otc, 3otd, 3ote

Cited: 46 times
EuropePMC logo PMID: 21059936

Abstract

All known DNA and RNA polymerases catalyze the formation of phosphodiester bonds in a 5' to 3' direction, suggesting this property is a fundamental feature of maintaining and dispersing genetic information. The tRNA(His) guanylyltransferase (Thg1) is a member of a unique enzyme family whose members catalyze an unprecedented reaction in biology: 3'-5' addition of nucleotides to nucleic acid substrates. The 2.3-Å crystal structure of human THG1 (hTHG1) reported here shows that, despite the lack of sequence similarity, hTHG1 shares unexpected structural homology with canonical 5'-3' DNA polymerases and adenylyl/guanylyl cyclases, two enzyme families known to use a two-metal-ion mechanism for catalysis. The ability of the same structural architecture to catalyze both 5'-3' and 3'-5' reactions raises important questions concerning selection of the 5'-3' mechanism during the evolution of nucleotide polymerases.

Reviews - 3otb mentioned but not cited (1)

  1. Doing it in reverse: 3'-to-5' polymerization by the Thg1 superfamily. Jackman JE, Gott JM, Gray MW. RNA 18 886-899 (2012)

Articles - 3otb mentioned but not cited (5)

  1. tRNA(His) guanylyltransferase (THG1), a unique 3'-5' nucleotidyl transferase, shares unexpected structural homology with canonical 5'-3' DNA polymerases. Hyde SJ, Eckenroth BE, Smith BA, Eberley WA, Heintz NH, Jackman JE, Doublié S. Proc. Natl. Acad. Sci. U.S.A. 107 20305-20310 (2010)
  2. tRNAHis-guanylyltransferase establishes tRNAHis identity. Heinemann IU, Nakamura A, O'Donoghue P, Eiler D, Söll D. Nucleic Acids Res. 40 333-344 (2012)
  3. Structural studies of a bacterial tRNA(HIS) guanylyltransferase (Thg1)-like protein, with nucleotide in the activation and nucleotidyl transfer sites. Hyde SJ, Rao BS, Eckenroth BE, Jackman JE, Doublié S. PLoS ONE 8 e67465 (2013)
  4. Published Erratum Correction to 'Human Thg1 displays tRNA-inducible GTPase activity'. Nucleic Acids Res 50 11992 (2022)
  5. Human Thg1 displays tRNA-inducible GTPase activity. Antika TR, Nazilah KR, Lee YH, Lo YT, Yeh CS, Yeh FL, Chang TH, Wang TL, Wang CC. Nucleic Acids Res 50 10015-10025 (2022)


Reviews citing this publication (10)

  1. Human transfer RNA modopathies: diseases caused by aberrations in transfer RNA modifications. Chujo T, Tomizawa K. FEBS J 288 7096-7122 (2021)
  2. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Burroughs AM, Aravind L. Nucleic Acids Res. 44 8525-8555 (2016)
  3. Structural insights into eukaryotic DNA replication. Doublié S, Zahn KE. Front Microbiol 5 444 (2014)
  4. IHG-1 amplifies TGF-β1 signalling and mitochondrial biogenesis and is increased in diabetic kidney disease. Murphy M, Hickey F, Godson C. Curr. Opin. Nephrol. Hypertens. 22 77-84 (2013)
  5. The expanding field of non-canonical RNA capping: new enzymes and mechanisms. Wiedermannová J, Julius C, Yuzenkova Y. R Soc Open Sci 8 201979 (2021)
  6. Human Mitochondrial RNA Processing and Modifications: Overview. Jedynak-Slyvka M, Jabczynska A, Szczesny RJ. Int J Mol Sci 22 7999 (2021)
  7. Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Magistrati M, Gilea AI, Ceccatelli Berti C, Baruffini E, Dallabona C. Int J Mol Sci 24 2178 (2023)
  8. The life and times of a tRNA. Phizicky EM, Hopper AK. RNA 29 898-957 (2023)
  9. Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Morgan M, Kumar L, Li Y, Baptissart M. Cell Mol Life Sci 78 8049-8071 (2021)
  10. The Role of 3' to 5' Reverse RNA Polymerization in tRNA Fidelity and Repair. Chen AW, Jayasinghe MI, Chung CZ, Rao BS, Kenana R, Heinemann IU, Jackman JE. Genes (Basel) 10 (2019)

Articles citing this publication (30)

  1. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, Bartoloni L, Gallone G, Petridi S, Woollard WJ, Antony D, Schmidts M, Didonna T, Makrythanasis P, Bevillard J, Mongan NP, Djakow J, Pals G, Lucas JS, Marthin JK, Nielsen KG, Santoni F, Guipponi M, Hogg C, Antonarakis SE, Emes RD, Chung EM, Greene ND, Blouin JL, Jarman AP, Mitchison HM. Am. J. Hum. Genet. 93 346-356 (2013)
  2. Structural and mechanistic insights into guanylylation of RNA-splicing ligase RtcB joining RNA between 3'-terminal phosphate and 5'-OH. Englert M, Xia S, Okada C, Nakamura A, Tanavde V, Yao M, Eom SH, Konigsberg WH, Söll D, Wang J. Proc. Natl. Acad. Sci. U.S.A. 109 15235-15240 (2012)
  3. Structures of the noncanonical RNA ligase RtcB reveal the mechanism of histidine guanylylation. Desai KK, Bingman CA, Phillips GN, Raines RT. Biochemistry 52 2518-2525 (2013)
  4. tRNA 5'-end repair activities of tRNAHis guanylyltransferase (Thg1)-like proteins from Bacteria and Archaea. Rao BS, Maris EL, Jackman JE. Nucleic Acids Res. 39 1833-1842 (2011)
  5. A role for tRNA(His) guanylyltransferase (Thg1)-like proteins from Dictyostelium discoideum in mitochondrial 5'-tRNA editing. Abad MG, Long Y, Willcox A, Gott JM, Gray MW, Jackman JE. RNA 17 613-623 (2011)
  6. Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. El-Arabi TF, Griffiths MW, She YM, Villegas A, Lingohr EJ, Kropinski AM. Virol. J. 10 48 (2013)
  7. Kinetic analysis of 3'-5' nucleotide addition catalyzed by eukaryotic tRNA(His) guanylyltransferase. Smith BA, Jackman JE. Biochemistry 51 453-465 (2012)
  8. Natural Variation Identifies ICARUS1, a Universal Gene Required for Cell Proliferation and Growth at High Temperatures in Arabidopsis thaliana. Zhu W, Ausin I, Seleznev A, Méndez-Vigo B, Picó FX, Sureshkumar S, Sundaramoorthi V, Bulach D, Powell D, Seemann T, Alonso-Blanco C, Balasubramanian S. PLoS Genet. 11 e1005085 (2015)
  9. Structural basis of reverse nucleotide polymerization. Nakamura A, Nemoto T, Heinemann IU, Yamashita K, Sonoda T, Komoda K, Tanaka I, Söll D, Yao M. Proc. Natl. Acad. Sci. U.S.A. 110 20970-20975 (2013)
  10. Absence of a universal element for tRNAHis identity in Acanthamoeba castellanii. Rao BS, Mohammad F, Gray MW, Jackman JE. Nucleic Acids Res. 41 1885-1894 (2013)
  11. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data. Loher P, Telonis AG, Rigoutsos I. Sci Rep 7 41184 (2017)
  12. Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum. Abad MG, Long Y, Long Y, Kinchen RD, Schindel ET, Gray MW, Jackman JE. J. Biol. Chem. 289 15155-15165 (2014)
  13. Saccharomyces cerevisiae Thg1 uses 5'-pyrophosphate removal to control addition of nucleotides to tRNA(His.). Smith BA, Jackman JE. Biochemistry 53 1380-1391 (2014)
  14. Identification of distinct biological functions for four 3'-5' RNA polymerases. Long Y, Long Y, Abad MG, Olson ED, Carrillo EY, Jackman JE. Nucleic Acids Res. 44 8395-8406 (2016)
  15. Template-dependent nucleotide addition in the reverse (3'-5') direction by Thg1-like protein. Kimura S, Suzuki T, Chen M, Kato K, Yu J, Nakamura A, Tanaka I, Yao M. Sci Adv 2 e1501397 (2016)
  16. A mutation in the THG1L gene in a family with cerebellar ataxia and developmental delay. Edvardson S, Elbaz-Alon Y, Jalas C, Matlock A, Patel K, Labbé K, Shaag A, Jackman JE, Elpeleg O. Neurogenetics 17 219-225 (2016)
  17. Common Structural Core of Three-Dozen Residues Reveals Intersuperfamily Relationships. Mönttinen HA, Ravantti JJ, Poranen MM. Mol. Biol. Evol. 33 1697-1710 (2016)
  18. Crystal structure of a reverse polymerase. Perona JJ, Oza JP. Proc. Natl. Acad. Sci. U.S.A. 107 20149-20150 (2010)
  19. Crystal structure of tRNAHis guanylyltransferase from Saccharomyces cerevisiae. Lee K, Lee EH, Son J, Hwang KY. Biochem. Biophys. Res. Commun. 490 400-405 (2017)
  20. Minimal requirements for reverse polymerization and tRNA repair by tRNAHis guanylyltransferase. Desai R, Kim K, Büchsenschütz HC, Chen AW, Bi Y, Mann MR, Turk MA, Chung CZ, Heinemann IU. RNA Biol 15 614-622 (2018)
  21. 5'-End sequencing in Saccharomyces cerevisiae offers new insights into 5'-ends of tRNAH is and snoRNAs. Dodbele S, Moreland B, Gardner SM, Bundschuh R, Jackman JE. FEBS Lett 593 971-981 (2019)
  22. In vitro substrate specificities of 3'-5' polymerases correlate with biological outcomes of tRNA 5'-editing reactions. Long Y, Long Y, Jackman JE. FEBS Lett. 589 2124-2130 (2015)
  23. Molecular mechanism of substrate recognition and specificity of tRNAHis guanylyltransferase during nucleotide addition in the 3'-5' direction. Nakamura A, Wang D, Komatsu Y. RNA 24 1583-1593 (2018)
  24. Structural Basis for the Bidirectional Activity of Bacillus nanoRNase NrnA. Schmier BJ, Nelersa CM, Malhotra A. Sci Rep 7 11085 (2017)
  25. Analysis of GTP addition in the reverse (3'-5') direction by human tRNAHis guanylyltransferase. Nakamura A, Wang D, Komatsu Y. RNA 27 665-675 (2021)
  26. Characterization and comparative genomic analysis of virulent and temperate Bacillus megaterium bacteriophages. Sharaf A, Oborník M, Hammad A, El-Afifi S, Marei E. PeerJ 6 e5687 (2018)
  27. Chemical footprinting and kinetic assays reveal dual functions for highly conserved eukaryotic tRNAHis guanylyltransferase residues. Matlock AO, Smith BA, Jackman JE. J Biol Chem 294 8885-8893 (2019)
  28. Compound heterozygous variants of THG1L result in autosomal recessive cerebellar ataxia. Han R, Chu M, Gao J, Wang J, Wang M, Ma Y, Jia T, Zhang X. J Hum Genet (2023)
  29. Fidelity of base-pair recognition by a 3'-5' polymerase: mechanism of the Saccharomyces cerevisiae tRNAHis guanylyltransferase. Patel KJ, Yourik P, Jackman JE. RNA 27 683-693 (2021)
  30. Recognition of tRNAHis in an RNase P-Free Nanoarchaeum. Ivanesthi IR, Rida GRN, Setiawibawa AA, Tseng YK, Muammar A, Wang CC. Microbiol Spectr e0462122 (2023)