3o1t Citations

Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase.

Nature 468 330-3 (2010)
Related entries: 3o1m, 3o1o, 3o1p, 3o1r, 3o1s, 3o1u, 3o1v

Cited: 81 times
EuropePMC logo PMID: 21068844

Abstract

Mononuclear iron-containing oxygenases conduct a diverse variety of oxidation functions in biology, including the oxidative demethylation of methylated nucleic acids and histones. Escherichia coli AlkB is the first such enzyme that was discovered to repair methylated nucleic acids, which are otherwise cytotoxic and/or mutagenic. AlkB human homologues are known to play pivotal roles in various processes. Here we present structural characterization of oxidation intermediates for these demethylases. Using a chemical cross-linking strategy, complexes of AlkB-double stranded DNA (dsDNA) containing 1,N(6)-etheno adenine (εA), N(3)-methyl thymine (3-meT) and N(3)-methyl cytosine (3-meC) are stabilized and crystallized, respectively. Exposing these crystals, grown under anaerobic conditions containing iron(II) and α-ketoglutarate (αKG), to dioxygen initiates oxidation in crystallo. Glycol (from εA) and hemiaminal (from 3-meT) intermediates are captured; a zwitterionic intermediate (from 3-meC) is also proposed, based on crystallographic observations and computational analysis. The observation of these unprecedented intermediates provides direct support for the oxidative demethylation mechanism for these demethylases. This study also depicts a general mechanistic view of how a methyl group is oxidatively removed from different biological substrates.

Reviews - 3o1t mentioned but not cited (1)

  1. Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the αKG-dependent oxygenases. Hangasky JA, Taabazuing CY, Valliere MA, Knapp MJ. Metallomics 5 287-301 (2013)

Articles - 3o1t mentioned but not cited (3)

  1. Iron-catalysed oxidation intermediates captured in a DNA repair dioxygenase. Yi C, Jia G, Hou G, Dai Q, Zhang W, Zheng G, Jian X, Yang CG, Cui Q, He C. Nature 468 330-333 (2010)
  2. Flexibility-rigidity index for protein-nucleic acid flexibility and fluctuation analysis. Opron K, Xia K, Burton Z, Wei GW. J Comput Chem 37 1283-1295 (2016)
  3. Local conformational changes in the DNA interfaces of proteins. Sunami T, Kono H. PLoS One 8 e56080 (2013)


Reviews citing this publication (19)

  1. Vitamins C and E: beneficial effects from a mechanistic perspective. Traber MG, Stevens JF. Free Radic Biol Med 51 1000-1013 (2011)
  2. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. J Biol Chem 290 20734-20742 (2015)
  3. Mechanisms of human histone and nucleic acid demethylases. Walport LJ, Hopkinson RJ, Schofield CJ. Curr Opin Chem Biol 16 525-534 (2012)
  4. Nucleic acid modifications with epigenetic significance. Fu Y, He C. Curr Opin Chem Biol 16 516-524 (2012)
  5. DNA repair by reversal of DNA damage. Yi C, He C. Cold Spring Harb Perspect Biol 5 a012575 (2013)
  6. Vitamin C in Stem Cell Reprogramming and Cancer. Cimmino L, Neel BG, Aifantis I. Trends Cell Biol 28 698-708 (2018)
  7. Nucleic acid oxidation in DNA damage repair and epigenetics. Zheng G, Fu Y, He C. Chem Rev 114 4602-4620 (2014)
  8. Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics. D'Aniello C, Cermola F, Patriarca EJ, Minchiotti G. Stem Cells Int 2017 8936156 (2017)
  9. Mechanistic Involvement of Long Non-Coding RNAs in Oncotherapeutics Resistance in Triple-Negative Breast Cancer. Kansara S, Pandey V, Lobie PE, Sethi G, Garg M, Pandey AK. Cells 9 E1511 (2020)
  10. Reversal of nucleobase methylation by dioxygenases. Xu GL, Bochtler M. Nat Chem Biol 16 1160-1169 (2020)
  11. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana. Zhang C. Genome Integr 6 2 (2015)
  12. Oxidative demethylation of DNA and RNA mediated by non-heme iron-dependent dioxygenases. Lu L, Zhu C, Xia B, Yi C. Chem Asian J 9 2018-2029 (2014)
  13. Computational investigations of selected enzymes from two iron and α-ketoglutarate-dependent families. Berger MB, Walker AR, Vázquez-Montelongo EA, Cisneros GA. Phys Chem Chem Phys 23 22227-22240 (2021)
  14. Structural and mutation studies of two DNA demethylation related glycosylases: MBD4 and TDG. Hashimoto H. Biophysics (Nagoya-shi) 10 63-68 (2014)
  15. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Walport LJ, Schofield CJ. Chem Rec 18 1760-1781 (2018)
  16. Antioxidants as an Epidermal Stem Cell Activator. Kwon SH, Park KC. Antioxidants (Basel) 9 E958 (2020)
  17. Spectroscopic and in vitro Investigations of Fe2+ /α-Ketoglutarate-Dependent Enzymes Involved in Nucleic Acid Repair and Modification. Schmidl D, Lindlar Né Jonasson NSW, Menke A, Schneider S, Daumann LJ. Chembiochem 23 e202100605 (2022)
  18. DNA Demethylation in the Processes of Repair and Epigenetic Regulation Performed by 2-Ketoglutarate-Dependent DNA Dioxygenases. Kuznetsov NA, Kanazhevskaya LY, Fedorova OS. Int J Mol Sci 22 10540 (2021)
  19. The Anti-Leukemia Effect of Ascorbic Acid: From the Pro-Oxidant Potential to the Epigenetic Role in Acute Myeloid Leukemia. Travaglini S, Gurnari C, Antonelli S, Silvestrini G, Noguera NI, Ottone T, Voso MT. Front Cell Dev Biol 10 930205 (2022)

Articles citing this publication (58)

  1. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. Mol Cell 49 18-29 (2013)
  2. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, Han KL, Cui Q, He C. Nat Commun 4 1798 (2013)
  3. Structure of human RNA N⁶-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Aik W, Scotti JS, Choi H, Gong L, Demetriades M, Schofield CJ, McDonough MA. Nucleic Acids Res 42 4741-4754 (2014)
  4. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, Dai N, Corrêa IR, Zheng Y, Cheng X. Nature 506 391-395 (2014)
  5. A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. Luo X, Liu Y, Kubicek S, Myllyharju J, Tumber A, Ng S, Che KH, Podoll J, Heightman TD, Oppermann U, Schreiber SL, Wang X. J Am Chem Soc 133 9451-9456 (2011)
  6. Cellular dynamics of RNA modification. Yi C, Pan T. Acc Chem Res 44 1380-1388 (2011)
  7. QM/MM free energy simulations: recent progress and challenges. Lu X, Fang D, Ito S, Okamoto Y, Ovchinnikov V, Cui Q. Mol Simul 42 1056-1078 (2016)
  8. Quantum mechanics/molecular mechanics study on the oxygen binding and substrate hydroxylation step in AlkB repair enzymes. Quesne MG, Latifi R, Gonzalez-Ovalle LE, Kumar D, de Visser SP. Chemistry 20 435-446 (2014)
  9. Oncometabolites d- and l-2-Hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions. Chen F, Bian K, Tang Q, Fedeles BI, Singh V, Humulock ZT, Essigmann JM, Li D. Chem Res Toxicol 30 1102-1110 (2017)
  10. Experimental Correlation of Substrate Position with Reaction Outcome in the Aliphatic Halogenase, SyrB2. Martinie RJ, Livada J, Chang WC, Green MT, Krebs C, Bollinger JM, Silakov A. J Am Chem Soc 137 6912-6919 (2015)
  11. Duplex interrogation by a direct DNA repair protein in search of base damage. Yi C, Chen B, Qi B, Zhang W, Jia G, Zhang L, Li CJ, Dinner AR, Yang CG, He C. Nat Struct Mol Biol 19 671-676 (2012)
  12. Switching demethylation activities between AlkB family RNA/DNA demethylases through exchange of active-site residues. Zhu C, Yi C. Angew Chem Int Ed Engl 53 3659-3662 (2014)
  13. Direct repair of 3,N(4)-ethenocytosine by the human ALKBH2 dioxygenase is blocked by the AAG/MPG glycosylase. Fu D, Samson LD. DNA Repair (Amst) 11 46-52 (2012)
  14. Visualizing the substrate-, superoxo-, alkylperoxo-, and product-bound states at the nonheme Fe(II) site of homogentisate dioxygenase. Jeoung JH, Bommer M, Lin TY, Dobbek H. Proc Natl Acad Sci U S A 110 12625-12630 (2013)
  15. Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA. Zhang M, Yang S, Nelakanti R, Zhao W, Liu G, Li Z, Liu X, Wu T, Xiao A, Li H. Cell Res 30 197-210 (2020)
  16. Coordinated methyl-lysine erasure: structural and functional linkage of a Jumonji demethylase domain and a reader domain. Upadhyay AK, Horton JR, Zhang X, Cheng X. Curr Opin Struct Biol 21 750-760 (2011)
  17. Lyn regulates inflammatory responses in Klebsiella pneumoniae infection via the p38/NF-κB pathway. Li X, Zhou X, Ye Y, Li Y, Li J, Privratsky B, Wu E, Gao H, Huang C, Wu M. Eur J Immunol 44 763-773 (2014)
  18. Adaptive Response Enzyme AlkB Preferentially Repairs 1-Methylguanine and 3-Methylthymine Adducts in Double-Stranded DNA. Chen F, Tang Q, Bian K, Humulock ZT, Yang X, Jost M, Drennan CL, Essigmann JM, Li D. Chem Res Toxicol 29 687-693 (2016)
  19. Atg7 enhances host defense against infection via downregulation of superoxide but upregulation of nitric oxide. Li X, Ye Y, Zhou X, Huang C, Wu M. J Immunol 194 1112-1121 (2015)
  20. DNA repair enzymes ALKBH2, ALKBH3, and AlkB oxidize 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine in vitro. Bian K, Lenz SAP, Tang Q, Chen F, Qi R, Jost M, Drennan CL, Essigmann JM, Wetmore SD, Li D. Nucleic Acids Res 47 5522-5529 (2019)
  21. Next-generation sequencing reveals the biological significance of the N(2),3-ethenoguanine lesion in vivo. Chang SC, Fedeles BI, Wu J, Delaney JC, Li D, Zhao L, Christov PP, Yau E, Singh V, Jost M, Drennan CL, Marnett LJ, Rizzo CJ, Levine SS, Guengerich FP, Essigmann JM. Nucleic Acids Res 43 5489-5500 (2015)
  22. AlkB dioxygenase preferentially repairs protonated substrates: specificity against exocyclic adducts and molecular mechanism of action. Maciejewska AM, Poznanski J, Kaczmarska Z, Krowisz B, Nieminuszczy J, Polkowska-Nowakowska A, Grzesiuk E, Kusmierek JT. J Biol Chem 288 432-441 (2013)
  23. MetalS(3), a database-mining tool for the identification of structurally similar metal sites. Valasatava Y, Rosato A, Cavallaro G, Andreini C. J Biol Inorg Chem 19 937-945 (2014)
  24. Bioorthogonal labeling of 5-hydroxymethylcytosine in genomic DNA and diazirine-based DNA photo-cross-linking probes. Song CX, He C. Acc Chem Res 44 709-717 (2011)
  25. JMJD5 is a human arginyl C-3 hydroxylase. Wilkins SE, Islam MS, Gannon JM, Markolovic S, Hopkinson RJ, Ge W, Schofield CJ, Chowdhury R. Nat Commun 9 1180 (2018)
  26. Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB. Ergel B, Gill ML, Brown L, Yu B, Palmer AG, Hunt JF. J Biol Chem 289 29584-29601 (2014)
  27. Alternative Pathway for the Reaction Catalyzed by DNA Dealkylase AlkB from Ab Initio QM/MM Calculations. Fang D, Cisneros GA. J Chem Theory Comput 10 5136-5148 (2014)
  28. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations. Song X, Lu J, Lai W. Phys Chem Chem Phys 19 20188-20197 (2017)
  29. Removal of N-alkyl modifications from N(2)-alkylguanine and N(4)-alkylcytosine in DNA by the adaptive response protein AlkB. Li D, Fedeles BI, Shrivastav N, Delaney JC, Yang X, Wong C, Drennan CL, Essigmann JM. Chem Res Toxicol 26 1182-1187 (2013)
  30. Substrate placement influences reactivity in non-heme Fe(II) halogenases and hydroxylases. Kulik HJ, Drennan CL. J Biol Chem 288 11233-11241 (2013)
  31. Photoaffinity labeling of transcription factors by DNA-templated crosslinking. Liu Y, Zheng W, Zhang W, Chen N, Liu Y, Chen L, Zhou X, Chen X, Zheng H, Li X. Chem Sci 6 745-751 (2015)
  32. Lose weight with traditional chinese medicine? Potential suppression of fat mass and obesity-associated protein. Chang PC, Wang JD, Lee MM, Chang SS, Tsai TY, Chang KW, Tsai FJ, Chen CY. J Biomol Struct Dyn 29 471-483 (2011)
  33. Role of Structural Dynamics in Selectivity and Mechanism of Non-heme Fe(II) and 2-Oxoglutarate-Dependent Oxygenases Involved in DNA Repair. Waheed SO, Ramanan R, Chaturvedi SS, Lehnert N, Schofield CJ, Christov CZ, Karabencheva-Christova TG. ACS Cent Sci 6 795-814 (2020)
  34. Mechanism of repair of acrolein- and malondialdehyde-derived exocyclic guanine adducts by the α-ketoglutarate/Fe(II) dioxygenase AlkB. Singh V, Fedeles BI, Li D, Delaney JC, Kozekov ID, Kozekova A, Marnett LJ, Rizzo CJ, Essigmann JM. Chem Res Toxicol 27 1619-1631 (2014)
  35. ALKBH7 Variant Related to Prostate Cancer Exhibits Altered Substrate Binding. Walker AR, Silvestrov P, Müller TA, Podolsky RH, Dyson G, Hausinger RP, Cisneros GA. PLoS Comput Biol 13 e1005345 (2017)
  36. A novel role for transcription-coupled nucleotide excision repair for the in vivo repair of 3,N4-ethenocytosine. Chaim IA, Gardner A, Wu J, Iyama T, Wilson DM, Samson LD. Nucleic Acids Res 45 3242-3252 (2017)
  37. The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase. Shigdel UK, Ovchinnikov V, Lee SJ, Shih JA, Karplus M, Nam K, Verdine GL. Nat Commun 11 4437 (2020)
  38. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Ignatov AV, Bondarenko KA, Makarova AV. Acta Naturae 9 12-26 (2017)
  39. Vanadyl as a Stable Structural Mimic of Reactive Ferryl Intermediates in Mononuclear Nonheme-Iron Enzymes. Martinie RJ, Pollock CJ, Matthews ML, Bollinger JM, Krebs C, Silakov A. Inorg Chem 56 13382-13389 (2017)
  40. α-Amine Desaturation of d-Arginine by the Iron(II)- and 2-(Oxo)glutarate-Dependent l-Arginine 3-Hydroxylase, VioC. Dunham NP, Mitchell AJ, Del Río Pantoja JM, Krebs C, Bollinger JM, Boal AK. Biochemistry 57 6479-6488 (2018)
  41. Letter Evidence that oxidative dephosphorylation by the nonheme Fe(II), α-ketoglutarate:UMP oxygenase occurs by stereospecific hydroxylation. Goswami A, Liu X, Cai W, Wyche TP, Bugni TS, Meurillon M, Peyrottes S, Perigaud C, Nonaka K, Rohr J, Van Lanen SG. FEBS Lett 591 468-478 (2017)
  42. Ascorbic Acid Promotes Functional Restoration after Spinal Cord Injury Partly by Epigenetic Modulation. Hong JY, Davaa G, Yoo H, Hong K, Hyun JK. Cells 9 E1310 (2020)
  43. Homology modeling, molecular dynamics, and site-directed mutagenesis study of AlkB human homolog 1 (ALKBH1). Silvestrov P, Müller TA, Clark KN, Hausinger RP, Cisneros GA. J Mol Graph Model 54 123-130 (2014)
  44. Mechanistic insights into a non-heme 2-oxoglutarate-dependent ethylene-forming enzyme: selectivity of ethylene-formation versusl-Arg hydroxylation. Xue J, Lu J, Lai W. Phys Chem Chem Phys 21 9957-9968 (2019)
  45. A simple but effective modeling strategy for structural properties of non-heme Fe(II) sites in proteins: test of force field models and application to proteins in the AlkB family. Pang X, Han K, Cui Q. J Comput Chem 34 1620-1635 (2013)
  46. Calorimetric assessment of Fe(2+) binding to α-ketoglutarate/taurine dioxygenase: ironing out the energetics of metal coordination by the 2-His-1-carboxylate facial triad. Henderson KL, Müller TA, Hausinger RP, Emerson JP. Inorg Chem 54 2278-2283 (2015)
  47. Chromatographic isolation of the functionally active MutS protein covalently linked to deoxyribonucleic acid. Monakhova M, Ryazanova A, Hentschel A, Viryasov M, Oretskaya T, Friedhoff P, Kubareva E. J Chromatogr A 1389 19-27 (2015)
  48. Human ALKBH6 Is Required for Maintenance of Genomic Stability and Promoting Cell Survival During Exposure of Alkylating Agents in Pancreatic Cancer. Zhao S, Devega R, Francois A, Kidane D. Front Genet 12 635808 (2021)
  49. Prediction of the molecular boundary and functionality of novel viral AlkB domains using homology modelling and principal component analysis. Moore C, Meng B. J Gen Virol 100 691-703 (2019)
  50. Studies on the Glutathione-Dependent Formaldehyde-Activating Enzyme from Paracoccus denitrificans. Hopkinson RJ, Leung IK, Smart TJ, Rose NR, Henry L, Claridge TD, Schofield CJ. PLoS One 10 e0145085 (2015)
  51. Compensatory effects of hOGG1 for hMTH1 in oxidative DNA damage caused by hydrogen peroxide. Ke Y, Lv Z, Yang X, Zhang J, Huang J, Wu S, Li YR. Toxicol Lett 230 62-68 (2014)
  52. Insights into the Direct Oxidative Repair of Etheno Lesions: MD and QM/MM Study on the Substrate Scope of ALKBH2 and AlkB. Lenz SAP, Li D, Wetmore SD. DNA Repair (Amst) 96 102944 (2020)
  53. What Is the Catalytic Mechanism of Enzymatic Histone N-Methyl Arginine Demethylation and Can It Be Influenced by an External Electric Field? Ramanan R, Waheed SO, Schofield CJ, Christov CZ. Chemistry 27 11827-11836 (2021)
  54. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli. Aralov AV, Gubina N, Cabrero C, Tsvetkov VB, Turaev AV, Fedeles BI, Croy RG, Isaakova EA, Melnik D, Dukova S, Ryazantsev DY, Khrulev AA, Varizhuk AM, González C, Zatsepin TS, Essigmann JM. Nucleic Acids Res 50 3056-3069 (2022)
  55. Effect of Posttranslational Modifications on the Structure and Activity of FTO Demethylase. Marcinkowski M, Pilžys T, Garbicz D, Piwowarski J, Mielecki D, Nowaczyk G, Taube M, Gielnik M, Kozak M, Winiewska-Szajewska M, Szołajska E, Dębski J, Maciejewska AM, Przygońska K, Ferenc K, Grzesiuk E, Poznański J. Int J Mol Sci 22 4512 (2021)
  56. Exaptation of Inactivated Host Enzymes for Structural Roles in Orthopoxviruses and Novel Folds of Virus Proteins Revealed by Protein Structure Modeling. Mutz P, Resch W, Faure G, Senkevich TG, Koonin EV, Moss B. mBio 14 e0040823 (2023)
  57. 2-Hydrazinobenzothiazole-based etheno-adduct repair protocol (HERP): a method for quantitative determination of direct repair of etheno-bases. Shivange G, Kodipelli N, Anindya R. DNA Repair (Amst) 28 8-13 (2015)
  58. Structural basis for substrate discrimination by E. coli repair enzyme, AlkB. Jayanth N, Ogirala N, Yadav A, Puranik M. RSC Adv 8 1281-1291 (2018)