3nos Citations

Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation.

Abstract

Crystal structures of human endothelial nitric oxide synthase (eNOS) and human inducible NOS (iNOS) catalytic domains were solved in complex with the arginine substrate and an inhibitor S-ethylisothiourea (SEITU), respectively. The small molecules bind in a narrow cleft within the larger active-site cavity containing heme and tetrahydrobiopterin. Both are hydrogen-bonded to a conserved glutamate (eNOS E361, iNOS E377). The active-site residues of iNOS and eNOS are nearly identical. Nevertheless, structural comparisons provide a basis for design of isozyme-selective inhibitors. The high-resolution, refined structures of eNOS (2.4 A resolution) and iNOS (2.25 A resolution) reveal an unexpected structural zinc situated at the intermolecular interface and coordinated by four cysteines, two from each monomer.

Reviews - 3nos mentioned but not cited (7)

  1. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. Redox Biol 13 94-162 (2017)
  2. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Schulz E, Wenzel P, Münzel T, Daiber A. Antioxid Redox Signal 20 308-324 (2014)
  3. eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM. J Endocrinol 210 271-284 (2011)
  4. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, Münzel T, Li H. Int J Mol Sci 20 E187 (2019)
  5. Zinc-binding cysteines: diverse functions and structural motifs. Pace NJ, Weerapana E. Biomolecules 4 419-434 (2014)
  6. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Mukherjee P, Cinelli MA, Kang S, Silverman RB. Chem Soc Rev 43 6814-6838 (2014)
  7. Use of Computational Biochemistry for Elucidating Molecular Mechanisms of Nitric Oxide Synthase. Bignon E, Rizza S, Filomeni G, Papaleo E. Comput Struct Biotechnol J 17 415-429 (2019)

Articles - 3nos mentioned but not cited (22)

  1. IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Mészáros B, Erdos G, Dosztányi Z. Nucleic Acids Res 46 W329-W337 (2018)
  2. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  3. A system-level investigation into the mechanisms of Chinese Traditional Medicine: Compound Danshen Formula for cardiovascular disease treatment. Li X, Xu X, Wang J, Yu H, Wang X, Yang H, Xu H, Tang S, Li Y, Yang L, Huang L, Wang Y, Yang S. PLoS One 7 e43918 (2012)
  4. Hemoglobin α/eNOS coupling at myoendothelial junctions is required for nitric oxide scavenging during vasoconstriction. Straub AC, Butcher JT, Billaud M, Mutchler SM, Artamonov MV, Nguyen AT, Johnson T, Best AK, Miller MP, Palmer LA, Columbus L, Somlyo AV, Le TH, Isakson BE. Arterioscler Thromb Vasc Biol 34 2594-2600 (2014)
  5. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Feng C. Coord Chem Rev 256 393-411 (2012)
  6. Interaction preferences across protein-protein interfaces of obligatory and non-obligatory components are different. De S, Krishnadev O, Srinivasan N, Rekha N. BMC Struct Biol 5 15 (2005)
  7. Redox modulation of endothelial nitric oxide synthase by glutaredoxin-1 through reversible oxidative post-translational modification. Chen CA, De Pascali F, Basye A, Hemann C, Zweier JL. Biochemistry 52 6712-6723 (2013)
  8. The anti-cancer agent SU4312 unexpectedly protects against MPP(+) -induced neurotoxicity via selective and direct inhibition of neuronal NOS. Cui W, Zhang Z, Li W, Hu S, Mak S, Zhang H, Han R, Yuan S, Li S, Sa F, Xu D, Lin Z, Zuo Z, Rong J, Ma ED, Choi TC, Lee SM, Han Y. Br J Pharmacol 168 1201-1214 (2013)
  9. Structures of nitric oxide synthase isoforms complexed with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design. Fedorov R, Vasan R, Ghosh DK, Schlichting I. Proc Natl Acad Sci U S A 101 5892-5897 (2004)
  10. High precision protein functional site detection using 3D convolutional neural networks. Torng W, Altman RB. Bioinformatics 35 1503-1512 (2019)
  11. A pivotal role for tryptophan 447 in enzymatic coupling of human endothelial nitric oxide synthase (eNOS): effects on tetrahydrobiopterin-dependent catalysis and eNOS dimerization. Benson MA, Batchelor H, Chuaiphichai S, Bailey J, Zhu H, Stuehr DJ, Bhattacharya S, Channon KM, Crabtree MJ. J Biol Chem 288 29836-29845 (2013)
  12. Mass spectroscopy and molecular modeling predict endothelial nitric oxide synthase dimer collapse by hydrogen peroxide through zinc tetrathiolate metal-binding site disruption. Fonseca FV, Ravi K, Wiseman D, Tummala M, Harmon C, Ryzhov V, Fineman JR, Black SM. DNA Cell Biol 29 149-160 (2010)
  13. Endothelial nitric oxide synthase is regulated by ERK phosphorylation at Ser602. Salerno JC, Ghosh DK, Razdan R, Helms KA, Brown CC, McMurry JL, Rye EA, Chrestensen CA. Biosci Rep 34 e00137 (2014)
  14. New N-acetyltransferase fold in the structure and mechanism of the phosphonate biosynthetic enzyme FrbF. Bae B, Cobb RE, DeSieno MA, Zhao H, Nair SK. J Biol Chem 286 36132-36141 (2011)
  15. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  16. Protein engineering to develop a redox insensitive endothelial nitric oxide synthase. Rafikov R, Kumar S, Aggarwal S, Pardo D, Fonseca FV, Ransom J, Rafikova O, Chen Q, Springer ML, Black SM. Redox Biol 2 156-164 (2014)
  17. Profile of Myracrodruon urundeuva Volatile Compounds Ease of Extraction and Biodegradability and In Silico Evaluation of Their Interactions with COX-1 and iNOS. Figueiredo YG, Corrêa EA, de Oliveira Junior AH, Mazzinghy ACDC, Mendonça HDOP, Lobo YJG, García YM, Gouvêia MADS, de Paula ACCFF, Augusti R, Reina LDCB, da Silveira CH, de Lima LHF, Melo JOF. Molecules 27 1633 (2022)
  18. Vasodilation Elicited by Isoxsuprine, Identified by High-Throughput Virtual Screening of Compound Libraries, Involves Activation of the NO/cGMP and H₂S/KATP Pathways and Blockade of α₁-Adrenoceptors and Calcium Channels. Medina-Ruiz D, Erreguin-Luna B, Luna-Vázquez FJ, Romo-Mancillas A, Rojas-Molina A, Ibarra-Alvarado C. Molecules 24 E987 (2019)
  19. Anti-inflammatory activity of Radix Angelicae biseratae in the treatment of osteoarthritis determined by systematic pharmacology and in vitro experiments. Chen Z, Zheng R, Chen J, Fu C, Lin J, Wu G. Exp Ther Med 21 5 (2021)
  20. Deciphering the Path of S-nitrosation of Human Thioredoxin: Evidence of an Internal NO Transfer and Implication for the Cellular Responses to NO. Almeida VS, Miller LL, Delia JPG, Magalhães AV, Caruso IP, Iqbal A, Almeida FCL. Antioxidants (Basel) 11 1236 (2022)
  21. Structural analysis and prediction of potent bioactive molecule for eNOS protein through molecular docking. Kanthe PS, Patil BS, Das KK, Parvatikar PP. In Silico Pharmacol 9 48 (2021)
  22. An In Silico Study for Expanding the Utility of Cannabidiol in Alzheimer's Disease Therapeutic Development. Choi K, Lee Y, Kim C. Int J Mol Sci 24 16013 (2023)


Reviews citing this publication (50)

  1. Nitric oxide synthases: structure, function and inhibition. Alderton WK, Cooper CE, Knowles RG. Biochem J 357 593-615 (2001)
  2. Heme enzyme structure and function. Poulos TL. Chem Rev 114 3919-3962 (2014)
  3. Vitamins C and E: beneficial effects from a mechanistic perspective. Traber MG, Stevens JF. Free Radic Biol Med 51 1000-1013 (2011)
  4. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Zhou L, Zhu DY. Nitric Oxide 20 223-230 (2009)
  5. Tetrahydrobiopterin: biochemistry and pathophysiology. Werner ER, Blau N, Thöny B. Biochem J 438 397-414 (2011)
  6. Strategies for targeting protein-protein interactions with synthetic agents. Yin H, Hamilton AD. Angew Chem Int Ed Engl 44 4130-4163 (2005)
  7. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Cinelli MA, Do HT, Miley GP, Silverman RB. Med Res Rev 40 158-189 (2020)
  8. Protein interactions with nitric oxide synthases: controlling the right time, the right place, and the right amount of nitric oxide. Kone BC, Kuncewicz T, Zhang W, Yu ZY. Am J Physiol Renal Physiol 285 F178-90 (2003)
  9. Tetrahydrobiopterin in cardiovascular health and disease. Bendall JK, Douglas G, McNeill E, Channon KM, Crabtree MJ. Antioxid Redox Signal 20 3040-3077 (2014)
  10. Structure and Function of the Mitochondrial Ribosome. Greber BJ, Ban N. Annu Rev Biochem 85 103-132 (2016)
  11. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Crabtree MJ, Channon KM. Nitric Oxide 25 81-88 (2011)
  12. Bacterial nitric oxide synthases. Crane BR, Sudhamsu J, Patel BA. Annu Rev Biochem 79 445-470 (2010)
  13. Insight into protein structure and protein-ligand recognition by Fourier transform infrared spectroscopy. Jung C. J Mol Recognit 13 325-351 (2000)
  14. Nitric oxide in the pulmonary vasculature. Coggins MP, Bloch KD. Arterioscler Thromb Vasc Biol 27 1877-1885 (2007)
  15. Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. Stuehr DJ, Tejero J, Haque MM. FEBS J 276 3959-3974 (2009)
  16. Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases. Silverman RB. Acc Chem Res 42 439-451 (2009)
  17. Nitric oxide synthesis in the kidney: isoforms, biosynthesis, and functions in health. Kone BC. Semin Nephrol 24 299-315 (2004)
  18. Regulation of endothelial nitric oxide synthase activity and gene expression. Wu KK. Ann N Y Acad Sci 962 122-130 (2002)
  19. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Iyanagi T, Xia C, Kim JJ. Arch Biochem Biophys 528 72-89 (2012)
  20. Human Nitric Oxide Synthase-Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Król M, Kepinska M. Int J Mol Sci 22 E56 (2020)
  21. Diversity and conservation of interactions for binding heme in b-type heme proteins. Schneider S, Marles-Wright J, Sharp KH, Paoli M. Nat Prod Rep 24 621-630 (2007)
  22. Endothelial nitric oxide synthase in the microcirculation. Shu X, Keller TC, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE. Cell Mol Life Sci 72 4561-4575 (2015)
  23. Structural aspects of ligand binding to and electron transfer in bacterial and fungal P450s. Pylypenko O, Schlichting I. Annu Rev Biochem 73 991-1018 (2004)
  24. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Perry JJ, Fan L, Tainer JA. Neuroscience 145 1280-1299 (2007)
  25. Tetrahydrobiopterin in nitric oxide synthase. Tejero J, Stuehr D. IUBMB Life 65 358-365 (2013)
  26. Models and mechanisms of O-O bond activation by cytochrome P450. A critical assessment of the potential role of multiple active intermediates in oxidative catalysis. Hlavica P. Eur J Biochem 271 4335-4360 (2004)
  27. The Janus nature of heme. Poulos TL. Nat Prod Rep 24 504-510 (2007)
  28. The molecular mechanism of mammalian NO-synthases: a story of electrons and protons. Santolini J. J Inorg Biochem 105 127-141 (2011)
  29. Enzyme Tunnels and Gates As Relevant Targets in Drug Design. Marques SM, Daniel L, Buryska T, Prokop Z, Brezovsky J, Damborsky J. Med Res Rev 37 1095-1139 (2017)
  30. Is survival possible without arachidonate metabolites in the brain during systemic infection? Zhang J, Rivest S. News Physiol Sci 18 137-142 (2003)
  31. The vital role for nitric oxide in intraocular pressure homeostasis. Reina-Torres E, De Ieso ML, Pasquale LR, Madekurozwa M, van Batenburg-Sherwood J, Overby DR, Stamer WD. Prog Retin Eye Res 83 100922 (2021)
  32. Fragment informatics and computational fragment-based drug design: an overview and update. Sheng C, Zhang W. Med Res Rev 33 554-598 (2013)
  33. Flavin-containing heme enzymes. Mowat CG, Gazur B, Campbell LP, Chapman SK. Arch Biochem Biophys 493 37-52 (2010)
  34. Alternative nitric oxide-producing substrates for NO synthases. Mansuy D, Boucher JL. Free Radic Biol Med 37 1105-1121 (2004)
  35. Modulating the NO generating system from a medicinal chemistry perspective: current trends and therapeutic options in cardiovascular disease. Schade D, Kotthaus J, Clement B. Pharmacol Ther 126 279-300 (2010)
  36. Nitric oxide imaging in living neuronal tissues using fluorescent probes. von Bohlen und Halbach O, von Bohlen und Halbach O. Nitric Oxide 9 217-228 (2003)
  37. Endothelial nitric oxide synthase-derived nitric oxide in the regulation of metabolism. Tenopoulou M, Doulias PT. F1000Res 9 F1000 Faculty Rev-1190 (2020)
  38. Nitric oxide synthase and structure-based inhibitor design. Poulos TL, Li H. Nitric Oxide 63 68-77 (2017)
  39. The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity. Lane P, Gross SS. Acta Physiol Scand 168 53-63 (2000)
  40. The dichotomous role of H2S in cancer cell biology? Déjà vu all over again. Kashfi K. Biochem Pharmacol 149 205-223 (2018)
  41. Carbon Monoxide and Nitric Oxide as Examples of the Youngest Class of Transmitters. Nowaczyk A, Kowalska M, Nowaczyk J, Grześk G. Int J Mol Sci 22 6029 (2021)
  42. Protein-protein interactions involving inducible nitric oxide synthase. Zhang W, Kuncewicz T, Yu ZY, Zou L, Xu X, Kone BC. Acta Physiol Scand 179 137-142 (2003)
  43. Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents. Matter H, Kotsonis P. Med Res Rev 24 662-684 (2004)
  44. Structures of redox enzymes. Munro AW, Taylor P, Walkinshaw MD. Curr Opin Biotechnol 11 369-376 (2000)
  45. ADPKD: molecular characterization and quest for treatment. Horie S. Clin Exp Nephrol 9 282-291 (2005)
  46. The role of globins in cardiovascular physiology. Keller TCS, Lechauve C, Keller AS, Brooks S, Weiss MJ, Columbus L, Ackerman H, Cortese-Krott MM, Isakson BE. Physiol Rev 102 859-892 (2022)
  47. Electron supply and catalytic oxidation of nitrogen by cytochrome P450 and nitric oxide synthase. Nishida CR, Knudsen G, Straub W, Ortiz de Montellano PR. Drug Metab Rev 34 479-501 (2002)
  48. Nitric oxide and the brain. Part 2: Effects following neonatal brain injury-friend or foe? Angelis D, Savani R, Chalak L. Pediatr Res 89 746-752 (2021)
  49. Platanosides, a Potential Botanical Drug Combination, Decrease Liver Injury Caused by Acetaminophen Overdose in Mice. Samuvel DJ, Nguyen NT, Jaeschke H, Lemasters JJ, Wang X, Choo YM, Hamann MT, Zhong Z. J Nat Prod 85 1779-1788 (2022)
  50. [Molecular targets for searching of endothelial-protective substances]. Glushko AA, Voronkov AV, Chernikov MV. Bioorg Khim 40 515-527 (2014)

Articles citing this publication (142)

  1. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Science 348 303-308 (2015)
  2. Structural basis for isozyme-specific regulation of electron transfer in nitric-oxide synthase. Garcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA, Getzoff ED. J Biol Chem 279 37918-37927 (2004)
  3. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, St-Gallay SA, Tinker AC, Gensmantel NP, Mete A, Cheshire DR, Connolly S, Stuehr DJ, Aberg A, Wallace AV, Tainer JA, Getzoff ED. Nat Chem Biol 4 700-707 (2008)
  4. Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry. McMillan K, Adler M, Auld DS, Baldwin JJ, Blasko E, Browne LJ, Chelsky D, Davey D, Dolle RE, Eagen KA, Erickson S, Feldman RI, Glaser CB, Mallari C, Morrissey MM, Ohlmeyer MH, Pan G, Parkinson JF, Phillips GB, Polokoff MA, Sigal NH, Vergona R, Whitlow M, Young TA, Devlin JJ. Proc Natl Acad Sci U S A 97 1506-1511 (2000)
  5. Adverse effects of cigarette smoke on NO bioavailability: role of arginine metabolism and oxidative stress. Zhang WZ, Venardos K, Chin-Dusting J, Kaye DM. Hypertension 48 278-285 (2006)
  6. Endothelial nitric oxide synthase dysfunction in diabetic mice: importance of tetrahydrobiopterin in eNOS dimerisation. Cai S, Khoo J, Mussa S, Alp NJ, Channon KM. Diabetologia 48 1933-1940 (2005)
  7. Distinct dimer interaction and regulation in nitric-oxide synthase types I, II, and III. Panda K, Rosenfeld RJ, Ghosh S, Meade AL, Getzoff ED, Stuehr DJ. J Biol Chem 277 31020-31030 (2002)
  8. Interaction of 5-methyltetrahydrofolate and tetrahydrobiopterin on endothelial function. Hyndman ME, Verma S, Rosenfeld RJ, Anderson TJ, Parsons HG. Am J Physiol Heart Circ Physiol 282 H2167-72 (2002)
  9. Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans. Adak S, Bilwes AM, Panda K, Hosfield D, Aulak KS, McDonald JF, Tainer JA, Getzoff ED, Crane BR, Stuehr DJ. Proc Natl Acad Sci U S A 99 107-112 (2002)
  10. Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition. Chen W, Druhan LJ, Chen CA, Hemann C, Chen YR, Berka V, Tsai AL, Zweier JL. Biochemistry 49 3129-3137 (2010)
  11. Association of the Glu298Asp polymorphism in the endothelial nitric oxide synthase gene with essential hypertension resistant to conventional therapy. Jáchymová M, Horký K, Bultas J, Kozich V, Jindra A, Peleska J, Martásek P. Biochem Biophys Res Commun 284 426-430 (2001)
  12. CO, NO and O2 as Vibrational Probes of Heme Protein Interactions. Spiro TG, Soldatova AV, Balakrishnan G. Coord Chem Rev 257 511-527 (2013)
  13. Regulation of interdomain interactions by calmodulin in inducible nitric-oxide synthase. Xia C, Misra I, Iyanagi T, Kim JJ. J Biol Chem 284 30708-30717 (2009)
  14. Minimal pharmacophoric elements and fragment hopping, an approach directed at molecular diversity and isozyme selectivity. Design of selective neuronal nitric oxide synthase inhibitors. Ji H, Stanton BZ, Igarashi J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. J Am Chem Soc 130 3900-3914 (2008)
  15. Genetic variation in human drug-related genes. Schärfe CPI, Tremmel R, Schwab M, Kohlbacher O, Marks DS. Genome Med 9 117 (2017)
  16. Nitric oxide synthase is induced in sporulation of Physarum polycephalum. Golderer G, Werner ER, Leitner S, Gröbner P, Werner-Felmayer G. Genes Dev 15 1299-1309 (2001)
  17. Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Flinspach ML, Li H, Jamal J, Yang W, Huang H, Hah JM, Gómez-Vidal JA, Litzinger EA, Silverman RB, Poulos TL. Nat Struct Mol Biol 11 54-59 (2004)
  18. Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. Ji H, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. J Med Chem 52 779-797 (2009)
  19. Relationship between the G894T polymorphism (Glu298Asp variant) in endothelial nitric oxide synthase and nitric oxide-mediated endothelial function in human atherosclerosis. Guzik TJ, Black E, West NE, McDonald D, Ratnatunga C, Pillai R, Channon KM. Am J Med Genet 100 130-137 (2001)
  20. Inducible nitric oxide synthase (NOS2) expressed in septic patients is nitrated on selected tyrosine residues: implications for enzymic activity. Lanone S, Manivet P, Callebert J, Launay JM, Payen D, Aubier M, Boczkowski J, Mebazaa A. Biochem J 366 399-404 (2002)
  21. Crystal structure of SANOS, a bacterial nitric oxide synthase oxygenase protein from Staphylococcus aureus. Bird LE, Ren J, Zhang J, Foxwell N, Hawkins AR, Charles IG, Stammers DK. Structure 10 1687-1696 (2002)
  22. Deciphering the binding of caveolin-1 to client protein endothelial nitric-oxide synthase (eNOS): scaffolding subdomain identification, interaction modeling, and biological significance. Trane AE, Pavlov D, Sharma A, Saqib U, Lau K, van Petegem F, Minshall RD, Roman LJ, Bernatchez PN. J Biol Chem 289 13273-13283 (2014)
  23. Exploration of the active site of neuronal nitric oxide synthase by the design and synthesis of pyrrolidinomethyl 2-aminopyridine derivatives. Ji H, Delker SL, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. J Med Chem 53 7804-7824 (2010)
  24. Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity. Knudsen GM, Nishida CR, Mooney SD, Ortiz de Montellano PR. J Biol Chem 278 31814-31824 (2003)
  25. Structural basis for the specificity of the nitric-oxide synthase inhibitors W1400 and Nomega-propyl-L-Arg for the inducible and neuronal isoforms. Fedorov R, Hartmann E, Ghosh DK, Schlichting I. J Biol Chem 278 45818-45825 (2003)
  26. Crystal structures of cyanide complexes of P450cam and the oxygenase domain of inducible nitric oxide synthase-structural models of the short-lived oxygen complexes. Fedorov R, Ghosh DK, Schlichting I. Arch Biochem Biophys 409 25-31 (2003)
  27. The journey from NADPH-cytochrome P450 oxidoreductase to nitric oxide synthases. Masters BS. Biochem Biophys Res Commun 338 507-519 (2005)
  28. Amphibian peptides that inhibit neuronal nitric oxide synthase. Isolation of lesuerin from the skin secretion of the Australian Stony Creek frog Litoria lesueuri. Doyle J, Llewellyn LE, Brinkworth CS, Bowie JH, Wegener KL, Rozek T, Wabnitz PA, Wallace JC, Tyler MJ. Eur J Biochem 269 100-109 (2002)
  29. Proinflammatory role of inducible nitric oxide synthase in acute hyperoxic lung injury. Hesse AK, Dörger M, Kupatt C, Krombach F. Respir Res 5 11 (2004)
  30. Protein functional surfaces: global shape matching and local spatial alignments of ligand binding sites. Binkowski TA, Joachimiak A. BMC Struct Biol 8 45 (2008)
  31. Reaction of Mycobacterium tuberculosis cytochrome P450 enzymes with nitric oxide. Ouellet H, Lang J, Couture M, Ortiz de Montellano PR. Biochemistry 48 863-872 (2009)
  32. Synergistic neuroprotection by bis(7)-tacrine via concurrent blockade of N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase. Li W, Xue J, Niu C, Fu H, Lam CS, Luo J, Chan HH, Xue H, Kan KK, Lee NT, Li C, Pang Y, Li M, Tsim KW, Jiang H, Chen K, Li X, Han Y. Mol Pharmacol 71 1258-1267 (2007)
  33. NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum. Agapie T, Suseno S, Woodward JJ, Stoll S, Britt RD, Marletta MA. Proc Natl Acad Sci U S A 106 16221-16226 (2009)
  34. Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase. Tejero J, Hannibal L, Mustovich A, Stuehr DJ. J Biol Chem 285 27232-27240 (2010)
  35. Role of nitric oxide synthase in the light-induced development of sporangiophores in Phycomyces blakesleeanus. Maier J, Hecker R, Rockel P, Ninnemann H. Plant Physiol 126 1323-1330 (2001)
  36. Electron transfer is activated by calmodulin in the flavin domain of human neuronal nitric oxide synthase. Guan ZW, Iyanagi T. Arch Biochem Biophys 412 65-76 (2003)
  37. Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quantitative assessment of the trans effect of NO. Lehnert N, Sage JT, Silvernail N, Scheidt WR, Alp EE, Sturhahn W, Zhao J. Inorg Chem 49 7197-7215 (2010)
  38. Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase. Tejero J, Biswas A, Wang ZQ, Page RC, Haque MM, Hemann C, Zweier JL, Misra S, Stuehr DJ. J Biol Chem 283 33498-33507 (2008)
  39. A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism. Tejero J, Haque MM, Durra D, Stuehr DJ. J Biol Chem 285 25941-25949 (2010)
  40. The role of tetrahydrobiopterin in the activation of oxygen by nitric-oxide synthase. Bec N, Gorren AFC, Mayer B, Schmidt PP, Andersson KK, Lange R. J Inorg Biochem 81 207-211 (2000)
  41. Biophysical limits of protein-ligand binding. Smith RD, Engdahl AL, Dunbar JB, Carlson HA. J Chem Inf Model 52 2098-2106 (2012)
  42. Pharmacogenetic association of NOS3 variants with cardiovascular disease in patients with hypertension: the GenHAT study. Zhang X, Lynch AI, Davis BR, Ford CE, Boerwinkle E, Eckfeldt JH, Leiendecker-Foster C, Arnett DK. PLoS One 7 e34217 (2012)
  43. Recruitment of governing elements for electron transfer in the nitric oxide synthase family. Jáchymová M, Martásek P, Panda S, Roman LJ, Panda M, Shea TM, Ishimura Y, Kim JJ, Masters BS. Proc Natl Acad Sci U S A 102 15833-15838 (2005)
  44. Regulation of the monomer-dimer equilibrium in inducible nitric-oxide synthase by nitric oxide. Li D, Hayden EY, Panda K, Stuehr DJ, Deng H, Rousseau DL, Yeh SR. J Biol Chem 281 8197-8204 (2006)
  45. Structural basis for isoform-selective inhibition in nitric oxide synthase. Poulos TL, Li H. Acc Chem Res 46 390-398 (2013)
  46. Inhibition of MEK/ERK1/2 signalling alters endothelial nitric oxide synthase activity in an agonist-dependent manner. Cale JM, Bird IM. Biochem J 398 279-288 (2006)
  47. A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity. Adak S, Sharma M, Meade AL, Stuehr DJ. Proc Natl Acad Sci U S A 99 13516-13521 (2002)
  48. Effect of statin therapy on serum trace element status in dyslipidaemic subjects. Ghayour-Mobarhan M, Lamb DJ, Taylor A, Vaidya N, Livingstone C, Wang T, Ferns GA. J Trace Elem Med Biol 19 61-67 (2005)
  49. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase. Chen PF, Wu KK. J Biol Chem 278 52392-52400 (2003)
  50. Activation of peroxynitrite by inducible nitric-oxide synthase: a direct source of nitrative stress. Maréchal A, Mattioli TA, Stuehr DJ, Santolini J. J Biol Chem 282 14101-14112 (2007)
  51. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Stuehr DJ, Wei CC, Wang Z, Hille R. Dalton Trans 3427-3435 (2005)
  52. Src-mediated phosphorylation regulates subcellular distribution and activity of human inducible nitric oxide synthase. Hausel P, Latado H, Courjault-Gautier F, Felley-Bosco E. Oncogene 25 198-206 (2006)
  53. The novel imidazopyridine 2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine (BYK191023) is a highly selective inhibitor of the inducible nitric-oxide synthase. Strub A, Ulrich WR, Hesslinger C, Eltze M, Fuchss T, Strassner J, Strand S, Lehner MD, Boer R. Mol Pharmacol 69 328-337 (2006)
  54. Association between a G894T polymorphism of eNOS gene and essential hypertension in Hani and Yi minority groups of China. Tang W, Yang Y, Wang B, Xiao C. Arch Med Res 39 222-225 (2008)
  55. Cu2+ and Zn2+ inhibit nitric-oxide synthase through an interaction with the reductase domain. Perry JM, Zhao Y, Marletta MA. J Biol Chem 275 14070-14076 (2000)
  56. Kinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands. Stevenson TH, Gutierrez AF, Alderton WK, Lian L, Scrutton NS. Biochem J 358 201-208 (2001)
  57. Rapid calmodulin-dependent interdomain electron transfer in neuronal nitric-oxide synthase measured by pulse radiolysis. Kobayashi K, Tagawa S, Daff S, Sagami I, Shimizu T. J Biol Chem 276 39864-39871 (2001)
  58. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences. Roman LJ, McLain J, Masters BS. J Biol Chem 278 25700-25707 (2003)
  59. Structures of human constitutive nitric oxide synthases. Li H, Jamal J, Plaza C, Pineda SH, Chreifi G, Jing Q, Cinelli MA, Silverman RB, Poulos TL. Acta Crystallogr D Biol Crystallogr 70 2667-2674 (2014)
  60. Conformationally restricted dipeptide amides as potent and selective neuronal nitric oxide synthase inhibitors. Ji H, Gómez-Vidal JA, Martasek P, Roman LJ, Silverman RB. J Med Chem 49 6254-6263 (2006)
  61. Regulation of multimers via truncated isoforms: a novel mechanism to control nitric-oxide signaling. Stasiv Y, Kuzin B, Regulski M, Tully T, Enikolopov G. Genes Dev 18 1812-1823 (2004)
  62. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Romo-Mancillas A, López-Vallejo FH, Solís-Gutiérrez M, Rojas-Molina JI, Rivero-Cruz F. Molecules 21 78 (2016)
  63. Modulating Vascular Hemodynamics With an Alpha Globin Mimetic Peptide (HbαX). Keller TC, Butcher JT, Broseghini-Filho GB, Marziano C, DeLalio LJ, Rogers S, Ning B, Martin JN, Chechova S, Cabot M, Shu X, Best AK, Good ME, Simão Padilha A, Purdy M, Yeager M, Peirce SM, Hu S, Doctor A, Barrett E, Le TH, Columbus L, Isakson BE. Hypertension 68 1494-1503 (2016)
  64. Aspirin modulates LPS-induced nitric oxide release in rat glial cells. Marchini C, Angeletti M, Eleuteri AM, Fedeli A, Fioretti E. Neurosci Lett 381 86-91 (2005)
  65. Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase. Singh SP, Konwar BK. Springerplus 1 69 (2012)
  66. Use of a murine cell line for identification of human nitric oxide synthase inhibitors. Naureckiene S, Edris W, Ajit SK, Katz AH, Sreekumar K, Rogers KE, Kennedy JD, Jones PG. J Pharmacol Toxicol Methods 55 303-313 (2007)
  67. Evolutionary Relationships Between Low Potential Ferredoxin and Flavodoxin Electron Carriers. Campbell IJ, Bennett GN, Silberg JJ. Front Energy Res 7 (2019)
  68. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis. Haque MM, Tejero J, Bayachou M, Wang ZQ, Fadlalla M, Stuehr DJ. FEBS J 280 4439-4453 (2013)
  69. Novel 2,4-disubstituted pyrimidines as potent, selective, and cell-permeable inhibitors of neuronal nitric oxide synthase. Mukherjee P, Li H, Sevrioukova I, Chreifi G, Martásek P, Roman LJ, Poulos TL, Silverman RB. J Med Chem 58 1067-1088 (2015)
  70. The mobility of a conserved tyrosine residue controls isoform-dependent enzyme-inhibitor interactions in nitric oxide synthases. Li H, Jamal J, Delker S, Plaza C, Ji H, Jing Q, Huang H, Kang S, Silverman RB, Poulos TL. Biochemistry 53 5272-5279 (2014)
  71. Structure-based design and synthesis of N(omega)-nitro-L-arginine-containing peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. Displacement of the heme structural water. Seo J, Igarashi J, Li H, Martasek P, Roman LJ, Poulos TL, Silverman RB. J Med Chem 50 2089-2099 (2007)
  72. Selective inhibition of nitric oxide synthase type I by clonidine, an anti-hypertensive drug. Venturini G, Colasanti M, Persichini T, Fioravanti E, Federico R, Ascenzi P. Biochem Pharmacol 60 539-544 (2000)
  73. Badger macrophages fail to produce nitric oxide, a key anti-mycobacterial effector molecule. Bilham K, Boyd AC, Preston SG, Buesching CD, Newman C, Macdonald DW, Smith AL. Sci Rep 7 45470 (2017)
  74. The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS. Wheatley C. J Nutr Environ Med 16 181-211 (2007)
  75. 1,6-Disubstituted indole derivatives as selective human neuronal nitric oxide synthase inhibitors. Maddaford S, Renton P, Speed J, Annedi SC, Ramnauth J, Rakhit S, Andrews J, Mladenova G, Majuta L, Porreca F. Bioorg Med Chem Lett 21 5234-5238 (2011)
  76. Arg375 tunes tetrahydrobiopterin functions and modulates catalysis by inducible nitric oxide synthase. Wang ZQ, Tejero J, Wei CC, Haque MM, Santolini J, Fadlalla M, Biswas A, Stuehr DJ. J Inorg Biochem 108 203-215 (2012)
  77. Elucidating nitric oxide synthase domain interactions by molecular dynamics. Hollingsworth SA, Holden JK, Li H, Poulos TL. Protein Sci 25 374-382 (2016)
  78. Important role of tetrahydrobiopterin in no complex formation and interdomain electron transfer in neuronal nitric-oxide synthase. Noguchi T, Sagami I, Daff S, Shimizu T. Biochem Biophys Res Commun 282 1092-1097 (2001)
  79. Molecular modeling and simulation of the human eNOS reductase domain, an enzyme involved in the release of vascular nitric oxide. Devika NT, Amresh P, Hassan MI, Ali BM. J Mol Model 20 2470 (2014)
  80. Optimization of Blood-Brain Barrier Permeability with Potent and Selective Human Neuronal Nitric Oxide Synthase Inhibitors Having a 2-Aminopyridine Scaffold. Do HT, Li H, Chreifi G, Poulos TL, Silverman RB. J Med Chem 62 2690-2707 (2019)
  81. Pan-Cancer Analysis of NOS3 Identifies Its Expression and Clinical Relevance in Gastric Cancer. Zou D, Li Z, Lv F, Yang Y, Yang C, Song J, Chen Y, Jin Z, Zhou J, Jiang Y, Ma Y, Jing Z, Tang Y, Zhang Y. Front Oncol 11 592761 (2021)
  82. Roles of the heme proximal side residues tryptophan409 and tryptophan421 of neuronal nitric oxide synthase in the electron transfer reaction. Yumoto T, Sagami I, Daff S, Shimizu T. J Inorg Biochem 82 163-170 (2000)
  83. Studies of neuronal nitric oxide synthase inactivation by diverse suicide inhibitors. Bryk R, Lubeskie A, Wolff DJ. Arch Biochem Biophys 369 243-251 (1999)
  84. Telmisartan protects 5/6 Nx rats against renal injury by enhancing nNOS-derived NO generation via regulation of PPARγ signaling. Zou R, He Y, Li YQ, Han M, Ma ZF, Liu XC, Zeng R, Shao JF, Guo YC, He XY, Yang P, Xu G, Wang CY, Yao Y. Am J Transl Res 6 517-527 (2014)
  85. The N-terminal portion of autoinhibitory element modulates human endothelial nitric-oxide synthase activity through coordinated controls of phosphorylation at Thr495 and Ser1177. Wu PR, Chen BR, Hsieh CC, Lin WC, Wu KK, Hwu Y, Chen PF. Biosci Rep 34 e00129 (2014)
  86. The polymorphism G894 T of endothelial nitric oxide synthase (eNOS) gene is associated with susceptibility to essential hypertension (EH) in Morocco. Nassereddine S, Hassani Idrissi H, Habbal R, Abouelfath R, Korch F, Haraka M, Karkar A, Nadifi S. BMC Med Genet 19 127 (2018)
  87. Dynamics of NO rebinding to the heme domain of NO synthase-like proteins from bacterial pathogens. Gautier C, Mikula I, Nioche P, Martasek P, Raman CS, Slama-Schwok A. Nitric Oxide 15 312-327 (2006)
  88. Modulation of the nitric oxide pathway by copper in glial cells. Colasanti M, Persichini T, Venturini G, Polticelli F, Musci G. Biochem Biophys Res Commun 275 776-782 (2000)
  89. A structural role for tryptophan 188 of inducible nitric oxide synthase. Wilson DJ, Rafferty SP. Biochem Biophys Res Commun 287 126-129 (2001)
  90. Association of endothelial nitric oxide synthase (NOS3) gene polymorphisms with primary open-angle glaucoma in a Saudi cohort. Kondkar AA, Azad TA, Sultan T, Osman EA, Almobarak FA, Al-Obeidan SA. PLoS One 15 e0227417 (2020)
  91. Cloning, expression, and characterization of recombinant nitric oxide synthase-like protein from Bacillus anthracis. Midha S, Mishra R, Aziz MA, Sharma M, Mishra A, Khandelwal P, Bhatnagar R. Biochem Biophys Res Commun 336 346-356 (2005)
  92. NO synthase isoforms specifically modify peroxynitrite reactivity. Maréchal A, Mattioli TA, Stuehr DJ, Santolini J. FEBS J 277 3963-3973 (2010)
  93. Physarum nitric oxide synthases: genomic structures and enzymology of recombinant proteins. Messner S, Leitner S, Bommassar C, Golderer G, Gröbner P, Werner ER, Werner-Felmayer G. Biochem J 418 691-700 (2009)
  94. Proximal effects in the modulation of nitric oxide synthase reactivity: a QM-MM study. Fernández ML, Martí MA, Crespo A, Estrin DA. J Biol Inorg Chem 10 595-604 (2005)
  95. Re and (99m)Tc organometallic complexes containing pendant l-arginine derivatives as potential probes of inducible nitric oxide synthase. Oliveira BL, Correia JD, Raposinho PD, Santos I, Ferreira A, Cordeiro C, Freire AP. Dalton Trans 152-162 (2009)
  96. Synthesis of phenylisothiourea derivatives as inhibitors of NO production in LPS activated macrophages. Jin GH, Lee DY, Cheon YJ, Gim HJ, Kim do H, Kim HD, Ryu JH, Jeon R. Bioorg Med Chem Lett 19 3088-3092 (2009)
  97. Agmatine oxidation by copper amine oxidase. Ascenzi P, Fasano M, Marino M, Venturini G, Federico R. Eur J Biochem 269 884-892 (2002)
  98. Characterization of Drosophila nitric oxide synthase: a biochemical study. Sengupta R, Sengupta R, Sahoo R, Mukherjee S, Regulski M, Tully T, Stuehr DJ, Ghosh S. Biochem Biophys Res Commun 306 590-597 (2003)
  99. Cobalamin in inflammation III - glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases. Wheatley C. J Nutr Environ Med 16 212-226 (2007)
  100. Design of benzene-1,2-diamines as selective inducible nitric oxide synthase inhibitors: a combined de novo design and docking analysis. Francis SM, Mittal A, Sharma M, Bharatam PV. J Mol Model 14 215-224 (2008)
  101. Discovery of a series of aminopiperidines as novel iNOS inhibitors. Le Bourdonnec B, Leister LK, Ajello CA, Cassel JA, Seida PR, O'Hare H, Gu M, Chu GH, Tuthill PA, DeHaven RN, Dolle RE. Bioorg Med Chem Lett 18 336-343 (2008)
  102. Inhibition of Inducible Nitric Oxide Synthase (iNOS) by Andrographolide and In Vitro Evaluation of Its Antiproliferative and Proapoptotic Effects on Cervical Cancer. Pasha A, Kumbhakar DV, Doneti R, Kumar K, Dharmapuri G, Poleboyina PK, S K H, Basavaraju P, Pasumarthi D, S D A, Soujanya P, Arnold Emeson I, Bodiga V, Pawar SC. Oxid Med Cell Longev 2021 6692628 (2021)
  103. Nitric oxide synthases activation and inhibition by metallacarborane-cluster-based isoform-specific affectors. Kaplánek R, Martásek P, Grüner B, Panda S, Rak J, Masters BS, Král V, Roman LJ. J Med Chem 55 9541-9548 (2012)
  104. Relationship between the structure of guanidines and N-hydroxyguanidines, their binding to inducible nitric oxide synthase (iNOS) and their iNOS-catalysed oxidation to NO. Lefèvre-Groboillot D, Boucher JL, Stuehr DJ, Mansuy D. FEBS J 272 3172-3183 (2005)
  105. Selective inhibition of human inducible nitric oxide synthase by S-alkyl-L-isothiocitrulline-containing dipeptides. Park JM, Higuchi T, Kikuchi K, Urano Y, Hori H, Nishino T, Aoki J, Inoue K, Nagano T. Br J Pharmacol 132 1876-1882 (2001)
  106. Suppression of inducible nitric oxide synthase by 10-23 DNAzymes in murine macrophage. Chaudhury I, Raghav SK, Gautam HK, Das HR, Das RH. FEBS Lett 580 2046-2052 (2006)
  107. Bacterial-like nitric oxide synthase in the haloalkaliphilic archaeon Natronomonas pharaonis. Orsini SS, James KL, Reyes DJ, Couto-Rodriguez RL, Gulko MK, Witte A, Carroll RK, Rice KC. Microbiologyopen 9 e1124 (2020)
  108. Engineering nitric oxide synthase chimeras to function as NO dioxygenases. Wang ZQ, Haque MM, Binder K, Sharma M, Wei CC, Stuehr DJ. J Inorg Biochem 158 122-130 (2016)
  109. Insights into the structural determinants for selective inhibition of nitric oxide synthase isoforms. Oliveira BL, Moreira IS, Fernandes PA, Ramos MJ, Santos I, Correia JD. J Mol Model 19 1537-1551 (2013)
  110. Phenolic Profiling and Therapeutic Potential of Certain Isolated Compounds from Parkia roxburghii against AChE Activity as well as GABAA α5, GSK-3β, and p38α MAP-Kinase Genes. El Gizawy HA, Abo-Salem HM, Ali AA, Hussein MA. ACS Omega 6 20492-20511 (2021)
  111. [Transition metals and nitric oxide production in human endothelial cells]. David-Dufilho M, Privat C, Brunet A, Richard MJ, Devynck J, Devynck MA. C R Acad Sci III 324 13-21 (2001)
  112. An analysis of horseradish peroxidase enzyme for effluent treatment. Nunavath H, Banoth C, Talluri VR, Bhukya B. Bioinformation 12 318-323 (2016)
  113. Contrasting effects of N5-substituted tetrahydrobiopterin derivatives on phenylalanine hydroxylase, dihydropteridine reductase and nitric oxide synthase. Werner ER, Habisch HJ, Gorren AC, Schmidt K, Canevari L, Werner-Felmayer G, Mayer B. Biochem J 348 Pt 3 579-583 (2000)
  114. Differential effects of mutations in human endothelial nitric oxide synthase at residues Tyr-357 and Arg-365 on L-arginine hydroxylation and GN-hydroxy-L-arginine oxidation. Chen PF, Berka V, Wu KK. Arch Biochem Biophys 411 83-92 (2003)
  115. Mediterranean G6PD variant mitigates expression of DNA methyltransferases and right heart pressure in experimental model of pulmonary hypertension. Jacob C, Kitagawa A, Signoretti C, Dzieciatkowska M, D'Alessandro A, Gupte A, Hossain S, D'Addario CA, Gupte R, Gupte SA. J Biol Chem 298 102691 (2022)
  116. Redox-Dependent Calpain Signaling in Airway and Pulmonary Vascular Remodeling in COPD. Kovacs L, Su Y. Adv Exp Med Biol 967 139-160 (2017)
  117. The tetrahydrobiopterin radical interacting with high- and low-spin heme in neuronal nitric oxide synthase - A new indicator of the extent of NOS coupling. Krzyaniak MD, Cruce AA, Vennam P, Lockart M, Berka V, Tsai AL, Bowman MK. Free Radic Biol Med 101 367-377 (2016)
  118. Withapubesides A-D: natural inducible nitric oxide synthase (iNOS) inhibitors from Physalis pubescens. Xia GY, Yao T, Zhang BY, Li Y, Kang N, Cao SJ, Ding LQ, Chen LX, Qiu F. Org Biomol Chem 15 10016-10023 (2017)
  119. A professional and personal odyssey. Masters BS. J Biol Chem 284 19765-19780 (2009)
  120. Combined effects of cigarette smoking, alcohol drinking and eNOS Glu298Asp polymorphism on blood pressure in Chinese male hypertensive subjects. Hong Z, Pan L, Ma Z, Zhu Y, Hong Z. Tob Induc Dis 17 59 (2019)
  121. Hydroxyethylene isosteres of selective neuronal nitric oxide synthase inhibitors. Erdal EP, Martásek P, Roman LJ, Silverman RB. Bioorg Med Chem 15 6096-6108 (2007)
  122. Identification of iNOS inhibitors using InteraX. Mallinder PR, Wallace AV, Allenby G. J Biomol Screen 14 263-272 (2009)
  123. Insights into ligand selectivity in nitric oxide synthase isoforms: a molecular dynamics study. Aparna V, Desiraju GR, Gopalakrishnan B. J Mol Graph Model 26 457-470 (2007)
  124. Molecular Docking Approach of Bryophyllum Pinnatum Compounds as Atherosclerosis Therapy By Targeting Adenosine Monophosphate-Activated Protein Kinase and Inducible Nitric Oxide Synthase. Yuniwati Y, Syaban MFR, Anoraga SG, Sabila FL. Acta Inform Med 30 91-95 (2022)
  125. Molecular docking analysis of UniProtKB nitrate reductase enzyme with known natural flavonoids. Shaik A, Thumma V, Kotha AK, Kramadhati S, Pochampally J, Bandi S. Bioinformation 12 425-429 (2016)
  126. Small molecule inhibiting microglial nitric oxide release could become a potential treatment for neuroinflammation. Jordan P, Costa A, Specker E, Popp O, Volkamer A, Piske R, Obrusnik T, Kleissle S, Stuke K, Rex A, Neuenschwander M, von Kries JP, Nazare M, Mertins P, Kettenmann H, Wolf SA. PLoS One 18 e0278325 (2023)
  127. Two synthetic peptides corresponding to the proximal heme-binding domain and CD1 domain of human endothelial nitric-oxide synthase inhibit the oxygenase activity by interacting with CaM. Chen PF, Wu KK. Arch Biochem Biophys 486 132-140 (2009)
  128. Competition and binding of arginine, imidazole, and aminoguanidine to endothelial nitric oxide synthase: aminoguanidine is a poor model for substrate, intermediate, and arginine analog inhibitor binding. Katsumoto S, Smith SM, Martasek P, Salerno JC. Nitric Oxide 8 149-154 (2003)
  129. Critical role of the neuronal nitric-oxide synthase heme proximal side residue, Arg418, in catalysis and electron transfer. Sato Y, Sagami I, Shimizu T. J Inorg Biochem 87 261-266 (2001)
  130. Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment. Sengupta R, Sengupta R, Sahoo R, Ray SS, Dutta T, Dasgupta A, Ghosh S. Mol Cell Biochem 284 117-126 (2006)
  131. Exploring second coordination sphere effects in nitric oxide synthase. McQuarters AB, Speelman AL, Chen L, Elmore BO, Fan W, Feng C, Lehnert N. J Biol Inorg Chem 21 997-1008 (2016)
  132. S-Ethyl-Isothiocitrullin-Based Dipeptides and 1,2,4-Oxadiazole Pseudo-Dipeptides: Solid Phase Synthesis and Evaluation as NO Synthase Inhibitors. Mauchauffée E, Leroy J, Chamcham J, Ejjoummany A, Maurel M, Nauton L, Ramassamy B, Mezghenna K, Boucher JL, Lajoix AD, Hernandez JF. Molecules 28 5085 (2023)
  133. A simple method to calculate the accessible volume of protein-bound ligands: application for ligand selectivity. Hodneland E, Teigen K. J Mol Graph Model 26 429-433 (2007)
  134. Antioxidant and Anti-inflammatory Activity of Sea Cucumber (Holothuria scabra) Active Compounds against KEAP1 and iNOS Protein. Wargasetia TL, Ratnawati H, Widodo N, Widyananda MH. Bioinform Biol Insights 17 11779322221149613 (2023)
  135. Association of alpha globin gene copy number with exhaled nitric oxide in a cross-sectional study of healthy Black adults. Ruhl AP, Jackson JM, Carhuas CJ, Niño de Rivera JG, Fay MP, Weinberg JB, Que LG, Ackerman HC. BMJ Open Respir Res 10 e001714 (2023)
  136. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits Lps-induced inflammation by regulating macrophage polarization based on network pharmacology. Wang S, Ji T, Wang L, Qu Y, Wang X, Wang W, Lv M, Wang Y, Li X, Jiang P. BMC Complement Med Ther 23 8 (2023)
  137. Fourier transform infrared spectroscopy study of ligand photodissociation and migration in inducible nitric oxide synthase. Horn M, Nienhaus K, Nienhaus GU. F1000Res 3 290 (2014)
  138. Heteroalicyclic carboxamidines as inhibitors of inducible nitric oxide synthase; the identification of (2R)-2-pyrrolidinecarboxamidine as a potent and selective haem-co-ordinating inhibitor. Young RJ, Alderton W, Angell AD, Beswick PJ, Brown D, Chambers CL, Crowe MC, Dawson J, Hamlett CC, Hodgson ST, Kleanthous S, Knowles RG, Russell LJ, Stocker R, Woolven JM. Bioorg Med Chem Lett 21 3037-3040 (2011)
  139. Importance of Val567 on heme environment and substrate recognition of neuronal nitric oxide synthase. Olsbu IK, Zoppellaro G, Andersson KK, Boucher JL, Hersleth HP. FEBS Open Bio 8 1553-1566 (2018)
  140. Insights into human eNOS, nNOS and iNOS structures and medicinal indications from statistical analyses of their interactions with bound compounds. Dong J, Li D, Kang L, Luo C, Wang J. Biophys Rep 9 159-175 (2023)
  141. Supplementation of syringic acid-rich Phrynium pubinerve leaves imparts protection against allergic inflammatory responses by downregulating iNOS, COX-2, and NF-κB expressions. Islam MA, Huq Atanu MS, Siraj MA, Acharyya RN, Ahmed KS, Dev S, Uddin SJ, Das AK. Heliyon 9 e13343 (2023)
  142. Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitro and in silico analysis. Zhang X, Lian X, Li H, Zhao W, Li X, Zhou F, Zhou Y, Cui T, Wang Y, Liu C. Chin Herb Med 14 554-562 (2022)