3nhc Citations

Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease.

J Biol Chem 285 29671-5 (2010)
Cited: 43 times
EuropePMC logo PMID: 20685658

Abstract

A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are "steric zippers," pairs of interacting β-sheets. Both structures of these "homozygous steric zippers" reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

Reviews - 3nhc mentioned but not cited (2)

  1. Recent Advances in Biological Activity, New Formulations and Prodrugs of Ferulic Acid. Stompor-Gorący M, Machaczka M. Int J Mol Sci 22 12889 (2021)
  2. Factors affecting the physical stability (aggregation) of peptide therapeutics. Zapadka KL, Becher FJ, Gomes Dos Santos AL, Jackson SE. Interface Focus 7 20170030 (2017)

Articles - 3nhc mentioned but not cited (10)

  1. Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. Apostol MI, Sawaya MR, Cascio D, Eisenberg D. J. Biol. Chem. 285 29671-29675 (2010)
  2. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. EMBO J 39 e102864 (2020)
  3. Bis-tris propane as a new polydentate linker in the synthesis of iron(III) and manganese(II/III) complexes. Ferguson A, Darwish A, Graham K, Schmidtmann M, Parkin A, Murrie M. Inorg Chem 47 9742-9744 (2008)
  4. Interplay between peptide bond geometrical parameters in nonglobular structural contexts. Esposito L, Balasco N, De Simone A, Berisio R, Vitagliano L. Biomed Res Int 2013 326914 (2013)
  5. PATH - Prediction of Amyloidogenicity by Threading and Machine Learning. Wojciechowski JW, Kotulska M. Sci Rep 10 7721 (2020)
  6. The zipper groups of the amyloid state of proteins. Stroud JC. Acta Crystallogr. D Biol. Crystallogr. 69 540-545 (2013)
  7. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  8. Towards the design of anti-amyloid short peptide helices. Roterman I, Banach M, Konieczny L. Bioinformation 14 1-7 (2018)
  9. Are Amyloid Fibrils RNA-Traps? A Molecular Dynamics Perspective. Meli M, Gasset M, Colombo G. Front Mol Biosci 5 53 (2018)
  10. MELD-accelerated molecular dynamics help determine amyloid fibril structures. Sharma B, Dill KA. Commun Biol 4 942 (2021)


Reviews citing this publication (11)

  1. The amyloid state of proteins in human diseases. Eisenberg D, Jucker M. Cell 148 1188-1203 (2012)
  2. The activities of amyloids from a structural perspective. Riek R, Eisenberg DS. Nature 539 227-235 (2016)
  3. Structural insights into functional and pathological amyloid. Shewmaker F, McGlinchey RP, Wickner RB. J. Biol. Chem. 286 16533-16540 (2011)
  4. Structural Studies of Amyloid Proteins at the Molecular Level. Eisenberg DS, Sawaya MR. Annu. Rev. Biochem. 86 69-95 (2017)
  5. Aggregation of amyloids in a cellular context: modelling and experiment. Friedman R. Biochem. J. 438 415-426 (2011)
  6. The yin and yang of amyloid: insights from α-synuclein and repeat domain of Pmel17. McGlinchey RP, Yap TL, Lee JC. Phys Chem Chem Phys 13 20066-20075 (2011)
  7. Measurement of amyloid formation by turbidity assay-seeing through the cloud. Zhao R, So M, Maat H, Ray NJ, Arisaka F, Goto Y, Carver JA, Hall D. Biophys Rev 8 445-471 (2016)
  8. Toward the Atomic Structure of PrPSc. Rodriguez JA, Jiang L, Eisenberg DS. Cold Spring Harb Perspect Biol 9 (2017)
  9. Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109-136). Zhang J, Zhang Y. Acta Biochim. Biophys. Sin. (Shanghai) 45 509-519 (2013)
  10. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Sengupta I, Udgaonkar JB. Chem. Commun. (Camb.) 54 6230-6242 (2018)
  11. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels. Ginn BR. Prog. Biophys. Mol. Biol. 126 1-21 (2017)

Articles citing this publication (20)

  1. Molecular basis for amyloid-beta polymorphism. Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 108 16938-16943 (2011)
  2. Towards a pharmacophore for amyloid. Landau M, Sawaya MR, Faull KF, Laganowsky A, Jiang L, Sievers SA, Liu J, Barrio JR, Eisenberg D. PLoS Biol. 9 e1001080 (2011)
  3. Crystal structure of a human prion protein fragment reveals a motif for oligomer formation. Apostol MI, Perry K, Surewicz WK. J. Am. Chem. Soc. 135 10202-10205 (2013)
  4. A proposed mechanism for the promotion of prion conversion involving a strictly conserved tyrosine residue in the β2-α2 loop of PrPC. Kurt TD, Jiang L, Bett C, Eisenberg D, Sigurdson CJ. J. Biol. Chem. 289 10660-10667 (2014)
  5. Human prion protein sequence elements impede cross-species chronic wasting disease transmission. Kurt TD, Jiang L, Fernández-Borges N, Bett C, Liu J, Yang T, Spraker TR, Castilla J, Eisenberg D, Kong Q, Sigurdson CJ. J. Clin. Invest. 125 1485-1496 (2015)
  6. Selenomethionine incorporation into amyloid sequences regulates fibrillogenesis and toxicity. Martínez J, Lisa S, Sánchez R, Kowalczyk W, Zurita E, Teixidó M, Giralt E, Andreu D, Avila J, Gasset M. PLoS ONE 6 e27999 (2011)
  7. De novo design and experimental characterization of ultrashort self-associating peptides. Smadbeck J, Chan KH, Khoury GA, Xue B, Robinson RC, Hauser CA, Floudas CA. PLoS Comput. Biol. 10 e1003718 (2014)
  8. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics. Berhanu WM, Masunov AE. Biopolymers 98 131-144 (2012)
  9. N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways. Wang Y, Shao Q, Hall CK. J. Biol. Chem. 291 22093-22105 (2016)
  10. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Matthes D, Gapsys V, Brennecke JT, de Groot BL. Sci Rep 6 33156 (2016)
  11. In Silico Modeling of the Influence of Environment on Amyloid Folding Using FOD-M Model. Roterman I, Stapor K, Fabian P, Konieczny L. Int J Mol Sci 22 10587 (2021)
  12. Molecular dynamics simulation of temperature induced unfolding of animal prion protein. Chen X, Duan D, Zhu S, Zhang J. J Mol Model 19 4433-4441 (2013)
  13. The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients. Moore RA, Head MW, Ironside JW, Ritchie DL, Zanusso G, Choi YP, Priola SA. PLoS Pathog. 12 e1005416 (2016)
  14. Platelet-rich plasma exhibits beneficial effects for rheumatoid arthritis mice by suppressing inflammatory factors. Tong S, Zhang C, Liu J. Mol Med Rep 16 4082-4088 (2017)
  15. The intrinsic stability of the human prion β-sheet region investigated by molecular dynamics. De Simone A, Stanzione F, Marasco D, Vitagliano L, Esposito L. J. Biomol. Struct. Dyn. 31 441-452 (2013)
  16. Preventive or promotive effects of PRNP polymorphic heterozygosity on the onset of prion disease. Kai H, Teruya K, Takeuchi A, Nakamura Y, Mizusawa H, Yamada M, Kitamoto T. Heliyon 9 e13974 (2023)
  17. Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Zheng Z, Zhang M, Wang Y, Ma R, Guo C, Feng L, Wu J, Yao H, Lin D. Sci Rep 8 13211 (2018)
  18. Structural consequences of sequence variation in mammalian prion β2α2 loop segments. Glynn C, Hernandez E, Gallagher-Jones M, Miao J, Sigurdson CJ, Rodriguez JA. Front Neurosci 16 960322 (2022)
  19. Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. Abskharon R, Wang F, Wohlkonig A, Ruan J, Soror S, Giachin G, Pardon E, Zou W, Legname G, Ma J, Steyaert J. PLoS Pathog. 15 e1008139 (2019)
  20. The Three Glycotypes in the London Classification System of Sporadic Creutzfeldt-Jakob Disease Differ in Disease Duration. Ney B, Eratne D, Lewis V, Ney L, Li QX, Stehmann C, Collins S, Velakoulis D. Mol Neurobiol 58 3983-3991 (2021)