3n1w Citations

Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery.

Abstract

Bisphosphonates are potent inhibitors of farnesyl pyrophosphate synthase (FPPS) and are highly efficacious in the treatment of bone diseases such as osteoporosis, Paget's disease and tumor-induced osteolysis. In addition, the potential for direct antitumor effects has been postulated on the basis of in vitro and in vivo studies and has recently been demonstrated clinically in early breast cancer patients treated with the potent bisphosphonate zoledronic acid. However, the high affinity of bisphosphonates for bone mineral seems suboptimal for the direct treatment of soft-tissue tumors. Here we report the discovery of the first potent non-bisphosphonate FPPS inhibitors. These new inhibitors bind to a previously unknown allosteric site on FPPS, which was identified by fragment-based approaches using NMR and X-ray crystallography. This allosteric and druggable pocket allows the development of a new generation of FPPS inhibitors that are optimized for direct antitumor effects in soft tissue.

Articles - 3n1w mentioned but not cited (1)

  1. Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site. Liu YL, Lindert S, Zhu W, Wang K, McCammon JA, Oldfield E. Proc. Natl. Acad. Sci. U.S.A. 111 E2530-9 (2014)


Reviews citing this publication (25)

  1. Biochemical and molecular mechanisms of action of bisphosphonates. Rogers MJ, Crockett JC, Coxon FP, Mönkkönen J. Bone 49 34-41 (2011)
  2. The relationship between the chemistry and biological activity of the bisphosphonates. Ebetino FH, Hogan AM, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RG. Bone 49 20-33 (2011)
  3. Small-molecule modulation of Ras signaling. Spiegel J, Cromm PM, Zimmermann G, Grossmann TN, Waldmann H. Nat. Chem. Biol. 10 613-622 (2014)
  4. Terpene biosynthesis: modularity rules. Oldfield E, Lin FY. Angew. Chem. Int. Ed. Engl. 51 1124-1137 (2012)
  5. Expanding the number of 'druggable' targets: non-enzymes and protein-protein interactions. Makley LN, Gestwicki JE. Chem Biol Drug Des 81 22-32 (2013)
  6. Fine-tuning multiprotein complexes using small molecules. Thompson AD, Dugan A, Gestwicki JE, Mapp AK. ACS Chem. Biol. 7 1311-1320 (2012)
  7. Biophysics in drug discovery: impact, challenges and opportunities. Renaud JP, Chung CW, Danielson UH, Egner U, Hennig M, Hubbard RE, Nar H. Nat Rev Drug Discov 15 679-698 (2016)
  8. Exploring the role of receptor flexibility in structure-based drug discovery. Feixas F, Lindert S, Sinko W, McCammon JA. Biophys. Chem. 186 31-45 (2014)
  9. Isoprenoid biosynthesis in bacterial pathogens. Heuston S, Begley M, Gahan CG, Hill C. Microbiology (Reading, Engl.) 158 1389-1401 (2012)
  10. Harnessing allostery: a novel approach to drug discovery. Lu S, Li S, Zhang J. Med Res Rev 34 1242-1285 (2014)
  11. Recent computational advances in the identification of allosteric sites in proteins. Lu S, Huang W, Zhang J. Drug Discov. Today 19 1595-1600 (2014)
  12. The design of covalent allosteric drugs. Nussinov R, Tsai CJ. Annu. Rev. Pharmacol. Toxicol. 55 249-267 (2015)
  13. Isoprenoids and related pharmacological interventions: potential application in Alzheimer's disease. Li L, Zhang W, Cheng S, Cao D, Parent M. Mol. Neurobiol. 46 64-77 (2012)
  14. Bisphosphonates in preclinical bone oncology. Clézardin P, Benzaïd I, Croucher PI. Bone 49 66-70 (2011)
  15. Human isoprenoid synthase enzymes as therapeutic targets. Park J, Matralis AN, Berghuis AM, Tsantrizos YS. Front Chem 2 50 (2014)
  16. Farnesyl pyrophosphate synthase modulators: a patent review (2006 - 2010). Sun S, McKenna CE. Expert Opin Ther Pat 21 1433-1451 (2011)
  17. Approaches for Designing new Potent Inhibitors of Farnesyl Pyrophosphate Synthase. Rodriguez JB, Falcone BN, Szajnman SH. Expert Opin Drug Discov 11 307-320 (2016)
  18. Computational Advances for the Development of Allosteric Modulators and Bitopic Ligands in G Protein-Coupled Receptors. Feng Z, Hu G, Ma S, Xie XQ. AAPS J 17 1080-1095 (2015)
  19. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. Gendaszewska-Darmach E, Garstka MA, Błażewska KM. J Med Chem 64 9677-9710 (2021)
  20. Biased and unbiased strategies to identify biologically active small molecules. Abet V, Mariani A, Truscott FR, Britton S, Rodriguez R. Bioorg. Med. Chem. 22 4474-4489 (2014)
  21. Post-translational modification of KRAS: potential targets for cancer therapy. Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He QJ, Yang B, Lu JJ, Zhu H. Acta Pharmacol Sin 42 1201-1211 (2021)
  22. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Crit. Rev. Biochem. Mol. Biol. 53 279-310 (2018)
  23. New technologies enabling the industrialization of allosteric modulator discovery. Lütjens R, Perry B, Schelshorn D, Rocher JP. Drug Discov Today Technol 10 e253-60 (2013)
  24. Phosphonate and Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthases: A Structure-Guided Perspective. Park J, Pandya VR, Ezekiel SJ, Berghuis AM. Front Chem 8 612728 (2020)
  25. Targeting prenylation inhibition through the mevalonate pathway. Manaswiyoungkul P, de Araujo ED, Gunning PT. RSC Med Chem 11 51-71 (2020)

Articles citing this publication (33)

  1. ASD v3.0: unraveling allosteric regulation with structural mechanisms and biological networks. Shen Q, Wang G, Li S, Liu X, Lu S, Chen Z, Song K, Yan J, Geng L, Huang Z, Huang W, Chen G, Zhang J. Nucleic Acids Res. 44 D527-35 (2016)
  2. Detection of secondary binding sites in proteins using fragment screening. Ludlow RF, Verdonk ML, Saini HK, Tickle IJ, Jhoti H. Proc. Natl. Acad. Sci. U.S.A. 112 15910-15915 (2015)
  3. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase. Farha MA, Czarny TL, Myers CL, Worrall LJ, French S, Conrady DG, Wang Y, Oldfield E, Strynadka NC, Brown ED. Proc. Natl. Acad. Sci. U.S.A. 112 11048-11053 (2015)
  4. Non-bisphosphonate inhibitors of isoprenoid biosynthesis identified via computer-aided drug design. Durrant JD, Cao R, Gorfe AA, Zhu W, Li J, Sankovsky A, Oldfield E, McCammon JA. Chem Biol Drug Des 78 323-332 (2011)
  5. PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites. Panjkovich A, Daura X. Bioinformatics 30 1314-1315 (2014)
  6. Farnesyl diphosphate synthase inhibitors from in silico screening. Lindert S, Zhu W, Liu YL, Pang R, Oldfield E, McCammon JA. Chem Biol Drug Des 81 742-748 (2013)
  7. Rhodium-catalyzed annulative coupling of 3-phenylthiophenes with alkynes involving double C-H bond cleavages. Iitsuka T, Hirano K, Satoh T, Miura M. Chemistry 20 385-389 (2014)
  8. Crystal structure of human soluble adenylate cyclase reveals a distinct, highly flexible allosteric bicarbonate binding pocket. Saalau-Bethell SM, Berdini V, Cleasby A, Congreve M, Coyle JE, Lock V, Murray CW, O'Brien MA, Rich SJ, Sambrook T, Vinkovic M, Yon JR, Jhoti H. ChemMedChem 9 823-832 (2014)
  9. Substrate deconstruction and the nonadditivity of enzyme recognition. Barelier S, Cummings JA, Rauwerdink AM, Hitchcock DS, Farelli JD, Almo SC, Raushel FM, Allen KN, Shoichet BK. J. Am. Chem. Soc. 136 7374-7382 (2014)
  10. Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen. Rasulov B, Talts E, Kännaste A, Niinemets Ü. Plant Physiol. 168 532-548 (2015)
  11. Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme's active site closure. Park J, Lin YS, De Schutter JW, Tsantrizos YS, Berghuis AM. BMC Struct. Biol. 12 32 (2012)
  12. Discovery of Novel Allosteric Non-Bisphosphonate Inhibitors of Farnesyl Pyrophosphate Synthase by Integrated Lead Finding. Marzinzik AL, Amstutz R, Bold G, Bourgier E, Cotesta S, Glickman JF, Götte M, Henry C, Lehmann S, Hartwieg JC, Ofner S, Pellé X, Roddy TP, Rondeau JM, Stauffer F, Stout SJ, Widmer A, Zimmermann J, Zoller T, Jahnke W. ChemMedChem 10 1884-1891 (2015)
  13. Targeting Cancer Cells with a Bisphosphonate Prodrug. Matsumoto K, Hayashi K, Murata-Hirai K, Iwasaki M, Okamura H, Minato N, Morita CT, Tanaka Y, Tanaka Y. ChemMedChem 11 2656-2663 (2016)
  14. Formation of a Novel Macrocyclic Alkaloid from the Unnatural Farnesyl Diphosphate Analogue Anilinogeranyl Diphosphate by 5-Epi-Aristolochene Synthase. Rising KA, Crenshaw CM, Koo HJ, Subramanian T, Chehade KA, Starks C, Allen KD, Andres DA, Spielmann HP, Noel JP, Chappell J. ACS Chem. Biol. 10 1729-1736 (2015)
  15. HIV-1 Integrase Inhibitor-Inspired Antibacterials Targeting Isoprenoid Biosynthesis. Zhang Y, Fu-Yang Lin, Li K, Zhu W, Liu YL, Cao R, Pang R, Lee E, Axelson J, Hensler M, Wang K, Molohon KJ, Wang Y, Mitchell DA, Nizet V, Oldfield E. ACS Med Chem Lett 3 402-406 (2012)
  16. Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product. Park J, Zielinski M, Magder A, Tsantrizos YS, Berghuis AM. Nat Commun 8 14132 (2017)
  17. An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases. Dozier JK, Distefano MD. Anal. Biochem. 421 158-163 (2012)
  18. Structural propensities of human ubiquitination sites: accessibility, centrality and local conformation. Zhou Y, Liu S, Song J, Zhang Z. PLoS ONE 8 e83167 (2013)
  19. Syntheses and characterization of non-bisphosphonate quinoline derivatives as new FPPS inhibitors. Liu J, Liu W, Ge H, Gao J, He Q, Su L, Xu J, Gu LQ, Huang ZS, Li D. Biochim. Biophys. Acta 1840 1051-1062 (2014)
  20. A General Strategy for Targeting Drugs to Bone. Jahnke W, Bold G, Marzinzik AL, Ofner S, Pellé X, Cotesta S, Bourgier E, Lehmann S, Henry C, Hemmig R, Stauffer F, Hartwieg JC, Green JR, Rondeau JM. Angew. Chem. Int. Ed. Engl. 54 14575-14579 (2015)
  21. Farnesyl diphosphate synthase inhibitors with unique ligand-binding geometries. Liu YL, Cao R, Wang Y, Oldfield E. ACS Med Chem Lett 6 349-354 (2015)
  22. The isoprenoid derivative N6 -benzyladenosine CM223 exerts antitumor effects in glioma patient-derived primary cells through the mevalonate pathway. Ciaglia E, Grimaldi M, Abate M, Scrima M, Rodriquez M, Laezza C, Ranieri R, Pisanti S, Ciuffreda P, Manera C, Gazzerro P, D'Ursi AM, Bifulco M. Br. J. Pharmacol. 174 2287-2301 (2017)
  23. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase. Wang Y, Desai J, Zhang Y, Malwal SR, Shin CJ, Feng X, Sun H, Liu G, Guo RT, Oldfield E. ChemMedChem 11 2311-2319 (2016)
  24. SEC-TID: A Label-Free Method for Small-Molecule Target Identification. Salcius M, Bauer AJ, Hao Q, Li S, Tutter A, Raphael J, Jahnke W, Rondeau JM, Bourgier E, Tallarico J, Michaud GA. J Biomol Screen 19 917-927 (2014)
  25. Specific Inhibition of the Bifunctional Farnesyl/Geranylgeranyl Diphosphate Synthase in Malaria Parasites via a New Small-Molecule Binding Site. Gisselberg JE, Herrera Z, Orchard LM, Llinás M, Yeh E. Cell Chem Biol 25 185-193.e5 (2018)
  26. A Bisphosphonate With a Low Hydroxyapatite Binding Affinity Prevents Bone Loss in Mice After Ovariectomy and Reverses Rapidly With Treatment Cessation. Coffman AA, Basta-Pljakic J, Guerra RM, Ebetino FH, Lundy MW, Majeska RJ, Schaffler MB. JBMR Plus 5 e10476 (2021)
  27. Dynamic Structure and Inhibition of a Malaria Drug Target: Geranylgeranyl Diphosphate Synthase. G Ricci C, Liu YL, Zhang Y, Wang Y, Zhu W, Oldfield E, McCammon JA. Biochemistry 55 5180-5190 (2016)
  28. Allosteric sites can be identified based on the residue-residue interaction energy difference. Ma X, Qi Y, Lai L. Proteins 83 1375-1384 (2015)
  29. Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1. Mohanty B, Rimmer K, McMahon RM, Headey SJ, Vazirani M, Shouldice SR, Coinçon M, Tay S, Morton CJ, Simpson JS, Martin JL, Scanlon MJ. PLoS ONE 12 e0173436 (2017)
  30. A Mathematical Model of In Vitro Cellular Uptake of Zoledronic Acid and Isopentenyl Pyrophosphate Accumulation. Lo Presti E, D'Orsi L, De Gaetano A. Pharmaceutics 14 1262 (2022)
  31. A comparison of the dynamics of pantothenate synthetase from M. tuberculosis and E. coli: computational studies. Tan YS, Fuentes G, Verma C. Proteins 79 1715-1727 (2011)
  32. Discovery and Evaluation of C6-Substituted Pyrazolopyrimidine-Based Bisphosphonate Inhibitors of the Human Geranylgeranyl Pyrophosphate Synthase and Evaluation of Their Antitumor Efficacy in Multiple Myeloma, Pancreatic Ductal Adenocarcinoma, and Colorectal Cancer. Boutin R, Lee HF, Guan TL, Nguyen TT, Huang XF, Waller DD, Lu J, Christine Chio II, Michel RP, Sebag M, Tsantrizos YS. J Med Chem 66 15776-15800 (2023)
  33. Discovery of Lipophilic Bisphosphonates That Target Bacterial Cell Wall and Quinone Biosynthesis. Malwal SR, Chen L, Hicks H, Qu F, Liu W, Shillo A, Law WX, Zhang J, Chandnani N, Han X, Zheng Y, Chen CC, Guo RT, AbdelKhalek A, Seleem MN, Oldfield E. J Med Chem 62 2564-2581 (2019)


Related citations provided by authors (1)

  1. Structural basis for the exceptional in vivo efficacy of bisphosphonate drugs. Rondeau JM, Bitsch F, Bourgier E, Geiser M, Hemmig R, Kroemer M, Lehmann S, Ramage P, Rieffel S, Strauss A, Green JR, Jahnke W ChemMedChem 1 267-273 (2006)