3mia Citations

Crystal structure of HIV-1 Tat complexed with human P-TEFb.

Nature 465 747-51 (2010)
Cited: 193 times
EuropePMC logo PMID: 20535204

Abstract

Regulation of the expression of the human immunodeficiency virus (HIV) genome is accomplished in large part by controlling transcription elongation. The viral protein Tat hijacks the host cell's RNA polymerase II elongation control machinery through interaction with the positive transcription elongation factor, P-TEFb, and directs the factor to promote productive elongation of HIV mRNA. Here we describe the crystal structure of the Tat.P-TEFb complex containing HIV-1 Tat, human Cdk9 (also known as CDK9), and human cyclin T1 (also known as CCNT1). Tat adopts a structure complementary to the surface of P-TEFb and makes extensive contacts, mainly with the cyclin T1 subunit of P-TEFb, but also with the T-loop of the Cdk9 subunit. The structure provides a plausible explanation for the tolerance of Tat to sequence variations at certain sites. Importantly, Tat induces significant conformational changes in P-TEFb. This finding lays a foundation for the design of compounds that would specifically inhibit the Tat.P-TEFb complex and block HIV replication.

Reviews - 3mia mentioned but not cited (4)

  1. The control of HIV transcription: keeping RNA polymerase II on track. Ott M, Geyer M, Zhou Q. Cell Host Microbe 10 426-435 (2011)
  2. The structural biology of HIV-1: mechanistic and therapeutic insights. Engelman A, Cherepanov P. Nat Rev Microbiol 10 279-290 (2012)
  3. Regulation of CDK9 activity by phosphorylation and dephosphorylation. Nekhai S, Petukhov M, Breuer D. Biomed Res Int 2014 964964 (2014)
  4. New targets for HIV drug discovery. Puhl AC, Garzino Demo A, Makarov VA, Ekins S. Drug Discov Today 24 1139-1147 (2019)

Articles - 3mia mentioned but not cited (17)

  1. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH. Nature 465 747-751 (2010)
  2. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes. Mbonye UR, Gokulrangan G, Datt M, Dobrowolski C, Cooper M, Chance MR, Karn J. PLoS Pathog 9 e1003338 (2013)
  3. Didehydro-Cortistatin A Inhibits HIV-1 by Specifically Binding to the Unstructured Basic Region of Tat. Mediouni S, Chinthalapudi K, Ekka MK, Usui I, Jablonski JA, Clementz MA, Mousseau G, Nowak J, Macherla VR, Beverage JN, Esquenazi E, Baran P, de Vera IMS, Kojetin D, Loret EP, Nettles K, Maiti S, Izard T, Valente ST. mBio 10 e02662-18 (2019)
  4. CDK2 regulates HIV-1 transcription by phosphorylation of CDK9 on serine 90. Breuer D, Kotelkin A, Ammosova T, Kumari N, Ivanov A, Ilatovskiy AV, Beullens M, Roane PR, Bollen M, Petukhov MG, Kashanchi F, Nekhai S. Retrovirology 9 94 (2012)
  5. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. Mbonye U, Wang B, Gokulrangan G, Shi W, Yang S, Karn J. J Biol Chem 293 10009-10025 (2018)
  6. The CDK9 C-helix exhibits conformational plasticity that may explain the selectivity of CAN508. Baumli S, Hole AJ, Noble ME, Endicott JA. ACS Chem Biol 7 811-816 (2012)
  7. Comparative structural and functional studies of 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile CDK9 inhibitors suggest the basis for isotype selectivity. Hole AJ, Baumli S, Shao H, Shi S, Huang S, Pepper C, Fischer PM, Wang S, Endicott JA, Noble ME. J Med Chem 56 660-670 (2013)
  8. An ultra-high affinity ligand of HIV-1 TAR reveals the RNA structure recognized by P-TEFb. Shortridge MD, Wille PT, Jones AN, Davidson A, Bogdanovic J, Arts E, Karn J, Robinson JA, Varani G. Nucleic Acids Res 47 1523-1531 (2019)
  9. Identification of novel inhibitors of human immunodeficiency virus type 1 replication by in silico screening targeting cyclin T1/Tat interaction. Hamasaki T, Okamoto M, Baba M. Antimicrob Agents Chemother 57 1323-1331 (2013)
  10. The Role of RNA Polymerase II Elongation Control in HIV-1 Gene Expression, Replication, and Latency. Nilson KA, Price DH. Genet Res Int 2011 726901 (2011)
  11. HIV-1 Tat phosphorylation on Ser-16 residue modulates HIV-1 transcription. Ivanov A, Lin X, Ammosova T, Ilatovskiy AV, Kumari N, Lassiter H, Afangbedji N, Niu X, Petukhov MG, Nekhai S. Retrovirology 15 39 (2018)
  12. Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression. Dey SS, Xue Y, Joachimiak MP, Friedland GD, Burnett JC, Zhou Q, Arkin AP, Schaffer DV. J Biol Chem 287 7945-7955 (2012)
  13. Ensemble-based modeling and rigidity decomposition of allosteric interaction networks and communication pathways in cyclin-dependent kinases: Differentiating kinase clients of the Hsp90-Cdc37 chaperone. Stetz G, Tse A, Verkhivker GM. PLoS One 12 e0186089 (2017)
  14. HIV immune complexes prevent excitotoxicity by interaction with NMDA receptors. Rumbaugh JA, Bachani M, Li W, Butler TR, Smith KJ, Bianchet MA, Wang T, Prendergast MA, Sacktor N, Nath A. Neurobiol Dis 49 169-176 (2013)
  15. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding. Asamitsu K, Hirokawa T, Okamoto T. PLoS One 12 e0171727 (2017)
  16. Determining the Functions of HIV-1 Tat and a Second Magnesium Ion in the CDK9/Cyclin T1 Complex: A Molecular Dynamics Simulation Study. Jin HX, Go ML, Yin P, Qiu XT, Zhu P, Yan XJ. PLoS One 10 e0124673 (2015)
  17. Emerging approaches to CDK inhibitor development, a structural perspective. Hope I, Endicott JA, Watt JE. RSC Chem Biol 4 146-164 (2023)


Reviews citing this publication (57)

  1. RNA polymerase II elongation control. Zhou Q, Li T, Price DH. Annu Rev Biochem 81 119-143 (2012)
  2. HIV latency. Siliciano RF, Greene WC. Cold Spring Harb Perspect Med 1 a007096 (2011)
  3. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Karn J, Stoltzfus CM. Cold Spring Harb Perspect Med 2 a006916 (2012)
  4. HIV-1 transcription and latency: an update. Van Lint C, Bouchat S, Marcello A. Retrovirology 10 67 (2013)
  5. The ins and outs of HIV-1 Tat. Debaisieux S, Rayne F, Yezid H, Beaumelle B. Traffic 13 355-363 (2012)
  6. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Mbonye U, Karn J. Virology 454-455 328-339 (2014)
  7. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. Karn J. Curr Opin HIV AIDS 6 4-11 (2011)
  8. The Molecular Basis for Human Immunodeficiency Virus Latency. Mbonye U, Karn J. Annu Rev Virol 4 261-285 (2017)
  9. Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Liu X, Kraus WL, Bai X. Trends Biochem Sci 40 516-525 (2015)
  10. RNA polymerase II transcription elongation control. Guo J, Price DH. Chem Rev 113 8583-8603 (2013)
  11. Structure and mechanism of the RNA polymerase II transcription machinery. Schier AC, Taatjes DJ. Genes Dev 34 465-488 (2020)
  12. Structural insights into the functional diversity of the CDK-cyclin family. Wood DJ, Endicott JA. Open Biol 8 180112 (2018)
  13. CDK9: a signaling hub for transcriptional control. Bacon CW, D'Orso I. Transcription 10 57-75 (2019)
  14. Perspective of cyclin-dependent kinase 9 (CDK9) as a drug target. Krystof V, Baumli S, Fürst R. Curr Pharm Des 18 2883-2890 (2012)
  15. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Xue B, Mizianty MJ, Kurgan L, Uversky VN. Cell Mol Life Sci 69 1211-1259 (2012)
  16. Targeting HIV transcription: the quest for a functional cure. Mousseau G, Mediouni S, Valente ST. Curr Top Microbiol Immunol 389 121-145 (2015)
  17. Lost in transcription: molecular mechanisms that control HIV latency. Taube R, Peterlin M. Viruses 5 902-927 (2013)
  18. Tat is a multifunctional viral protein that modulates cellular gene expression and functions. Clark E, Nava B, Caputi M. Oncotarget 8 27569-27581 (2017)
  19. HIV, Tat and dopamine transmission. Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. Neurobiol Dis 105 51-73 (2017)
  20. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Paparidis NF, Durvale MC, Canduri F. Mol Biosyst 13 246-276 (2017)
  21. Viral-host interactions that control HIV-1 transcriptional elongation. Lu H, Li Z, Xue Y, Zhou Q. Chem Rev 113 8567-8582 (2013)
  22. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Li G, De Clercq E. Microbiol Mol Biol Rev 80 679-731 (2016)
  23. Genetic variation and function of the HIV-1 Tat protein. Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Med Microbiol Immunol 208 131-169 (2019)
  24. Role of Host Factors on the Regulation of Tat-Mediated HIV-1 Transcription. Mousseau G, Valente ST. Curr Pharm Des 23 4079-4090 (2017)
  25. Tits and bits of HIV Tat protein. Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK. Expert Opin Biol Ther 11 269-283 (2011)
  26. Making Sense of Multifunctional Proteins: Human Immunodeficiency Virus Type 1 Accessory and Regulatory Proteins and Connections to Transcription. Faust TB, Binning JM, Gross JD, Frankel AD. Annu Rev Virol 4 241-260 (2017)
  27. Structural characterization of the cyclin-dependent protein kinase family. Endicott JA, Noble ME. Biochem Soc Trans 41 1008-1016 (2013)
  28. Transcription elongation control by the 7SK snRNP complex: Releasing the pause. McNamara RP, Bacon CW, D'Orso I. Cell Cycle 15 2115-2123 (2016)
  29. P-TEFb goes viral. Zaborowska J, Isa NF, Murphy S. Bioessays 38 Suppl 1 S75-85 (2016)
  30. Transcriptional control of HIV replication by multiple modulators and their implication for a novel antiviral therapy. Victoriano AF, Okamoto T. AIDS Res Hum Retroviruses 28 125-138 (2012)
  31. HIV and Alzheimer's disease: complex interactions of HIV-Tat with amyloid β peptide and Tau protein. Hategan A, Masliah E, Nath A. J Neurovirol 25 648-660 (2019)
  32. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  33. HIV Tat/P-TEFb Interaction: A Potential Target for Novel Anti-HIV Therapies. Asamitsu K, Fujinaga K, Okamoto T. Molecules 23 E933 (2018)
  34. Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. Chavali SS, Bonn-Breach R, Wedekind JE. J Biol Chem 294 9326-9341 (2019)
  35. Genetic variation and HIV-associated neurologic disease. Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Adv Virus Res 87 183-240 (2013)
  36. Cyclin-dependent kinases as therapeutic targets for HIV-1 infection. Rice AP. Expert Opin Ther Targets 20 1453-1461 (2016)
  37. P-TEFb goes viral. Zaborowska J, Isa NF, Murphy S. Inside Cell 1 106-116 (2016)
  38. The Block-and-Lock Strategy for Human Immunodeficiency Virus Cure: Lessons Learned from Didehydro-Cortistatin A. Li C, Mori L, Valente ST. J Infect Dis 223 46-53 (2021)
  39. CDK9 keeps RNA polymerase II on track. Egloff S. Cell Mol Life Sci 78 5543-5567 (2021)
  40. Fab'-induced folding of antigenic N-terminal peptides from intrinsically disordered HIV-1 Tat revealed by X-ray crystallography. Serrière J, Dugua JM, Bossus M, Verrier B, Haser R, Gouet P, Guillon C. J Mol Biol 405 33-42 (2011)
  41. Oligomeric viral proteins: small in size, large in presence. Jayaraman B, Smith AM, Fernandes JD, Fernandes JD, Frankel AD. Crit Rev Biochem Mol Biol 51 379-394 (2016)
  42. Development of a novel AIDS vaccine: the HIV-1 transactivator of transcription protein vaccine. Cafaro A, Tripiciano A, Sgadari C, Bellino S, Picconi O, Longo O, Francavilla V, Buttò S, Titti F, Monini P, Ensoli F, Ensoli B. Expert Opin Biol Ther 15 Suppl 1 S13-29 (2015)
  43. Hexim1, an RNA-controlled protein hub. Michels AA, Bensaude O. Transcription 9 262-271 (2018)
  44. The design of RNA binders: targeting the HIV replication cycle as a case study. Blond A, Ennifar E, Tisné C, Micouin L. ChemMedChem 9 1982-1996 (2014)
  45. The role of HIV Tat protein in HIV-related cardiovascular diseases. Jiang Y, Chai L, Fasae MB, Bai Y. J Transl Med 16 121 (2018)
  46. Anti-viral opportunities during transcriptional activation of latent HIV in the host chromatin. Mujtaba S, Zhou MM. Methods 53 97-101 (2011)
  47. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Rev Med Virol 29 e2031 (2019)
  48. The CD8+ T Cell Noncytotoxic Antiviral Responses. Morvan MG, Teque FC, Locher CP, Levy JA. Microbiol Mol Biol Rev 85 e00155-20 (2021)
  49. Protein Phosphatase-1 -targeted Small Molecules, Iron Chelators and Curcumin Analogs as HIV-1 Antivirals. Lin X, Ammosova T, Kumari N, Nekhai S. Curr Pharm Des 23 4122-4132 (2017)
  50. Anti-Tat Immunity in HIV-1 Infection: Effects of Naturally Occurring and Vaccine-Induced Antibodies Against Tat on the Course of the Disease. Cafaro A, Tripiciano A, Picconi O, Sgadari C, Moretti S, Buttò S, Monini P, Ensoli B. Vaccines (Basel) 7 E99 (2019)
  51. Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Jin H, Li D, Lin MH, Li L, Harrich D. Viruses 12 E415 (2020)
  52. "cART intensification by the HIV-1 Tat B clade vaccine: progress to phase III efficacy studies". Cafaro A, Sgadari C, Picconi O, Tripiciano A, Moretti S, Francavilla V, Pavone Cossut MR, Buttò S, Cozzone G, Ensoli F, Monini P, Ensoli B. Expert Rev Vaccines 17 115-126 (2018)
  53. Forging a Functional Cure for HIV: Transcription Regulators and Inhibitors. Mediouni S, Lyu S, Schader SM, Valente ST. Viruses 14 1980 (2022)
  54. P-TEFb: The master regulator of transcription elongation. Fujinaga K, Huang F, Peterlin BM. Mol Cell 83 393-403 (2023)
  55. Cure and Long-Term Remission Strategies. Mori L, Valente ST. Methods Mol Biol 2407 391-428 (2022)
  56. The nexus between RNA-binding proteins and their effectors. He S, Valkov E, Cheloufi S, Murn J. Nat Rev Genet 24 276-294 (2023)
  57. When cyclin-dependent kinases meet viral infections, including SARS-CoV-2. Yan Y, Tang YD, Zheng C. J Med Virol 94 2962-2968 (2022)

Articles citing this publication (115)

  1. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Pelish HE, Liau BB, Nitulescu II, Tangpeerachaikul A, Poss ZC, Da Silva DH, Caruso BT, Arefolov A, Fadeyi O, Christie AL, Du K, Banka D, Schneider EV, Jestel A, Zou G, Si C, Ebmeier CC, Bronson RT, Krivtsov AV, Myers AG, Kohl NE, Kung AL, Armstrong SA, Lemieux ME, Taatjes DJ, Shair MD. Nature 526 273-276 (2015)
  2. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Sekhar A, Kay LE. Proc Natl Acad Sci U S A 110 12867-12874 (2013)
  3. Brd4 activates P-TEFb for RNA polymerase II CTD phosphorylation. Itzen F, Greifenberg AK, Bösken CA, Geyer M. Nucleic Acids Res 42 7577-7590 (2014)
  4. 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Peterlin BM, Brogie JE, Price DH. Wiley Interdiscip Rev RNA 3 92-103 (2012)
  5. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Czudnochowski N, Bösken CA, Geyer M. Nat Commun 3 842 (2012)
  6. CBFβ stabilizes HIV Vif to counteract APOBEC3 at the expense of RUNX1 target gene expression. Kim DY, Kwon E, Hartley PD, Crosby DC, Mann S, Krogan NJ, Gross JD. Mol Cell 49 632-644 (2013)
  7. The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. Krueger BJ, Varzavand K, Cooper JJ, Price DH. PLoS One 5 e12335 (2010)
  8. Control of HIV latency by epigenetic and non-epigenetic mechanisms. Mbonye U, Karn J. Curr HIV Res 9 554-567 (2011)
  9. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Brown NR, Korolchuk S, Martin MP, Stanley WA, Moukhametzianov R, Noble MEM, Endicott JA. Nat Commun 6 6769 (2015)
  10. Transcription factors mediate the enzymatic disassembly of promoter-bound 7SK snRNP to locally recruit P-TEFb for transcription elongation. McNamara RP, McCann JL, Gudipaty SA, D'Orso I. Cell Rep 5 1256-1268 (2013)
  11. The AFF4 scaffold binds human P-TEFb adjacent to HIV Tat. Schulze-Gahmen U, Upton H, Birnberg A, Bao K, Chou S, Krogan NJ, Zhou Q, Alber T. Elife 2 e00327 (2013)
  12. Curcumin inhibits HIV-1 by promoting Tat protein degradation. Ali A, Banerjea AC. Sci Rep 6 27539 (2016)
  13. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. J Virol 88 12937-12948 (2014)
  14. AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Lu H, Li Z, Xue Y, Schulze-Gahmen U, Johnson JR, Krogan NJ, Alber T, Zhou Q. Proc Natl Acad Sci U S A 111 E15-24 (2014)
  15. HIV-1 Tat recruits transcription elongation factors dispersed along a flexible AFF4 scaffold. Chou S, Upton H, Bao K, Schulze-Gahmen U, Samelson AJ, He N, Nowak A, Lu H, Krogan NJ, Zhou Q, Alber T. Proc Natl Acad Sci U S A 110 E123-31 (2013)
  16. HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Hategan A, Bianchet MA, Steiner J, Karnaukhova E, Masliah E, Fields A, Lee MH, Dickens AM, Haughey N, Dimitriadis EK, Nath A. Nat Struct Mol Biol 24 379-386 (2017)
  17. RNA-directed remodeling of the HIV-1 protein Rev orchestrates assembly of the Rev-Rev response element complex. Jayaraman B, Crosby DC, Homer C, Ribeiro I, Mavor D, Frankel AD. Elife 3 e04120 (2014)
  18. Inhibition of both HIV-1 reverse transcription and gene expression by a cyclic peptide that binds the Tat-transactivating response element (TAR) RNA. Lalonde MS, Lobritz MA, Ratcliff A, Chamanian M, Athanassiou Z, Tyagi M, Wong J, Robinson JA, Karn J, Varani G, Arts EJ. PLoS Pathog 7 e1002038 (2011)
  19. Structural insight into the mechanism of stabilization of the 7SK small nuclear RNA by LARP7. Uchikawa E, Natchiar KS, Han X, Proux F, Roblin P, Zhang E, Durand A, Klaholz BP, Dock-Bregeon AC. Nucleic Acids Res 43 3373-3388 (2015)
  20. Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA. D'Orso I, Jang GM, Pastuszak AW, Faust TB, Quezada E, Booth DS, Frankel AD. Mol Cell Biol 32 4780-4793 (2012)
  21. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH. Cell Cycle 13 1788-1797 (2014)
  22. Architecture and RNA binding of the human negative elongation factor. Vos SM, Pöllmann D, Caizzi L, Hofmann KB, Rombaut P, Zimniak T, Herzog F, Cramer P. Elife 5 e14981 (2016)
  23. AFF4 binding to Tat-P-TEFb indirectly stimulates TAR recognition of super elongation complexes at the HIV promoter. Schulze-Gahmen U, Lu H, Zhou Q, Alber T. Elife 3 e02375 (2014)
  24. Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Zhang Z, Nikolai BC, Gates LA, Jung SY, Siwak EB, He B, Rice AP, O'Malley BW, Feng Q. Nucleic Acids Res 45 9348-9360 (2017)
  25. Structure of a low-population binding intermediate in protein-RNA recognition. Borkar AN, Borkar AN, Bardaro MF, Camilloni C, Aprile FA, Varani G, Vendruscolo M. Proc Natl Acad Sci U S A 113 7171-7176 (2016)
  26. Varying modulation of HIV-1 LTR activity by Baf complexes. Van Duyne R, Guendel I, Narayanan A, Gregg E, Shafagati N, Tyagi M, Easley R, Klase Z, Nekhai S, Kehn-Hall K, Kashanchi F. J Mol Biol 411 581-596 (2011)
  27. Effect of mimetic CDK9 inhibitors on HIV-1-activated transcription. Van Duyne R, Guendel I, Jaworski E, Sampey G, Klase Z, Chen H, Zeng C, Kovalskyy D, El Kouni MH, Lepene B, Patanarut A, Nekhai S, Price DH, Kashanchi F. J Mol Biol 425 812-829 (2013)
  28. An evolutionary conserved Hexim1 peptide binds to the Cdk9 catalytic site to inhibit P-TEFb. Kobbi L, Demey-Thomas E, Braye F, Proux F, Kolesnikova O, Vinh J, Poterszman A, Bensaude O. Proc Natl Acad Sci U S A 113 12721-12726 (2016)
  29. The Drosophila 7SK snRNP and the essential role of dHEXIM in development. Nguyen D, Krueger BJ, Sedore SC, Brogie JE, Rogers JT, Rajendra TK, Saunders A, Matera AG, Lis JT, Uguen P, Price DH. Nucleic Acids Res 40 5283-5297 (2012)
  30. Functional Segregation of Overlapping Genes in HIV. Fernandes JD, Faust TB, Strauli NB, Smith C, Crosby DC, Nakamura RL, Hernandez RD, Frankel AD. Cell 167 1762-1773.e12 (2016)
  31. Insights into HIV-1 proviral transcription from integrative structure and dynamics of the Tat:AFF4:P-TEFb:TAR complex. Schulze-Gahmen U, Echeverria I, Stjepanovic G, Bai Y, Lu H, Schneidman-Duhovny D, Doudna JA, Zhou Q, Sali A, Hurley JH. Elife 5 e15910 (2016)
  32. Reconstitution of a functional 7SK snRNP. Brogie JE, Price DH. Nucleic Acids Res 45 6864-6880 (2017)
  33. Structural mechanism for HIV-1 TAR loop recognition by Tat and the super elongation complex. Schulze-Gahmen U, Hurley JH. Proc Natl Acad Sci U S A 115 12973-12978 (2018)
  34. The CDK9 tail determines the reaction pathway of positive transcription elongation factor b. Baumli S, Hole AJ, Wang LZ, Noble ME, Endicott JA. Structure 20 1788-1795 (2012)
  35. Poly(A) signals located near the 5' end of genes are silenced by a general mechanism that prevents premature 3'-end processing. Guo J, Garrett M, Micklem G, Brogna S. Mol Cell Biol 31 639-651 (2011)
  36. Fragment based search for small molecule inhibitors of HIV-1 Tat-TAR. Zeiger M, Stark S, Kalden E, Ackermann B, Ferner J, Scheffer U, Shoja-Bazargani F, Erdel V, Schwalbe H, Göbel MW. Bioorg Med Chem Lett 24 5576-5580 (2014)
  37. Comment Kick-sTARting HIV-1 transcription elongation by 7SK snRNP deporTATion. Barboric M, Lenasi T. Nat Struct Mol Biol 17 928-930 (2010)
  38. Computer-aided design, synthesis and validation of 2-phenylquinazolinone fragments as CDK9 inhibitors with anti-HIV-1 Tat-mediated transcription activity. Sancineto L, Iraci N, Massari S, Attanasio V, Corazza G, Barreca ML, Sabatini S, Manfroni G, Avanzi NR, Cecchetti V, Pannecouque C, Marcello A, Tabarrini O. ChemMedChem 8 1941-1953 (2013)
  39. The HIV-1 Tat protein recruits a ubiquitin ligase to reorganize the 7SK snRNP for transcriptional activation. Faust TB, Li Y, Bacon CW, Jang GM, Weiss A, Jayaraman B, Newton BW, Krogan NJ, D'Orso I, Frankel AD. Elife 7 e31879 (2018)
  40. PJA2 ubiquitinates the HIV-1 Tat protein with atypical chain linkages to activate viral transcription. Faust TB, Li Y, Jang GM, Johnson JR, Yang S, Weiss A, Krogan NJ, Frankel AD. Sci Rep 7 45394 (2017)
  41. Structural basis for ELL2 and AFF4 activation of HIV-1 proviral transcription. Qi S, Li Z, Schulze-Gahmen U, Stjepanovic G, Zhou Q, Hurley JH. Nat Commun 8 14076 (2017)
  42. Phosphorylation of HEXIM1 at Tyr271 and Tyr274 Promotes Release of P-TEFb from the 7SK snRNP Complex and Enhances Proviral HIV Gene Expression. Mbonye UR, Wang B, Gokulrangan G, Chance MR, Karn J. Proteomics 15 2078-2086 (2015)
  43. The cyclin-dependent kinase ortholog pUL97 of human cytomegalovirus interacts with cyclins. Graf L, Webel R, Wagner S, Hamilton ST, Rawlinson WD, Sticht H, Marschall M. Viruses 5 3213-3230 (2013)
  44. Characterizing RNA ensembles from NMR data with kinematic models. Fonseca R, Pachov DV, Bernauer J, van den Bedem H. Nucleic Acids Res 42 9562-9572 (2014)
  45. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex. Mück F, Bracharz S, Marschalek R. Am J Blood Res 6 28-45 (2016)
  46. Identification of novel CDK9 and Cyclin T1-associated protein complexes (CCAPs) whose siRNA depletion enhances HIV-1 Tat function. Ramakrishnan R, Liu H, Donahue H, Malovannaya A, Qin J, Rice AP. Retrovirology 9 90 (2012)
  47. Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. Pagans S, Sakane N, Schnölzer M, Ott M. Methods 53 91-96 (2011)
  48. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications. Ronsard L, Lata S, Singh J, Ramachandran VG, Das S, Banerjea AC. PLoS One 9 e85452 (2014)
  49. The domain landscape of virus-host interactomes. Zheng LL, Li C, Ping J, Zhou Y, Li Y, Hao P. Biomed Res Int 2014 867235 (2014)
  50. The folding competence of HIV-1 Tat mediated by interaction with TAR RNA. Kim JM, Choi HS, Seong BL. RNA Biol 14 926-937 (2017)
  51. Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. Forero-Quintero LS, Raymond W, Handa T, Saxton MN, Morisaki T, Kimura H, Bertrand E, Munsky B, Stasevich TJ. Nat Commun 12 3158 (2021)
  52. Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding. Dixon-Clarke SE, Elkins JM, Cheng SW, Morin GB, Bullock AN. Sci Rep 5 17122 (2015)
  53. HIV-1 Tat: Its Dependence on Host Factors is Crystal Clear. D'Orso I, Frankel AD. Viruses 2 2226-2234 (2010)
  54. Proteomic Interaction Patterns between Human Cyclins, the Cyclin-Dependent Kinase Ortholog pUL97 and Additional Cytomegalovirus Proteins. Steingruber M, Kraut A, Socher E, Sticht H, Reichel A, Stamminger T, Amin B, Couté Y, Hutterer C, Marschall M. Viruses 8 E219 (2016)
  55. Identification of HIV-1 Tat-Associated Proteins Contributing to HIV-1 Transcription and Latency. Jean MJ, Power D, Kong W, Huang H, Santoso N, Zhu J. Viruses 9 E67 (2017)
  56. Interaction between HIV-1 Tat and DNA-PKcs modulates HIV transcription and class switch recombination. Zhang SM, Zhang H, Yang TY, Ying TY, Yang PX, Liu XD, Tang SJ, Zhou PK. Int J Biol Sci 10 1138-1149 (2014)
  57. JMJD6 cleaves MePCE to release positive transcription elongation factor b (P-TEFb) in higher eukaryotes. Lee S, Liu H, Hill R, Chen C, Hong X, Crawford F, Kingsley M, Zhang Q, Liu X, Chen Z, Lengeling A, Bernt KM, Marrack P, Kappler J, Zhou Q, Li CY, Xue Y, Hansen K, Zhang G. Elife 9 e53930 (2020)
  58. Effect of the redox state on HIV-1 tat protein multimerization and cell internalization and trafficking. Pierleoni R, Menotta M, Antonelli A, Sfara C, Serafini G, Dominici S, Laguardia ME, Salis A, Damonte G, Banci L, Porcu M, Monini P, Ensoli B, Magnani M. Mol Cell Biochem 345 105-118 (2010)
  59. HIV protein sequence hotspots for crosstalk with host hub proteins. Sarmady M, Dampier W, Tozeren A. PLoS One 6 e23293 (2011)
  60. Splicing Factor 3B Subunit 1 Interacts with HIV Tat and Plays a Role in Viral Transcription and Reactivation from Latency. Kyei GB, Meng S, Ramani R, Niu A, Lagisetti C, Webb TR, Ratner L. mBio 9 e01423-18 (2018)
  61. Structure and dynamics of a stabilized coiled-coil domain in the P-TEFb regulator Hexim1. Bigalke JM, Dames SA, Blankenfeldt W, Grzesiek S, Geyer M. J Mol Biol 414 639-653 (2011)
  62. Withaferin A Suppresses Beta Amyloid in APP Expressing Cells: Studies for Tat and Cocaine Associated Neurological Dysfunctions. Tiwari S, Atluri VSR, Yndart Arias A, Jayant RD, Kaushik A, Geiger J, Nair MN. Front Aging Neurosci 10 291 (2018)
  63. tat Exon 1 exhibits functional diversity during HIV-1 subtype C primary infection. Rossenkhan R, MacLeod IJ, Sebunya TK, Castro-Nallar E, McLane MF, Musonda R, Gashe BA, Novitsky V, Essex M. J Virol 87 5732-5745 (2013)
  64. A Cyclin T1 point mutation that abolishes positive transcription elongation factor (P-TEFb) binding to Hexim1 and HIV tat. Verstraete N, Kuzmina A, Diribarne G, Nguyen VT, Kobbi L, Ludanyi M, Taube R, Bensaude O. Retrovirology 11 50 (2014)
  65. AF4 and AF4N protein complexes: recruitment of P-TEFb kinase, their interactome and potential functions. Scholz B, Kowarz E, Rössler T, Ahmad K, Steinhilber D, Marschalek R. Am J Blood Res 5 10-24 (2015)
  66. Computational study and peptide inhibitors design for the CDK9 - cyclin T1 complex. Randjelović J, Erić S, Savić V. J Mol Model 19 1711-1725 (2013)
  67. Unperturbed posttranscriptional regulatory Rev protein function and HIV-1 replication in astrocytes. Chauhan A. PLoS One 9 e106910 (2014)
  68. A single point mutation in cyclin T1 eliminates binding to Hexim1, Cdk9 and RNA but not to AFF4 and enforces repression of HIV transcription. Kuzmina A, Verstraete N, Galker S, Maatook M, Bensaude O, Taube R. Retrovirology 11 51 (2014)
  69. Letter Indirubin 3'-monoxime, from a Chinese traditional herbal formula, suppresses viremia in humanized mice infected with multidrug-resistant HIV. Heredia A, Natesan S, Le NM, Medina-Moreno S, Zapata JC, Reitz M, Bryant J, Redfield RR. AIDS Res Hum Retroviruses 30 403-406 (2014)
  70. The RYMV-encoded viral suppressor of RNA silencing P1 is a zinc-binding protein with redox-dependent flexibility. Gillet FX, Cattoni DI, Petiot-Bécard S, Delalande F, Poignavent V, Brizard JP, Bessin Y, Dorsselaer AV, Declerck N, Sanglier-Cianférani S, Brugidou C, Vignols F. J Mol Biol 425 2423-2435 (2013)
  71. Functional interplay between PPM1G and the transcription elongation machinery. Gudipaty SA, D'Orso I. RNA Dis 3 e1215 (2016)
  72. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific. Evans EL, Becker JT, Fricke SL, Patel K, Sherer NM. J Virol 92 e02102-17 (2018)
  73. Molecular dynamics simulation and experimental verification of the interaction between cyclin T1 and HIV-1 Tat proteins. Asamitsu K, Hirokawa T, Hibi Y, Okamoto T. PLoS One 10 e0119451 (2015)
  74. Regulation of cyclin T1 during HIV replication and latency establishment in human memory CD4 T cells. Couturier J, Orozco AF, Liu H, Budhiraja S, Siwak EB, Nehete PN, Sastry KJ, Rice AP, Lewis DE. Virol J 16 22 (2019)
  75. A mutant Tat protein inhibits infection of human cells by strains from diverse HIV-1 subtypes. Rustanti L, Jin H, Lor M, Lin MH, Rawle DJ, Harrich D. Virol J 14 52 (2017)
  76. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. Dahiya S, Nonnemacher MR, Wigdahl B. J Gen Virol 93 1151-1172 (2012)
  77. Human Immunodeficiency Virus Tat Protein Aids V Region Somatic Hypermutation in Human B Cells. Wang X, Duan Z, Yu G, Fan M, Scharff MD. mBio 9 e02315-17 (2018)
  78. Quantification of the HIV transcriptional activator complex in live cells by image-based protein-protein interaction analysis. Asamitsu K, Omagari K, Okuda T, Hibi Y, Okamoto T. Genes Cells 21 706-716 (2016)
  79. Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells. Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, Soares N, Blackburn JM. Proteomics 17 (2017)
  80. Time-Dependent, HIV-Tat-Induced Perturbation of Human Neurons In Vitro: Towards a Model for the Molecular Pathology of HIV-Associated Neurocognitive Disorders. Gurwitz KT, Burman RJ, Murugan BD, Garnett S, Ganief T, Soares NC, Raimondo JV, Blackburn JM. Front Mol Neurosci 10 163 (2017)
  81. Cellular RelB interacts with the transactivator Tat and enhance HIV-1 expression. Wang M, Yang W, Chen Y, Wang J, Tan J, Qiao W. Retrovirology 15 65 (2018)
  82. Chromatographic isolation of the functionally active MutS protein covalently linked to deoxyribonucleic acid. Monakhova M, Ryazanova A, Hentschel A, Viryasov M, Oretskaya T, Friedhoff P, Kubareva E. J Chromatogr A 1389 19-27 (2015)
  83. Effects of Tat proteins and Tat mutants of different human immunodeficiency virus type 1 clades on glial JC virus early and late gene transcription. Wright CA, Nance JA, Johnson EM. J Gen Virol 94 514-523 (2013)
  84. Functional interaction of human Ssu72 with RNA polymerase II complexes. Spector BM, Turek ME, Price DH. PLoS One 14 e0213598 (2019)
  85. Identification of a highly conserved surface on Tat variants. Mediouni S, Darque A, Ravaux I, Baillat G, Devaux C, Loret EP. J Biol Chem 288 19072-19080 (2013)
  86. Non-Coding RNAs As Transcriptional Regulators In Eukaryotes. Burenina OY, Oretskaya TS, Kubareva EA. Acta Naturae 9 13-25 (2017)
  87. CDK9 and SPT5 proteins are specifically required for expression of herpes simplex virus 1 replication-dependent late genes. Zhao Z, Tang KW, Muylaert I, Samuelsson T, Elias P. J Biol Chem 292 15489-15500 (2017)
  88. Characterization of Tat antibody responses in Chinese individuals infected with HIV-1. Chen Q, Li L, Liao W, Zhang H, Wang J, Sheng B, Zhang H, Huang X, Ding Y, Zhang T, Cao J, Wu H, Pan W. PLoS One 8 e60825 (2013)
  89. Functional Relevance of the Interaction between Human Cyclins and the Cytomegalovirus-Encoded CDK-Like Protein Kinase pUL97. Schütz M, Steingruber M, Socher E, Müller R, Wagner S, Kögel M, Sticht H, Marschall M. Viruses 13 1248 (2021)
  90. Reversible phosphorylation of cyclin T1 promotes assembly and stability of P-TEFb. Huang F, Nguyen TT, Echeverria I, Rakesh R, Cary DC, Paculova H, Sali A, Weiss A, Peterlin BM, Fujinaga K. Elife 10 e68473 (2021)
  91. Tat peptide-calmodulin binding studies and bioinformatics of HIV-1 protein-calmodulin interactions. McQueen P, Donald LJ, Vo TN, Nguyen DH, Griffiths H, Shojania S, Standing KG, O'Neil JD. Proteins 79 2233-2246 (2011)
  92. CD4-gp120 interaction interface - a gateway for HIV-1 infection in human: molecular network, modeling and docking studies. Pandey D, Podder A, Pandit M, Latha N. J Biomol Struct Dyn 35 2631-2644 (2017)
  93. CDK9 inhibitors push cancer cells over the edge. Nowicki MW, Walkinshaw MD. Chem Biol 17 1047-1048 (2010)
  94. Development of a sensitive amplified luminescent proximity homogeneous assay to monitor the interactions between pTEFb and Tat. Burlein C, Bahnck C, Bhatt T, Murphy D, Lemaire P, Carroll S, Miller MD, Lai MT. Anal Biochem 465 164-171 (2014)
  95. Functional characterization of a human cyclin T1 mutant reveals a different binding surface for Tat and HEXIM1. Kuzmina A, Hadad U, Fujinaga K, Taube R. Virology 426 152-161 (2012)
  96. HIV-1 Tat Binding to PCAF Bromodomain: Structural Determinants from Computational Methods. Quy VC, Pantano S, Rossetti G, Giacca M, Carloni P. Biology (Basel) 1 277-296 (2012)
  97. HIV-1 Tat Inhibits Autotaxin Lysophospholipase D Activity and Modulates Oligodendrocyte Differentiation. Wheeler NA, Fuss B, Knapp PE, Zou S. ASN Neuro 8 1759091416669618 (2016)
  98. Identification and structural-functional analysis of cyclin-dependent kinases of the cattle tick Rhipicephalus (Boophilus) microplus. Gomes H, Romeiro NC, Braz GR, de Oliveira EA, Rodrigues C, da Fonseca RN, Githaka N, Isezaki M, Konnai S, Ohashi K, da Silva Vaz I, Logullo C, Moraes J. PLoS One 8 e76128 (2013)
  99. Structure of TFIIK for phosphorylation of CTD of RNA polymerase II. van Eeuwen T, Li T, Kim HJ, Gorbea Colón JJ, Parker MI, Dunbrack RL, Garcia BA, Tsai KL, Murakami K. Sci Adv 7 eabd4420 (2021)
  100. The 57th amino acid conveys the differential subcellular localization of human immunodeficiency virus-1 Tat derived from subtype B and C. Zhao X, Qian L, Qi D, Zhou D, Shen W, Liu Y, Liu C, Kong X. Virus Genes 52 179-188 (2016)
  101. Antiapoptotic Clone 11-Derived Peptides Induce In Vitro Death of CD4+ T Cells Susceptible to HIV-1 Infection. Mikhailova A, Valle-Casuso JC, David A, Monceaux V, Volant S, Passaes C, Elfidha A, Müller-Trutwin M, Poyet JL, Sáez-Cirión A. J Virol 94 e00611-20 (2020)
  102. Building a super elongation complex for HIV. Hill CP, Sundquist WI. Elife 2 e00577 (2013)
  103. Differences in Transcriptional Dynamics Between T-cells and Macrophages as Determined by a Three-State Mathematical Model. DeMarino C, Cowen M, Pleet ML, Pinto DO, Khatkar P, Erickson J, Docken SS, Russell N, Reichmuth B, Phan T, Kuang Y, Anderson DM, Emelianenko M, Kashanchi F. Sci Rep 10 2227 (2020)
  104. GigaAssay - An adaptable high-throughput saturation mutagenesis assay platform. Benjamin R, Giacoletto CJ, FitzHugh ZT, Eames D, Buczek L, Wu X, Newsome J, Han MV, Pearson T, Wei Z, Banerjee A, Brown L, Valente LJ, Shen S, Deng HW, Schiller MR. Genomics 114 110439 (2022)
  105. Interaction of human dipeptidyl peptidase IV and human immunodeficiency virus type-1 transcription transactivator in Sf9 cells. Tansi FL, Blanchard V, Berger M, Tauber R, Reutter W, Fan H. Virol J 7 267 (2010)
  106. Vitamin E TPGS based transferosomes augmented TAT as a promising delivery system for improved transdermal delivery of raloxifene. Alhakamy NA, Fahmy UA, Ahmed OAA. PLoS One 14 e0226639 (2019)
  107. Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L, Shilatifard A. Mol Cell 83 2896-2910.e4 (2023)
  108. HIV-1 Tat commandeers nuclear export of Rev-viral RNA complex by controlling hnRNPA2-mediated splicing. Yandrapally S, Sarkar S, Banerjee S. J Virol 97 e0104423 (2023)
  109. HIV-2 inhibits HIV-1 gene expression via two independent mechanisms during cellular co-infection. Yapo V, Majumder K, Tedbury PR, Wen X, Ong YT, Johnson MC, Sarafianos SG. J Virol 97 e0187022 (2023)
  110. Identification of 5' upstream sequence involved in HSPBP1 gene transcription and its downregulation during HIV-1 infection. Iyer K, Mitra A, Mitra D. Virus Res 324 199034 (2023)
  111. Identification of a novel CDK9 inhibitor targeting the intramolecular hidden cavity of CDK9 induced by Tat binding. Asamitsu K, Hirokawa T, Okamoto T. PLoS One 17 e0277024 (2022)
  112. Impact of exosomal HIV-1 Tat expression on the human cellular proteome. Lu H, Tang X, Sibley M, Coburn J, Rao RSP, Ahsan N, Ramratnam B. Oncotarget 10 5632-5644 (2019)
  113. Molecular Mechanism of Sirtuin 1 Inhibition by Human Immunodeficiency Virus 1 Tat Protein. Adolph RS, Beck E, Schweimer K, Di Fonzo A, Weyand M, Rösch P, Wöhrl BM, Steegborn C. Life (Basel) 13 949 (2023)
  114. Structural Insights into the Mechanism of HIV-1 Tat Secretion from the Plasma Membrane. Ghanam RH, Eastep GN, Saad JS. J Mol Biol 435 167880 (2023)
  115. Understanding sequence similarity and framework analysis between centromere proteins using computational biology. Doss CG, Chakrabarty C, Debajyoti C, Debottam S. Cell Biochem Biophys 70 897-906 (2014)