3los Citations

Mechanism of folding chamber closure in a group II chaperonin.

Abstract

Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in lid, which is triggered by ATP hydrolysis. The structural rearrangements and molecular events leading to lid closure are still unknown. Here we report four single particle cryo-electron microscopy (cryo-EM) structures of Mm-cpn, an archaeal group II chaperonin, in the nucleotide-free (open) and nucleotide-induced (closed) states. The 4.3 A resolution of the closed conformation allowed building of the first ever atomic model directly from the single particle cryo-EM density map, in which we were able to visualize the nucleotide and more than 70% of the side chains. The model of the open conformation was obtained by using the deformable elastic network modelling with the 8 A resolution open-state cryo-EM density restraints. Together, the open and closed structures show how local conformational changes triggered by ATP hydrolysis lead to an alteration of intersubunit contacts within and across the rings, ultimately causing a rocking motion that closes the ring. Our analyses show that there is an intricate and unforeseen set of interactions controlling allosteric communication and inter-ring signalling, driving the conformational cycle of group II chaperonins. Beyond this, we anticipate that our methodology of combining single particle cryo-EM and computational modelling will become a powerful tool in the determination of atomic details involved in the dynamic processes of macromolecular machines in solution.

Reviews - 3los mentioned but not cited (3)

  1. The Mechanism and Function of Group II Chaperonins. Lopez T, Dalton K, Frydman J. J. Mol. Biol. 427 2919-2930 (2015)
  2. Macromolecular structure modeling from 3D EM using VolRover 2.0. Zhang Q, Bettadapura R, Bajaj C. Biopolymers 97 709-731 (2012)
  3. Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Kim DN, Sanbonmatsu KY. Biosci. Rep. 37 (2017)

Articles - 3los mentioned but not cited (10)

  1. EMDataBank.org: unified data resource for CryoEM. Lawson CL, Baker ML, Best C, Bi C, Dougherty M, Feng P, van Ginkel G, Devkota B, Lagerstedt I, Ludtke SJ, Newman RH, Oldfield TJ, Rees I, Sahni G, Sala R, Velankar S, Warren J, Westbrook JD, Henrick K, Kleywegt GJ, Berman HM, Chiu W. Nucleic Acids Res. 39 D456-64 (2011)
  2. Symmetry-restrained flexible fitting for symmetric EM maps. Chan KY, Gumbart J, McGreevy R, Watermeyer JM, Sewell BT, Schulten K. Structure 19 1211-1218 (2011)
  3. Cryo-electron microscopy modeling by the molecular dynamics flexible fitting method. Chan KY, Trabuco LG, Schreiner E, Schulten K. Biopolymers 97 678-686 (2012)
  4. GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Stone JE, McGreevy R, Isralewitz B, Schulten K. Faraday Discuss. 169 265-283 (2014)
  5. Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps. Baker ML, Baker MR, Hryc CF, Ju T, Chiu W. Biopolymers 97 655-668 (2012)
  6. Atomic modeling of cryo-electron microscopy reconstructions--joint refinement of model and imaging parameters. Chapman MS, Trzynka A, Chapman BK. J. Struct. Biol. 182 10-21 (2013)
  7. Constructing and validating initial Cα models from subnanometer resolution density maps with pathwalking. Baker MR, Rees I, Ludtke SJ, Chiu W, Baker ML. Structure 20 450-463 (2012)
  8. Opening and closing of a toroidal group II chaperonin revealed by a symmetry constrained elastic network model. Lee H, Seo S, Kim M, Choi Jb, Kim SM, Jeon TJ, Kim MK. Protein Sci. 23 703-713 (2014)
  9. Expression, Functional Characterization, and Preliminary Crystallization of the Cochaperone Prefoldin from the Thermophilic Fungus Chaetomium thermophilum. Morita K, Yamamoto YY, Hori A, Obata T, Uno Y, Shinohara K, Noguchi K, Noi K, Ogura T, Ishii K, Kato K, Kikumoto M, Arranz R, Valpuesta JM, Yohda M. Int J Mol Sci 19 (2018)
  10. Synthesis and in vitro anti-proliferative evaluation of naphthalimide-chalcone/pyrazoline conjugates as potential SERMs with computational validation. Shalini, Pankaj, Saha ST, Kaur M, Oluwakemi E, Awolade P, Singh P, Kumar V. RSC Adv 10 15836-15845 (2020)


Reviews citing this publication (27)

  1. Chaperone machines for protein folding, unfolding and disaggregation. Saibil H. Nat. Rev. Mol. Cell Biol. 14 630-642 (2013)
  2. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Lindquist SL, Kelly JW. Cold Spring Harb Perspect Biol 3 (2011)
  3. Modeling general proteostasis: proteome balance in health and disease. Roth DM, Balch WE. Curr. Opin. Cell Biol. 23 126-134 (2011)
  4. Atomic resolution cryo electron microscopy of macromolecular complexes. Zhou ZH. Adv Protein Chem Struct Biol 82 1-35 (2011)
  5. ATP-driven molecular chaperone machines. Clare DK, Saibil HR. Biopolymers 99 846-859 (2013)
  6. Fundamentals of three-dimensional reconstruction from projections. Penczek PA. Meth. Enzymol. 482 1-33 (2010)
  7. Limiting factors in atomic resolution cryo electron microscopy: no simple tricks. Zhang X, Zhou ZH. J. Struct. Biol. 175 253-263 (2011)
  8. Major players on the microbial stage: why archaea are important. Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JP. Microbiology (Reading, Engl.) 157 919-936 (2011)
  9. Single-Particle Refinement and Variability Analysis in EMAN2.1. Ludtke SJ. Meth. Enzymol. 579 159-189 (2016)
  10. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Rother M, Nussbaumer MG, Renggli K, Bruns N. Chem Soc Rev 45 6213-6249 (2016)
  11. Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Glaeser RM, Hall RJ. Biophys. J. 100 2331-2337 (2011)
  12. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Lin L, Xu J. Biotechnol. Adv. 31 827-837 (2013)
  13. Electronic detectors for electron microscopy. Faruqi AR, McMullan G. Q. Rev. Biophys. 44 357-390 (2011)
  14. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Gabizon R, Friedler A. Front Chem 2 9 (2014)
  15. Dynamics, flexibility, and allostery in molecular chaperonins. Skjærven L, Cuellar J, Martinez A, Valpuesta JM. FEBS Lett. 589 2522-2532 (2015)
  16. Reconstructing virus structures from nanometer to near-atomic resolutions with cryo-electron microscopy and tomography. Chang J, Liu X, Rochat RH, Baker ML, Chiu W. Adv. Exp. Med. Biol. 726 49-90 (2012)
  17. Visualization of bionanostructures using transmission electron microscopical techniques. Sander B, Golas MM. Microsc. Res. Tech. 74 642-663 (2011)
  18. Toward a high-resolution structure of IP₃R channel. Serysheva II. Cell Calcium 56 125-132 (2014)
  19. Expanding proteostasis by membrane trafficking networks. Hutt DM, Balch WE. Cold Spring Harb Perspect Biol 5 (2013)
  20. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment. Baker MR, Fan G, Serysheva II. Eur J Transl Myol 25 4803 (2015)
  21. Functional and structural studies of TRP channels heterologously expressed in budding yeast. Moiseenkova-Bell V, Wensel TG. Adv. Exp. Med. Biol. 704 25-40 (2011)
  22. Insights into chaperonin function from studies on archaeal thermosomes. Lund P. Biochem. Soc. Trans. 39 94-98 (2011)
  23. Prokaryotic Chaperonins as Experimental Models for Elucidating Structure-Function Abnormalities of Human Pathogenic Mutant Counterparts. Conway de Macario E, Robb FT, Macario AJ. Front Mol Biosci 3 84 (2016)
  24. Balancing the Photoreceptor Proteome: Proteostasis Network Therapeutics for Inherited Retinal Disease. Faber S, Roepman R. Genes (Basel) 10 (2019)
  25. Bridging human chaperonopathies and microbial chaperonins. Conway de Macario E, Yohda M, Macario AJL, Robb FT. Commun Biol 2 103 (2019)
  26. Cryo-EM Analyses Permit Visualization of Structural Polymorphism of Biological Macromolecules. Chang WH, Huang SH, Lin HH, Chung SC, Tu IP. Front Bioinform 1 788308 (2021)
  27. The ATP-powered gymnastics of TRiC/CCT: an asymmetric protein folding machine with a symmetric origin story. Gestaut D, Limatola A, Joachimiak L, Frydman J. Curr. Opin. Struct. Biol. 55 50-58 (2019)

Articles citing this publication (94)

  1. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y. Nat. Methods 10 584-590 (2013)
  2. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Fujii T, Iwane AH, Yanagida T, Namba K. Nature 467 724-728 (2010)
  3. other Outcome of the first electron microscopy validation task force meeting. Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng Z, Frank J, Grigorieff N, Jiang W, Ludtke SJ, Medalia O, Penczek PA, Rosenthal PB, Rossmann MG, Schmid MF, Schröder GF, Steven AC, Stokes DL, Westbrook JD, Wriggers W, Yang H, Young J, Berman HM, Chiu W, Kleywegt GJ, Lawson CL. Structure 20 205-214 (2012)
  4. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Zhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, Schein S, Zhou ZH. Nat. Struct. Mol. Biol. 20 105-110 (2013)
  5. The molecular architecture of the eukaryotic chaperonin TRiC/CCT. Leitner A, Joachimiak LA, Bracher A, Mönkemeyer L, Walzthoeni T, Chen B, Pechmann S, Holmes S, Cong Y, Ma B, Ludtke S, Chiu W, Hartl FU, Aebersold R, Frydman J. Structure 20 814-825 (2012)
  6. Subunit order of eukaryotic TRiC/CCT chaperonin by cross-linking, mass spectrometry, and combinatorial homology modeling. Kalisman N, Adams CM, Levitt M. Proc. Natl. Acad. Sci. U.S.A. 109 2884-2889 (2012)
  7. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Muñoz IG, Yébenes H, Zhou M, Mesa P, Serna M, Park AY, Bragado-Nilsson E, Beloso A, de Cárcer G, Malumbres M, Robinson CV, Valpuesta JM, Montoya G. Nat. Struct. Mol. Biol. 18 14-19 (2011)
  8. Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. Allegretti M, Mills DJ, McMullan G, Kühlbrandt W, Vonck J. Elife 3 e01963 (2014)
  9. An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Wang Z, Hryc CF, Bammes B, Afonine PV, Jakana J, Chen DH, Liu X, Baker ML, Kao C, Ludtke SJ, Schmid MF, Adams PD, Chiu W. Nat Commun 5 4808 (2014)
  10. Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Douglas NR, Reissmann S, Zhang J, Chen B, Jakana J, Kumar R, Chiu W, Frydman J. Cell 144 240-252 (2011)
  11. Cryo-EM of macromolecular assemblies at near-atomic resolution. Baker ML, Zhang J, Ludtke SJ, Chiu W. Nat Protoc 5 1697-1708 (2010)
  12. Direct electron detection yields cryo-EM reconstructions at resolutions beyond 3/4 Nyquist frequency. Bammes BE, Rochat RH, Jakana J, Chen DH, Chiu W. J. Struct. Biol. 177 589-601 (2012)
  13. Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches. Ge P, Zhou ZH. Proc. Natl. Acad. Sci. U.S.A. 108 9637-9642 (2011)
  14. Modeling protein structure at near atomic resolutions with Gorgon. Baker ML, Abeysinghe SS, Schuh S, Coleman RA, Abrams A, Marsh MP, Hryc CF, Ruths T, Chiu W, Ju T. J. Struct. Biol. 174 360-373 (2011)
  15. Crystal structures of a group II chaperonin reveal the open and closed states associated with the protein folding cycle. Pereira JH, Ralston CY, Douglas NR, Meyer D, Knee KM, Goulet DR, King JA, Frydman J, Adams PD. J. Biol. Chem. 285 27958-27966 (2010)
  16. Visualizing large RNA molecules in solution. Gopal A, Zhou ZH, Knobler CM, Gelbart WM. RNA 18 284-299 (2012)
  17. Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. Cong Y, Schröder GF, Meyer AS, Jakana J, Ma B, Dougherty MT, Schmid MF, Reissmann S, Levitt M, Ludtke SL, Frydman J, Chiu W. EMBO J. 31 720-730 (2012)
  18. Cryo-EM model validation using independent map reconstructions. DiMaio F, Zhang J, Chiu W, Baker D. Protein Sci. 22 865-868 (2013)
  19. Cryo-EM structure of a group II chaperonin in the prehydrolysis ATP-bound state leading to lid closure. Zhang J, Ma B, DiMaio F, Douglas NR, Joachimiak LA, Baker D, Frydman J, Levitt M, Chiu W. Structure 19 633-639 (2011)
  20. Determining macromolecular assembly structures by molecular docking and fitting into an electron density map. Lasker K, Sali A, Wolfson HJ. Proteins 78 3205-3211 (2010)
  21. Human CCT4 and CCT5 chaperonin subunits expressed in Escherichia coli form biologically active homo-oligomers. Sergeeva OA, Chen B, Haase-Pettingell C, Ludtke SJ, Chiu W, King JA. J. Biol. Chem. 288 17734-17744 (2013)
  22. The cytosolic chaperonin CCT/TRiC and cancer cell proliferation. Boudiaf-Benmammar C, Cresteil T, Melki R. PLoS ONE 8 e60895 (2013)
  23. Crystal structure of group II chaperonin in the open state. Huo Y, Hu Z, Zhang K, Wang L, Zhai Y, Zhou Q, Lander G, Zhu J, He Y, Pang X, Xu W, Bartlam M, Dong Z, Sun F. Structure 18 1270-1279 (2010)
  24. Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. Rüßmann F, Stemp MJ, Mönkemeyer L, Etchells SA, Bracher A, Hartl FU. Proc. Natl. Acad. Sci. U.S.A. 109 21208-21215 (2012)
  25. Real-space refinement with DireX: from global fitting to side-chain improvements. Wang Z, Schröder GF. Biopolymers 97 687-697 (2012)
  26. De novo modeling of the F(420)-reducing [NiFe]-hydrogenase from a methanogenic archaeon by cryo-electron microscopy. Mills DJ, Vitt S, Strauss M, Shima S, Vonck J. Elife 2 e00218 (2013)
  27. Mechanism of nucleotide sensing in group II chaperonins. Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J, Adams PD. EMBO J. 31 731-740 (2012)
  28. A machine learning approach for the identification of protein secondary structure elements from electron cryo-microscopy density maps. Si D, Ji S, Nasr KA, He J. Biopolymers 97 698-708 (2012)
  29. Reprogramming an ATP-driven protein machine into a light-gated nanocage. Hoersch D, Roh SH, Chiu W, Kortemme T. Nat Nanotechnol 8 928-932 (2013)
  30. Structures of the Gβ-CCT and PhLP1-Gβ-CCT complexes reveal a mechanism for G-protein β-subunit folding and Gβγ dimer assembly. Plimpton RL, Cuéllar J, Lai CW, Aoba T, Makaju A, Franklin S, Mathis AD, Prince JT, Carrascosa JL, Valpuesta JM, Willardson BM. Proc. Natl. Acad. Sci. U.S.A. 112 2413-2418 (2015)
  31. Targeted conformational search with map-restrained self-guided Langevin dynamics: application to flexible fitting into electron microscopic density maps. Wu X, Subramaniam S, Case DA, Wu KW, Brooks BR. J. Struct. Biol. 183 429-440 (2013)
  32. The symmetries of image formation by scattering. II. Applications. Schwander P, Giannakis D, Yoon CH, Ourmazd A. Opt Express 20 12827-12849 (2012)
  33. Human TRiC complex purified from HeLa cells contains all eight CCT subunits and is active in vitro. Knee KM, Sergeeva OA, King JA. Cell Stress Chaperones 18 137-144 (2013)
  34. Low cost, high performance GPU computing solution for atomic resolution cryoEM single-particle reconstruction. Zhang X, Zhang X, Zhou ZH. J. Struct. Biol. 172 400-406 (2010)
  35. Programmed cell death protein 5 interacts with the cytosolic chaperonin containing tailless complex polypeptide 1 (CCT) to regulate β-tubulin folding. Tracy CM, Gray AJ, Cuéllar J, Shaw TS, Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM, Willardson BM. J. Biol. Chem. 289 4490-4502 (2014)
  36. Simulation of chaperonin effect on protein folding: a shift from nucleation-condensation to framework mechanism. Kmiecik S, Kolinski A. J. Am. Chem. Soc. 133 10283-10289 (2011)
  37. Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level. Gupta AJ, Haldar S, Miličić G, Hartl FU, Hayer-Hartl M. J. Mol. Biol. 426 2739-2754 (2014)
  38. Analyses of subnanometer resolution cryo-EM density maps. Baker ML, Baker MR, Hryc CF, Dimaio F. Meth. Enzymol. 483 1-29 (2010)
  39. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. Kabir MA, Uddin W, Narayanan A, Reddy PK, Jairajpuri MA, Sherman F, Ahmad Z. J Amino Acids 2011 843206 (2011)
  40. Multiscale natural moves refine macromolecules using single-particle electron microscopy projection images. Zhang J, Minary P, Levitt M. Proc. Natl. Acad. Sci. U.S.A. 109 9845-9850 (2012)
  41. ATP dependent rotational motion of group II chaperonin observed by X-ray single molecule tracking. Sekiguchi H, Nakagawa A, Moriya K, Makabe K, Ichiyanagi K, Nozawa S, Sato T, Adachi S, Kuwajima K, Yohda M, Sasaki YC. PLoS ONE 8 e64176 (2013)
  42. Archaeal-like chaperonins in bacteria. Techtmann SM, Robb FT. Proc. Natl. Acad. Sci. U.S.A. 107 20269-20274 (2010)
  43. MultiFit: a web server for fitting multiple protein structures into their electron microscopy density map. Tjioe E, Lasker K, Webb B, Wolfson HJ, Sali A. Nucleic Acids Res. 39 W167-70 (2011)
  44. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Roh SH, Hryc CF, Jeong HH, Fei X, Jakana J, Lorimer GH, Chiu W. Proc. Natl. Acad. Sci. U.S.A. 114 8259-8264 (2017)
  45. A modulator domain controlling thermal stability in the Group II chaperonins of Archaea. Luo H, Robb FT. Arch. Biochem. Biophys. 512 111-118 (2011)
  46. Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM. Zang Y, Jin M, Wang H, Cui Z, Kong L, Liu C, Cong Y. Nat. Struct. Mol. Biol. 23 1083-1091 (2016)
  47. A chaperonin as protein nanoreactor for atom-transfer radical polymerization. Renggli K, Nussbaumer MG, Urbani R, Pfohl T, Bruns N. Angew. Chem. Int. Ed. Engl. 53 1443-1447 (2014)
  48. De Novo modeling in cryo-EM density maps with Pathwalking. Chen M, Baldwin PR, Ludtke SJ, Baker ML. J. Struct. Biol. 196 289-298 (2016)
  49. The group II chaperonin Mm-Cpn binds and refolds human γD crystallin. Knee KM, Goulet DR, Zhang J, Chen B, Chiu W, King JA. Protein Sci. 20 30-41 (2011)
  50. Chaperonin-Dendrimer Conjugates for siRNA Delivery. Nussbaumer MG, Duskey JT, Rother M, Renggli K, Chami M, Bruns N. Adv Sci (Weinh) 3 1600046 (2016)
  51. Practical performance evaluation of a 10k × 10k CCD for electron cryo-microscopy. Bammes BE, Rochat RH, Jakana J, Chiu W. J. Struct. Biol. 175 384-393 (2011)
  52. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Baker MR, Fan G, Serysheva II. Eur J Transl Myol 25 35-48 (2015)
  53. Structure of the human TRiC/CCT Subunit 5 associated with hereditary sensory neuropathy. Pereira JH, McAndrew RP, Sergeeva OA, Ralston CY, King JA, Adams PD. Sci Rep 7 3673 (2017)
  54. Chaperonins from an Antarctic archaeon are predominantly monomeric: crystal structure of an open state monomer. Pilak O, Harrop SJ, Siddiqui KS, Chong K, De Francisci D, Burg D, Williams TJ, Cavicchioli R, Curmi PM. Environ. Microbiol. 13 2232-2249 (2011)
  55. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli. Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, Zhang Y. Cell Stress Chaperones 21 477-484 (2016)
  56. Flexible interwoven termini determine the thermal stability of thermosomes. Zhang K, Wang L, Liu Y, Chan KY, Pang X, Schulten K, Dong Z, Sun F. Protein Cell 4 432-444 (2013)
  57. Dissection of the ATP-dependent conformational change cycle of a group II chaperonin. Nakagawa A, Moriya K, Arita M, Yamamoto Y, Kitamura K, Ishiguro N, Kanzaki T, Oka T, Makabe K, Kuwajima K, Yohda M. J. Mol. Biol. 426 447-459 (2014)
  58. Comment Protein machines: an open and shut cage. Woolley GA. Nat Nanotechnol 8 892-893 (2013)
  59. Structural and Functional Insights into the Evolution and Stress Adaptation of Type II Chaperonins. Chaston JJ, Smits C, Aragão D, Wong AS, Ahsan B, Sandin S, Molugu SK, Molugu SK, Bernal RA, Stock D, Stewart AG. Structure 24 364-374 (2016)
  60. An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images. Biswas A, Ranjan D, Zubair M, Zeil S, Nasr KA, He J. IEEE/ACM Trans Comput Biol Bioinform 14 578-586 (2017)
  61. An information theoretic framework reveals a tunable allosteric network in group II chaperonins. Lopez T, Dalton K, Tomlinson A, Pande V, Frydman J. Nat. Struct. Mol. Biol. 24 726-733 (2017)
  62. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies. Anthony KC, You C, Piehler J, Pomeranz Krummel DA. Structure 22 628-635 (2014)
  63. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. An YJ, Rowland SE, Na JH, Spigolon D, Hong SK, Yoon YJ, Lee JH, Robb FT, Cha SS. Nat Commun 8 827 (2017)
  64. Validation of the orthogonal tilt reconstruction method with a biological test sample. Chandramouli P, Hernandez-Lopez R, Wang HW, Leschziner AE. J. Struct. Biol. 175 85-96 (2011)
  65. A Model for the Molecular Mechanism of an Engineered Light-Driven Protein Machine. Hoersch D, Kortemme T. Structure 24 576-584 (2016)
  66. Cryo-EM techniques to resolve the structure of HSV-1 capsid-associated components. Rochat RH, Hecksel CW, Chiu W. Methods Mol. Biol. 1144 265-281 (2014)
  67. Detection of secondary and supersecondary structures of proteins from cryo-electron microscopy. Bajaj C, Goswami S, Zhang Q. J. Struct. Biol. 177 367-381 (2012)
  68. PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Kuzu G, Keskin O, Nussinov R, Gursoy A. Acta Crystallogr D Struct Biol 72 1137-1148 (2016)
  69. Single-molecule fluorescence polarization study of conformational change in archaeal group II chaperonin. Iizuka R, Ueno T, Morone N, Funatsu T. PLoS ONE 6 e22253 (2011)
  70. Structural changes underlying allostery in group II chaperonins. Willison KR. Structure 19 754-755 (2011)
  71. The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation. Dalton KM, Frydman J, Pande VS. PLoS ONE 10 e0117724 (2015)
  72. The human mitochondrial Hsp60 in the APO conformation forms a stable tetradecameric complex. Enriquez AS, Rojo HM, Bhatt JM, Molugu SK, Hildenbrand ZL, Bernal RA. Cell Cycle 16 1309-1319 (2017)
  73. Congresses Workshop on molecular animation. Bromberg S, Chiu W, Ferrin TE. Structure 18 1261-1265 (2010)
  74. Group II archaeal chaperonin recognition of partially folded human γD-crystallin mutants. Sergeeva OA, Yang J, King JA, Knee KM. Protein Sci. 23 693-702 (2014)
  75. Internal (His)₆-tagging delivers a fully functional hetero-oligomeric class II chaperonin in high yield. Paul DM, Beuron F, Sessions RB, Brancaccio A, Bigotti MG. Sci Rep 6 20696 (2016)
  76. Molecular chaperones and their denaturing effect on client proteins. Hiller S. J Biomol NMR 75 1-8 (2021)
  77. Nhs: network-based hierarchical segmentation for cryo-electron microscopy density maps. Burger V, Chennubhotla C. Biopolymers 97 732-741 (2012)
  78. Opening up the group II chaperonins. Rao Z. Structure 18 1221-1222 (2010)
  79. Single-Ring Intermediates Are Essential for Some Chaperonins. Bhatt JM, Enriquez AS, Wang J, Rojo HM, Molugu SK, Hildenbrand ZL, Bernal RA. Front Mol Biosci 5 42 (2018)
  80. Structural investigation of a chaperonin in action reveals how nucleotide binding regulates the functional cycle. Mas G, Guan JY, Crublet E, Debled EC, Moriscot C, Gans P, Schoehn G, Macek P, Schanda P, Boisbouvier J. Sci Adv 4 eaau4196 (2018)
  81. Skopi: a simulation package for diffractive imaging of noncrystalline biomolecules. Peck A, Chang HY, Dujardin A, Ramalingam D, Uervirojnangkoorn M, Wang Z, Mancuso A, Poitevin F, Yoon CH. J Appl Crystallogr 55 1002-1010 (2022)
  82. An ensemble of cryo-EM structures of TRiC reveal its conformational landscape and subunit specificity. Jin M, Han W, Liu C, Zang Y, Li J, Wang F, Wang Y, Cong Y. Proc. Natl. Acad. Sci. U.S.A. 116 19513-19522 (2019)
  83. Application of transport-based metric for continuous interpolation between cryo-EM density maps. Ecoffet A, Woollard G, Kushner A, Poitevin F, Duc KD. AIMS Math 7 986-999 (2022)
  84. CryoEM reveals the stochastic nature of individual ATP binding events in a group II chaperonin. Zhao Y, Schmid MF, Frydman J, Chiu W. Nat Commun 12 4754 (2021)
  85. GPU-accelerated multitiered iterative phasing algorithm for fluctuation X-ray scattering. Kommera PR, Ramakrishnaiah V, Sweeney C, Donatelli J, Zwart PH. J Appl Crystallogr 54 1179-1188 (2021)
  86. Gly-345 plays an essential role in Pyrococcus furiosus chaperonin function. Yang LD, Chu ZM, Zhang Y, Yang SL. Biotechnol. Lett. 33 1649-1655 (2011)
  87. Identification of key sites controlling protein functional motions by using elastic network model combined with internal coordinates. Zhang PF, Su JG. J Chem Phys 151 045101 (2019)
  88. Intraring allostery controls the function and assembly of a hetero-oligomeric class II chaperonin. Shoemark DK, Sessions RB, Brancaccio A, Bigotti MG. FASEB J. 32 2223-2234 (2018)
  89. Molecular Dynamics Mappings of the CCT/TRiC Complex-Mediated Protein Folding Cycle Using Diffracted X-ray Tracking. Araki K, Watanabe-Nakayama T, Sasaki D, Sasaki YC, Mio K. Int J Mol Sci 24 14850 (2023)
  90. Molecular characteristics of a novel HSP60 gene and its differential expression in Manila clams (Ruditapes philippinarum) under thermal and hypotonic stress. Ding J, Li J, Yang D, Yang F, Nie H, Huo Z, Yan X. Cell Stress Chaperones 23 179-187 (2018)
  91. Novel convergence-oriented approach for evaluation and optimization of workflow in single-particle two-dimensional averaging of electron microscope images. Moriya T, Mio K, Sato C. Microscopy (Oxf) 62 491-513 (2013)
  92. Subtomogram analysis: The sum of a tomogram's particles reveals molecular structure in situ. Förster F. J Struct Biol X 6 100063 (2022)
  93. Time-Resolved Measurement of the ATP-Dependent Motion of the Group II Chaperonin by Diffracted Electron Tracking. Ogawa N, Yamamoto YY, Abe K, Sekiguchi H, Sasaki YC, Ishikawa A, Frydman J, Yohda M. Int J Mol Sci 19 (2018)
  94. Versatile Reversible Cross-Linking Strategy to Stabilize CCMV Virus Like Particles for Efficient siRNA Delivery. Pretto C, van Hest JCM. Bioconjug. Chem. 30 3069-3077 (2019)