3kys Citations

Structural insights into the YAP and TEAD complex.

Genes Dev 24 235-40 (2010)
Cited: 212 times
EuropePMC logo PMID: 20123905

Abstract

The Yes-associated protein (YAP) transcriptional coactivator is a key regulator of organ size and a candidate human oncogene inhibited by the Hippo tumor suppressor pathway. The TEAD family of transcription factors binds directly to and mediates YAP-induced gene expression. Here we report the three-dimensional structure of the YAP (residues 50-171)-TEAD1 (residues 194-411) complex, in which YAP wraps around the globular structure of TEAD1 and forms extensive interactions via three highly conserved interfaces. Interface 3, including YAP residues 86-100, is most critical for complex formation. Our study reveals the biochemical nature of the YAP-TEAD interaction, and provides a basis for pharmacological intervention of YAP-TEAD hyperactivation in human diseases.

Reviews - 3kys mentioned but not cited (7)

  1. Targeting the Hippo Pathway and Cancer through the TEAD Family of Transcription Factors. Holden JK, Cunningham CN. Cancers (Basel) 10 (2018)
  2. Protein-Protein Interaction Disruptors of the YAP/TAZ-TEAD Transcriptional Complex. Pobbati AV, Rubin BP. Molecules 25 E6001 (2020)
  3. Repurposing of Drugs Targeting YAP-TEAD Functions. Elisi GM, Santucci M, D'Arca D, Lauriola A, Marverti G, Losi L, Scalvini L, Bolognesi ML, Mor M, Costi MP. Cancers (Basel) 10 (2018)
  4. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. Piccolo S, Panciera T, Contessotto P, Cordenonsi M. Nat Cancer 4 9-26 (2023)
  5. Leveraging Hot Spots of TEAD-Coregulator Interactions in the Design of Direct Small Molecule Protein-Protein Interaction Disruptors Targeting Hippo Pathway Signaling. Zhao B, Pobbati AV, Rubin BP, Stauffer S. Pharmaceuticals (Basel) 16 583 (2023)
  6. Mechanisms of Action for Small Molecules Revealed by Structural Biology in Drug Discovery. Li Q, Kang C. Int J Mol Sci 21 (2020)
  7. Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Alismatis Rhizoma. Bailly C. Biomedicines 10 1945 (2022)

Articles - 3kys mentioned but not cited (32)

  1. Structural insights into the YAP and TEAD complex. Li Z, Zhao B, Wang P, Chen F, Dong Z, Yang H, Guan KL, Xu Y. Genes Dev. 24 235-240 (2010)
  2. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway. Chan P, Han X, Zheng B, DeRan M, Yu J, Jarugumilli GK, Deng H, Pan D, Luo X, Wu X. Nat. Chem. Biol. 12 282-289 (2016)
  3. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, Kang C, Chia CS, Luo X, Hong W, Poulsen A. Structure 23 2076-2086 (2015)
  4. Structure-Based Design and Synthesis of Potent Cyclic Peptides Inhibiting the YAP-TEAD Protein-Protein Interaction. Zhang Z, Lin Z, Zhou Z, Shen HC, Yan SF, Mayweg AV, Xu Z, Qin N, Wong JC, Zhang Z, Rong Y, Fry DC, Hu T. ACS Med Chem Lett 5 993-998 (2014)
  5. TEAD-YAP Interaction Inhibitors and MDM2 Binders from DNA-Encoded Indole-Focused Ugi Peptidomimetics. Kunig VBK, Potowski M, Akbarzadeh M, Klika Škopić M, Dos Santos Smith D, Arendt L, Dormuth I, Adihou H, Andlovic B, Karatas H, Shaabani S, Zarganes-Tzitzikas T, Neochoritis CG, Zhang R, Groves M, Guéret SM, Ottmann C, Rahnenführer J, Fried R, Dömling A, Brunschweiger A. Angew Chem Int Ed Engl 59 20338-20342 (2020)
  6. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, Cao Z, Hou C, Wang W, Zhao Y, Xu H, Jiao S, Zhou Z. J Exp Med 217 e20191817 (2020)
  7. Binding cavities and druggability of intrinsically disordered proteins. Zhang Y, Cao H, Liu Z. Protein Sci. 24 688-705 (2015)
  8. Discovery of Covalent Inhibitors Targeting the Transcriptional Enhanced Associate Domain Central Pocket. Karatas H, Akbarzadeh M, Adihou H, Hahne G, Pobbati AV, Yihui Ng E, Guéret SM, Sievers S, Pahl A, Metz M, Zinken S, Dötsch L, Nowak C, Thavam S, Friese A, Kang C, Hong W, Waldmann H. J Med Chem 63 11972-11989 (2020)
  9. Dissection of the interaction between the intrinsically disordered YAP protein and the transcription factor TEAD. Mesrouze Y, Bokhovchuk F, Meyerhofer M, Fontana P, Zimmermann C, Martin T, Delaunay C, Erdmann D, Schmelzle T, Chène P. Elife 6 (2017)
  10. Targeting YAP/TAZ-TEAD protein-protein interactions using fragment-based and computational modeling approaches. Kaan HYK, Sim AYL, Tan SKJ, Verma C, Song H. PLoS ONE 12 e0178381 (2017)
  11. Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Crook ZR, Sevilla GP, Friend D, Brusniak MY, Bandaranayake AD, Clarke M, Gewe M, Mhyre AJ, Baker D, Strong RK, Bradley P, Olson JM. Nat Commun 8 2244 (2017)
  12. Antiproliferative and Antimigratory Effects of a Novel YAP-TEAD Interaction Inhibitor Identified Using in Silico Molecular Docking. Smith SA, Sessions RB, Shoemark DK, Williams C, Ebrahimighaei R, McNeill MC, Crump MP, McKay TR, Harris G, Newby AC, Bond M. J. Med. Chem. 62 1291-1305 (2019)
  13. Fisetin Inhibits Osteogenic Differentiation of Mesenchymal Stem Cells via the Inhibition of YAP. Lorthongpanich C, Charoenwongpaiboon T, Supakun P, Klaewkla M, Kheolamai P, Issaragrisil S. Antioxidants (Basel) 10 879 (2021)
  14. Toward the Discovery of a Novel Class of YAP⁻TEAD Interaction Inhibitors by Virtual Screening Approach Targeting YAP⁻TEAD Protein⁻Protein Interface. Gibault F, Coevoet M, Sturbaut M, Farce A, Renault N, Allemand F, Guichou JF, Drucbert AS, Foulon C, Magnez R, Thuru X, Corvaisier M, Huet G, Chavatte P, Melnyk P, Bailly F, Cotelle P. Cancers (Basel) 10 (2018)
  15. Identification of FAM181A and FAM181B as new interactors with the TEAD transcription factors. Bokhovchuk F, Mesrouze Y, Delaunay C, Martin T, Villard F, Meyerhofer M, Fontana P, Zimmermann C, Erdmann D, Furet P, Scheufler C, Schmelzle T, Chène P. Protein Sci 29 509-520 (2020)
  16. Determination of the migration effect and molecular docking of verteporfin in different subtypes of breast cancer cells. Wei C, Li X. Mol Med Rep 22 3955-3961 (2020)
  17. Leveraging Bulk and Single-Cell RNA Sequencing Data of NSCLC Tumor Microenvironment and Therapeutic Potential of NLOC-15A, A Novel Multi-Target Small Molecule. Lawal B, Wu ATH, Huang HS. Front Immunol 13 872470 (2022)
  18. N-terminal β-strand in YAP is critical for stronger binding to scalloped relative to TEAD transcription factor. Bokhovchuk F, Mesrouze Y, Meyerhofer M, Fontana P, Zimmermann C, Villard F, Erdmann D, Kallen J, Scheufler C, Velez-Vega C, Chène P. Protein Sci 32 e4545 (2023)
  19. Structural and functional analysis of the related transcriptional enhancer factor-1 and NF-κB interaction. Ma J, Zhang L, Tipton AR, Wu J, Messmer-Blust AF, Philbrick MJ, Qi Y, Liu ST, Liu H, Li J, Guo S. Am. J. Physiol. Heart Circ. Physiol. 306 H233-42 (2014)
  20. An allosteric pan-TEAD inhibitor blocks oncogenic YAP/TAZ signaling and overcomes KRAS G12C inhibitor resistance. Hagenbeek TJ, Zbieg JR, Hafner M, Mroue R, Lacap JA, Sodir NM, Noland CL, Afghani S, Kishore A, Bhat KP, Yao X, Schmidt S, Clausen S, Steffek M, Lee W, Beroza P, Martin S, Lin E, Fong R, Di Lello P, Kubala MH, Yang MN, Lau JT, Chan E, Arrazate A, An L, Levy E, Lorenzo MN, Lee HJ, Pham TH, Modrusan Z, Zang R, Chen YC, Kabza M, Ahmed M, Li J, Chang MT, Maddalo D, Evangelista M, Ye X, Crawford JJ, Dey A. Nat Cancer 4 812-828 (2023)
  21. De novo identification of essential protein domains from CRISPR-Cas9 tiling-sgRNA knockout screens. He W, Zhang L, Villarreal OD, Fu R, Bedford E, Dou J, Patel AY, Bedford MT, Shi X, Chen T, Bartholomew B, Xu H. Nat Commun 10 4541 (2019)
  22. Hot Spot Analysis of YAP-TEAD Protein-Protein Interaction Using the Fragment Molecular Orbital Method and Its Application for Inhibitor Discovery. Kim J, Lim H, Moon S, Cho SY, Kim M, Park JH, Park HW, No KT. Cancers (Basel) 13 4246 (2021)
  23. Pepscan Approach for the Identification of Protein-Protein Interfaces: Lessons from Experiment. Rebollo A, Savier E, Tuffery P. Biomolecules 11 772 (2021)
  24. Study of the TEAD-binding domain of the YAP protein from animal species. Mesrouze Y, Bokhovchuk F, Meyerhofer M, Zimmermann C, Fontana P, Erdmann D, Chène P. Protein Sci 30 339-349 (2021)
  25. Yorkie Negatively Regulates the Expression of Antimicrobial Proteins by Inducing Cactus Transcription in Prawns Macrobrachium nipponense. Huang Y, Si Q, Du J, Ren Q. Front Immunol 13 828271 (2022)
  26. 2,2'-((1R,3R,4S)-4-methyl-4-vinylcyclohexane-1,3-diyl) bis(prop-2-en-1-amine), a bisamino derivative of β-Elemene, inhibits glioblastoma growth through downregulation of YAP signaling. Cao LY, Xu JY, Zhuo XT, Zhang W, Wei LJ, Dong JH, Bai RR, Wang X, Jiang YY, Wang YJ, Ye XY, Xie T, Huang ZH. Am J Cancer Res 12 5484-5499 (2022)
  27. PERCC1, a new member of the Yap/TAZ/FAM181 transcriptional co-regulator family. Sanchez-Pulido L, Jia S, Hansen CG, Ponting CP. Bioinform Adv 2 vbac008 (2022)
  28. A new perspective on the interaction between the Vg/VGLL1-3 proteins and the TEAD transcription factors. Mesrouze Y, Aguilar G, Bokhovchuk F, Martin T, Delaunay C, Villard F, Meyerhofer M, Zimmermann C, Fontana P, Wille R, Vorherr T, Erdmann D, Furet P, Scheufler C, Schmelzle T, Affolter M, Chène P. Sci Rep 10 17442 (2020)
  29. Chemical Space Overlap with Critical Protein-Protein Interface Residues in Commercial and Specialized Small-Molecule Libraries. Si Y, Xu D, Bum-Erdene K, Ghozayel MK, Yang B, Clemons PA, Meroueh SO. ChemMedChem 14 119-131 (2019)
  30. Fluorescence polarization assay for the identification and evaluation of inhibitors at YAP-TEAD protein-protein interface 3. Zhou W, Li Y, Song J, Li C. Anal. Biochem. 586 113413 (2019)
  31. Long-range structural preformation in yes-associated protein precedes encounter complex formation with TEAD. Feichtinger M, Beier A, Migotti M, Schmid M, Bokhovchuk F, Chène P, Konrat R. iScience 25 104099 (2022)
  32. The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein-protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma. Kaneda A, Seike T, Danjo T, Nakajima T, Otsubo N, Yamaguchi D, Tsuji Y, Hamaguchi K, Yasunaga M, Nishiya Y, Suzuki M, Saito JI, Yatsunami R, Nakamura S, Sekido Y, Mori K. Am J Cancer Res 10 4399-4415 (2020)


Reviews citing this publication (52)

  1. The hippo signaling pathway in development and cancer. Pan D. Dev. Cell 19 491-505 (2010)
  2. The Hippo pathway: regulators and regulations. Yu FX, Guan KL. Genes Dev. 27 355-371 (2013)
  3. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Zhao B, Tumaneng K, Guan KL. Nat. Cell Biol. 13 877-883 (2011)
  4. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Johnson R, Halder G. Nat Rev Drug Discov 13 63-79 (2014)
  5. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Hong W, Guan KL. Semin. Cell Dev. Biol. 23 785-793 (2012)
  6. The Hippo pathway in biological control and cancer development. Chan SW, Lim CJ, Chen L, Chong YF, Huang C, Song H, Hong W. J. Cell. Physiol. 226 928-939 (2011)
  7. Emerging roles of TEAD transcription factors and its coactivators in cancers. Pobbati AV, Hong W. Cancer Biol. Ther. 14 390-398 (2013)
  8. The hippo pathway in heart development, regeneration, and diseases. Zhou Q, Li L, Zhao B, Guan KL. Circ. Res. 116 1431-1447 (2015)
  9. Regulation of the Hippo pathway and implications for anticancer drug development. Park HW, Guan KL. Trends Pharmacol. Sci. 34 581-589 (2013)
  10. Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Sudol M, Shields DC, Farooq A. Semin. Cell Dev. Biol. 23 827-833 (2012)
  11. Targeting YAP and Hippo signaling pathway in liver cancer. Liu AM, Xu MZ, Chen J, Poon RT, Luk JM. Expert Opin. Ther. Targets 14 855-868 (2010)
  12. The Hippo Signaling Pathway in Development and Disease. Zheng Y, Pan D. Dev Cell 50 264-282 (2019)
  13. Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway. Ehmer U, Sage J. Mol. Cancer Res. 14 127-140 (2016)
  14. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Kodaka M, Hata Y. Cell. Mol. Life Sci. 72 285-306 (2015)
  15. The TEAD Family and Its Oncogenic Role in Promoting Tumorigenesis. Zhou Y, Huang T, Cheng AS, Yu J, Kang W, To KF. Int J Mol Sci 17 (2016)
  16. The regulation and function of YAP transcription co-activator. Zhu C, Li L, Zhao B. Acta Biochim. Biophys. Sin. (Shanghai) 47 16-28 (2015)
  17. The Hippo signaling pathway provides novel anti-cancer drug targets. Bae JS, Kim SM, Lee H. Oncotarget 8 16084-16098 (2017)
  18. Regulation of the Hippo Pathway Transcription Factor TEAD. Lin KC, Park HW, Guan KL. Trends Biochem. Sci. 42 862-872 (2017)
  19. The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Liu H, Jiang D, Chi F, Zhao B. Protein Cell 3 291-304 (2012)
  20. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Warren JSA, Xiao Y, Lamar JM. Cancers (Basel) 10 (2018)
  21. DNA binding partners of YAP/TAZ. Kim MK, Jang JW, Bae SC. BMB Rep 51 126-133 (2018)
  22. The Circular RNA-miRNA Axis: A Special RNA Signature Regulatory Transcriptome as a Potential Biomarker for OSCC. Saikishore R, Velmurugan P, Ranjithkumar D, Latha R, Sathiamoorthi T, Arun A, Ravi AV, Sivakumar S. Mol Ther Nucleic Acids 22 352-361 (2020)
  23. Targeting the Hippo Signaling Pathway for Tissue Regeneration and Cancer Therapy. Juan WC, Hong W. Genes (Basel) 7 (2016)
  24. An evolutionary, structural and functional overview of the mammalian TEAD1 and TEAD2 transcription factors. Landin-Malt A, Benhaddou A, Zider A, Flagiello D. Gene 591 292-303 (2016)
  25. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway. Watt KI, Harvey KF, Gregorevic P. Front Physiol 8 942 (2017)
  26. YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Szulzewsky F, Holland EC, Vasioukhin V. Dev Biol 475 205-221 (2021)
  27. An Updated Understanding of the Role of YAP in Driving Oncogenic Responses. Morciano G, Vezzani B, Missiroli S, Boncompagni C, Pinton P, Giorgi C. Cancers (Basel) 13 3100 (2021)
  28. Snapshots of a hybrid transcription factor in the Hippo pathway. Luo X. Protein Cell 1 811-819 (2010)
  29. Hippo pathway inhibition by blocking the YAP/TAZ-TEAD interface: a patent review. Crawford JJ, Bronner SM, Zbieg JR. Expert Opin Ther Pat 28 867-873 (2018)
  30. Structural dissection of Hippo signaling. Shi Z, Jiao S, Zhou Z. Acta Biochim. Biophys. Sin. (Shanghai) 47 29-38 (2015)
  31. Integrin-FAK-CDC42-PP1A signaling gnaws at YAP/TAZ activity to control incisor stem cells. Hicks-Berthet J, Varelas X. Bioessays 39 (2017)
  32. The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration. Cherrett C, Furutani-Seiki M, Bagby S. Essays Biochem. 53 111-127 (2012)
  33. Repair Injured Heart by Regulating Cardiac Regenerative Signals. Cai WF, Liu GS, Wang L, Paul C, Wen ZL, Wang Y. Stem Cells Int 2016 6193419 (2016)
  34. Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Guo CL. Front Cell Dev Biol 10 862791 (2022)
  35. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Howard A, Bojko J, Flynn B, Bowen S, Jungwirth U, Walko G. Exp Dermatol 31 1477-1499 (2022)
  36. The Hippo pathway: an emerging role in urologic cancers. Cinar B, Alp E, Al-Mathkour M, Boston A, Dwead A, Khazaw K, Gregory A. Am J Clin Exp Urol 9 301-317 (2021)
  37. The biology of YAP in programmed cell death. Cheng Y, Mao M, Lu Y. Biomark Res 10 34 (2022)
  38. Context-dependent roles of YAP/TAZ in stem cell fates and cancer. LeBlanc L, Ramirez N, Kim J. Cell Mol Life Sci (2021)
  39. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Smith SA, Newby AC, Bond M. Cells 8 (2019)
  40. Hippo pathway dysregulation in gastric cancer: from Helicobacter pylori infection to tumor promotion and progression. Messina B, Lo Sardo F, Scalera S, Memeo L, Colarossi C, Mare M, Blandino G, Ciliberto G, Maugeri-Saccà M, Bon G. Cell Death Dis 14 21 (2023)
  41. Inhibitors Targeting YAP in Gastric Cancer: Current Status and Future Perspectives. Yong J, Li Y, Lin S, Wang Z, Xu Y. Drug Des Devel Ther 15 2445-2456 (2021)
  42. Molecular Mechanism of Hippo-YAP1/TAZ Pathway in Heart Development, Disease, and Regeneration. Chen X, Li Y, Luo J, Hou N. Front Physiol 11 389 (2020)
  43. Non-hippo kinases: indispensable roles in YAP/TAZ signaling and implications in cancer therapy. Zhu J, Wu T, Lin Q. Mol Biol Rep 50 4565-4578 (2023)
  44. Protein Phase Separation during Stress Adaptation and Cellular Memory. Lau Y, Oamen HP, Caudron F. Cells 9 (2020)
  45. Reciprocal Regulation of Hippo and WBP2 Signalling-Implications in Cancer Therapy. Lim YX, Lin H, Seah SH, Lim YP. Cells 10 3130 (2021)
  46. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. Cancers (Basel) 15 3468 (2023)
  47. The Hippo pathway in cancer: YAP/TAZ and TEAD as therapeutic targets in cancer. Cunningham R, Hansen CG. Clin Sci (Lond) 136 197-222 (2022)
  48. The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis. Kovar H, Bierbaumer L, Radic-Sarikas B. Cells 9 (2020)
  49. The impact of interaction between verteporfin and yes-associated protein 1/transcriptional coactivator with PDZ-binding motif-TEA domain pathway on the progression of isocitrate dehydrogenase wild-type glioblastoma. Osama M, Essibayi MA, Osama M, Ibrahim IA, Nasr Mostafa M, Şakir Ekşi M. J Cent Nerv Syst Dis 15 11795735231195760 (2023)
  50. The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. Luo J, Zou H, Guo Y, Tong T, Chen Y, Xiao Y, Pan Y, Li P. Br J Cancer 128 1611-1624 (2023)
  51. The role of YAP in the control of the metastatic potential of oral cancer. Ahmad US, Saravanan K, Wan H. Oncol Res 29 377-391 (2021)
  52. Using Biosensors to Study Protein-Protein Interaction in the Hippo Pathway. Pipchuk A, Yang X. Front Cell Dev Biol 9 660137 (2021)

Articles citing this publication (121)

  1. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M. Nucleic Acids Res. 40 D261-70 (2012)
  2. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Zhao B, Li L, Lei Q, Guan KL. Genes Dev. 24 862-874 (2010)
  3. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D. Genes Dev. 26 1300-1305 (2012)
  4. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL. Genes Dev. 24 1106-1118 (2010)
  5. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO. Proc. Natl. Acad. Sci. U.S.A. 109 E2441-50 (2012)
  6. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S, Lim DS, Guan KL. Nat. Cell Biol. 17 500-510 (2015)
  7. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Zhang X, George J, Deb S, Degoutin JL, Takano EA, Fox SB, AOCS Study group, Bowtell DD, Harvey KF. Oncogene 30 2810-2822 (2011)
  8. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, Gupta S, Vietsch EE, Laughlin SZ, Wadhwa M, Chetram M, Joshi M, Wang F, Kallakury B, Toretsky J, Wellstein A, Yi C. Sci Signal 7 ra42 (2014)
  9. Structural basis of YAP recognition by TEAD4 in the hippo pathway. Chen L, Chan SW, Zhang X, Walsh M, Lim CJ, Hong W, Song H. Genes Dev. 24 290-300 (2010)
  10. Aerobic glycolysis tunes YAP/TAZ transcriptional activity. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G, Bicciato S, Dupont S. EMBO J. 34 1349-1370 (2015)
  11. TAZ expression as a prognostic indicator in colorectal cancer. Yuen HF, McCrudden CM, Huang YH, Tham JM, Zhang X, Zeng Q, Zhang SD, Hong W. PLoS ONE 8 e54211 (2013)
  12. Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Kim J, Piao HL, Kim BJ, Yao F, Han Z, Wang Y, Xiao Z, Siverly AN, Lawhon SE, Ton BN, Lee H, Zhou Z, Gan B, Nakagawa S, Ellis MJ, Liang H, Hung MC, You MJ, Sun Y, Ma L. Nat. Genet. 50 1705-1715 (2018)
  13. The evolutionary history of YAP and the hippo/YAP pathway. Hilman D, Gat U. Mol. Biol. Evol. 28 2403-2417 (2011)
  14. YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins. Di Agostino S, Sorrentino G, Ingallina E, Valenti F, Ferraiuolo M, Bicciato S, Piazza S, Strano S, Del Sal G, Blandino G. EMBO Rep. 17 188-201 (2016)
  15. YAP regulates cell mechanics by controlling focal adhesion assembly. Nardone G, Oliver-De La Cruz J, Vrbsky J, Martini C, Pribyl J, Skládal P, Pešl M, Caluori G, Pagliari S, Martino F, Maceckova Z, Hajduch M, Sanz-Garcia A, Pugno NM, Stokin GB, Forte G. Nat Commun 8 15321 (2017)
  16. Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer. Wang J, Wang H, Zhang Y, Zhen N, Zhang L, Qiao Y, Weng W, Liu X, Ma L, Xiao W, Yu W, Chu Q, Pan Q, Sun F. Cell. Signal. 26 1048-1059 (2014)
  17. Crystal structure of the Gtr1p-Gtr2p complex reveals new insights into the amino acid-induced TORC1 activation. Gong R, Li L, Liu Y, Wang P, Yang H, Wang L, Cheng J, Guan KL, Xu Y. Genes Dev. 25 1668-1673 (2011)
  18. Structural and functional similarity between the Vgll1-TEAD and the YAP-TEAD complexes. Pobbati AV, Chan SW, Lee I, Song H, Hong W. Structure 20 1135-1140 (2012)
  19. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Hansen CG, Ng YL, Lam WL, Plouffe SW, Guan KL. Cell Res. 25 1299-1313 (2015)
  20. A basal-like breast cancer-specific role for SRF-IL6 in YAP-induced cancer stemness. Kim T, Yang SJ, Hwang D, Song J, Kim M, Kyum Kim S, Kang K, Ahn J, Lee D, Kim MY, Kim S, Seung Koo J, Seok Koh S, Kim SY, Lim DS. Nat Commun 6 10186 (2015)
  21. Hippo signaling at a glance. Zhao B, Li L, Guan KL. J. Cell. Sci. 123 4001-4006 (2010)
  22. αE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V. Genes Dev. 30 798-811 (2016)
  23. Premetazoan origin of the hippo signaling pathway. Sebé-Pedrós A, Zheng Y, Ruiz-Trillo I, Pan D. Cell Rep 1 13-20 (2012)
  24. Yap1 protein regulates vascular smooth muscle cell phenotypic switch by interaction with myocardin. Xie C, Guo Y, Zhu T, Zhang J, Ma PX, Chen YE. J. Biol. Chem. 287 14598-14605 (2012)
  25. Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone. Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA. PLoS ONE 6 e20309 (2011)
  26. Palmitoylation of TEAD Transcription Factors Is Required for Their Stability and Function in Hippo Pathway Signaling. Noland CL, Gierke S, Schnier PD, Murray J, Sandoval WN, Sagolla M, Dey A, Hannoush RN, Fairbrother WJ, Cunningham CN. Structure 24 179-186 (2016)
  27. Targeting Hippo pathway by specific interruption of YAP-TEAD interaction using cyclic YAP-like peptides. Zhou Z, Hu T, Xu Z, Lin Z, Zhang Z, Feng T, Zhu L, Rong Y, Shen H, Luk JM, Zhang X, Qin N. FASEB J. 29 724-732 (2015)
  28. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Guo T, Lu Y, Li P, Yin MX, Lv D, Zhang W, Wang H, Zhou Z, Ji H, Zhao Y, Zhang L. Cell Res. 23 1201-1214 (2013)
  29. Hippo signalling governs cytosolic nucleic acid sensing through YAP/TAZ-mediated TBK1 blockade. Zhang Q, Meng F, Chen S, Plouffe SW, Wu S, Liu S, Li X, Zhou R, Wang J, Zhao B, Liu J, Qin J, Zou J, Feng XH, Guan KL, Xu P. Nat. Cell Biol. 19 362-374 (2017)
  30. Inhibition of Aβ(25-35)-induced cell apoptosis by low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation. Zhang H, Wu S, Xing D. Cell. Signal. 24 224-232 (2012)
  31. Structural and functional insights into the TEAD-YAP complex in the Hippo signaling pathway. Chen L, Loh PG, Song H. Protein Cell 1 1073-1083 (2010)
  32. Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Rozengurt E, Sinnett-Smith J, Eibl G. Signal Transduct Target Ther 3 11 (2018)
  33. The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. Plouffe SW, Lin KC, Moore JL, Tan FE, Ma S, Ye Z, Qiu Y, Ren B, Guan KL. J. Biol. Chem. 293 11230-11240 (2018)
  34. Yes-associated protein (YAP) increases chemosensitivity of hepatocellular carcinoma cells by modulation of p53. Bai N, Zhang C, Liang N, Zhang Z, Chang A, Yin J, Li Z, Luo N, Tan X, Luo N, Luo Y, Xiang R, Li X, Reisfeld RA, Stupack D, Lv D, Liu C. Cancer Biol. Ther. 14 511-520 (2013)
  35. Prognostic Value of Yes-Associated Protein 1 (YAP1) in Various Cancers: A Meta-Analysis. Sun Z, Xu R, Li X, Ren W, Ou C, Wang Q, Zhang H, Zhang X, Ma J, Wang H, Li G. PLoS ONE 10 e0135119 (2015)
  36. YAP accelerates Aβ(25-35)-induced apoptosis through upregulation of Bax expression by interaction with p73. Zhang H, Wu S, Xing D. Apoptosis 16 808-821 (2011)
  37. The TEAD4-YAP/TAZ protein-protein interaction: expected similarities and unexpected differences. Hau JC, Erdmann D, Mesrouze Y, Furet P, Fontana P, Zimmermann C, Schmelzle T, Hofmann F, Chène P. Chembiochem 14 1218-1225 (2013)
  38. Quantitative Analysis Reveals that Actin and Src-Family Kinases Regulate Nuclear YAP1 and Its Export. Ege N, Dowbaj AM, Jiang M, Howell M, Hooper S, Foster C, Jenkins RP, Sahai E. Cell Syst 6 692-708.e13 (2018)
  39. YAP is overexpressed in clear cell renal cell carcinoma and its knockdown reduces cell proliferation and induces cell cycle arrest and apoptosis. Cao JJ, Zhao XM, Wang DL, Chen KH, Sheng X, Li WB, Li MC, Liu WJ, He J. Oncol. Rep. 32 1594-1600 (2014)
  40. A splicing isoform of TEAD4 attenuates the Hippo-YAP signalling to inhibit tumour proliferation. Qi Y, Yu J, Han W, Fan X, Qian H, Wei H, Tsai YH, Zhao J, Zhang W, Liu Q, Meng S, Wang Y, Wang Z. Nat Commun 7 ncomms11840 (2016)
  41. Mechanism of action of a WWTR1(TAZ)-CAMTA1 fusion oncoprotein. Tanas MR, Ma S, Jadaan FO, Ng CK, Weigelt B, Reis-Filho JS, Rubin BP. Oncogene 35 929-938 (2016)
  42. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. Chung H, Lee BK, Uprety N, Shen W, Lee J, Kim J. EMBO Rep. 17 519-529 (2016)
  43. LATS2-mediated YAP1 phosphorylation is involved in HCC tumorigenesis. Guo C, Wang X, Liang L. Int J Clin Exp Pathol 8 1690-1697 (2015)
  44. Molecular evolution of the Yap/Yorkie proto-oncogene and elucidation of its core transcriptional program. Ikmi A, Gaertner B, Seidel C, Srivastava M, Zeitlinger J, Gibson MC. Mol. Biol. Evol. 31 1375-1390 (2014)
  45. Crystal structure of TAZ-TEAD complex reveals a distinct interaction mode from that of YAP-TEAD complex. Kaan HYK, Chan SW, Tan SKJ, Guo F, Lim CJ, Hong W, Song H. Sci Rep 7 2035 (2017)
  46. Metformin mediates resensitivity to 5-fluorouracil in hepatocellular carcinoma via the suppression of YAP. Tian Y, Tang B, Wang C, Sun D, Zhang R, Luo N, Han Z, Liang R, Gao Z, Wang L. Oncotarget 7 46230-46241 (2016)
  47. Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 2. Pasipoularides A. J Cardiovasc Transl Res 8 293-318 (2015)
  48. YAP/TAZ enhance mammalian embryonic neural stem cell characteristics in a Tead-dependent manner. Han D, Byun SH, Park S, Kim J, Kim I, Ha S, Kwon M, Yoon K. Biochem. Biophys. Res. Commun. 458 110-116 (2015)
  49. Alteration of TEAD1 expression levels confers apoptotic resistance through the transcriptional up-regulation of Livin. Landin Malt A, Cagliero J, Legent K, Silber J, Zider A, Flagiello D. PLoS ONE 7 e45498 (2012)
  50. An update on targeting Hippo-YAP signaling in liver cancer. Liu AM, Xu Z, Luk JM. Expert Opin. Ther. Targets 16 243-247 (2012)
  51. Discovery of recurrent structural variants in nasopharyngeal carcinoma. Valouev A, Weng Z, Sweeney RT, Varma S, Le QT, Kong C, Sidow A, West RB. Genome Res. 24 300-309 (2014)
  52. A Non-canonical Role of YAP/TEAD Is Required for Activation of Estrogen-Regulated Enhancers in Breast Cancer. Zhu C, Li L, Zhang Z, Bi M, Wang H, Su W, Hernandez K, Liu P, Chen J, Chen M, Huang TH, Chen L, Liu Z. Mol Cell 75 791-806.e8 (2019)
  53. DNA-binding mechanism of the Hippo pathway transcription factor TEAD4. Shi Z, He F, Chen M, Hua L, Wang W, Jiao S, Zhou Z. Oncogene 36 4362-4369 (2017)
  54. Effect of the acylation of TEAD4 on its interaction with co-activators YAP and TAZ. Mesrouze Y, Meyerhofer M, Bokhovchuk F, Fontana P, Zimmermann C, Martin T, Delaunay C, Izaac A, Kallen J, Schmelzle T, Erdmann D, Chène P. Protein Sci. 26 2399-2409 (2017)
  55. YAP1 contributes to NSCLC invasion and migration by promoting Slug transcription via the transcription co-factor TEAD. Yu M, Chen Y, Li X, Yang R, Zhang L, Huangfu L, Zheng N, Zhao X, Lv L, Hong Y, Liang H, Shan H. Cell Death Dis 9 464 (2018)
  56. Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Lee YA, Noon LA, Akat KM, Ybanez MD, Lee TF, Berres ML, Fujiwara N, Goossens N, Chou HI, Parvin-Nejad FP, Khambu B, Kramer EGM, Gordon R, Pfleger C, Germain D, John GR, Campbell KN, Yue Z, Yin XM, Cuervo AM, Czaja MJ, Fiel MI, Hoshida Y, Friedman SL. Nat Commun 9 4962 (2018)
  57. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster. Jeibmann A, Eikmeier K, Linge A, Kool M, Koos B, Schulz J, Albrecht S, Bartelheim K, Frühwald MC, Pfister SM, Paulus W, Hasselblatt M. Nat Commun 5 4005 (2014)
  58. Splice variant insertions in the C-terminus impairs YAP's transactivation domain. Finch-Edmondson ML, Strauss RP, Clayton JS, Yeoh GC, Callus BA. Biochem Biophys Rep 6 24-31 (2016)
  59. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography. Mascharak S, Benitez PL, Proctor AC, Madl CM, Hu KH, Dewi RE, Butte MJ, Heilshorn SC. Biomaterials 115 155-166 (2017)
  60. Mediated nuclear import and export of TAZ and the underlying molecular requirements. Kofler M, Speight P, Little D, Di Ciano-Oliveira C, Szászi K, Kapus A. Nat Commun 9 4966 (2018)
  61. YAP1-TEAD1 signaling controls angiogenesis and mitochondrial biogenesis through PGC1α. Mammoto A, Muyleart M, Kadlec A, Gutterman D, Mammoto T. Microvasc. Res. 119 73-83 (2018)
  62. The Hippo pathway regulator KIBRA promotes podocyte injury by inhibiting YAP signaling and disrupting actin cytoskeletal dynamics. Meliambro K, Wong JS, Ray J, Calizo RC, Towne S, Cole B, El Salem F, Gordon RE, Kaufman L, He JC, Azeloglu EU, Campbell KN. J. Biol. Chem. 292 21137-21148 (2017)
  63. Time-resolved Phosphoproteome Analysis of Paradoxical RAF Activation Reveals Novel Targets of ERK. Kubiniok P, Lavoie H, Therrien M, Thibault P. Mol. Cell Proteomics 16 663-679 (2017)
  64. Genetic Factors of the Disease Course After Sepsis: Rare Deleterious Variants Are Predictive. Taudien S, Lausser L, Giamarellos-Bourboulis EJ, Sponholz C, Schöneweck F, Felder M, Schirra LR, Schmid F, Gogos C, Groth S, Petersen BS, Franke A, Lieb W, Huse K, Zipfel PF, Kurzai O, Moepps B, Gierschik P, Bauer M, Scherag A, Kestler HA, Platzer M. EBioMedicine 12 227-238 (2016)
  65. Lipopolysaccharide Induces Human Pulmonary Micro-Vascular Endothelial Apoptosis via the YAP Signaling Pathway. Yi L, Huang X, Guo F, Zhou Z, Chang M, Tang J, Huan J. Front Cell Infect Microbiol 6 133 (2016)
  66. Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Müller Cells. Hamon A, Masson C, Bitard J, Gieser L, Roger JE, Perron M. Invest. Ophthalmol. Vis. Sci. 58 1941-1953 (2017)
  67. Yorkie Growth-Promoting Activity Is Limited by Atg1-Mediated Phosphorylation. Tyra LK, Nandi N, Tracy C, Krämer H. Dev Cell 52 605-616.e7 (2020)
  68. Interaction with the Yes-associated protein (YAP) allows TEAD1 to positively regulate NAIP expression. Landin Malt A, Georges A, Silber J, Zider A, Flagiello D. FEBS Lett. 587 3216-3223 (2013)
  69. TEAD activity is restrained by MYC and stratifies human breast cancer subtypes. Elster D, Jaenicke LA, Eilers M, von Eyss B. Cell Cycle 15 2551-2556 (2016)
  70. The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae. Rausch V, Bostrom JR, Park J, Bravo IR, Feng Y, Hay DC, Link BA, Hansen CG. Curr. Biol. 29 242-255.e6 (2019)
  71. VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription. Suo J, Feng X, Li J, Wang J, Wang Z, Zhang L, Zou W. Sci Adv 6 eaba4147 (2020)
  72. Comparative study of Hippo pathway genes in cellular conveyor belts of a ctenophore and a cnidarian. Coste A, Jager M, Chambon JP, Manuel M. Evodevo 7 4 (2016)
  73. Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Chi F, Sharpley MS, Nagaraj R, Roy SS, Banerjee U. Dev Cell 53 9-26.e4 (2020)
  74. Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Li Y, Liu S, Ng EY, Li R, Poulsen A, Hill J, Pobbati AV, Hung AW, Hong W, Keller TH, Kang C. Biochem. J. 475 2043-2055 (2018)
  75. The Hippo kinase promotes Scalloped cytoplasmic localization independently of Warts in a CRM1/Exportin1-dependent manner in Drosophila. Cagliero J, Forget A, Daldello E, Silber J, Zider A. FASEB J. 27 1330-1341 (2013)
  76. The Immunoexpression of YAP1 and LATS1 Proteins in Clear Cell Renal Cell Carcinoma: Impact on Patients' Survival. Godlewski J, Kiezun J, Krazinski BE, Kozielec Z, Wierzbicki PM, Kmiec Z. Biomed Res Int 2018 2653623 (2018)
  77. The surprising features of the TEAD4-Vgll1 protein-protein interaction. Mesrouze Y, Hau JC, Erdmann D, Zimmermann C, Fontana P, Schmelzle T, Chène P. Chembiochem 15 537-542 (2014)
  78. Validating upstream regulators of Yorkie activity in Hippo signaling through scalloped-based genetic epistasis. Yu J, Pan D. Development 145 (2018)
  79. Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface. Mesrouze Y, Bokhovchuk F, Izaac A, Meyerhofer M, Zimmermann C, Fontana P, Schmelzle T, Erdmann D, Furet P, Kallen J, Chène P. Protein Sci. 27 1810-1820 (2018)
  80. Metformin targets a YAP1-TEAD4 complex via AMPKα to regulate CCNE1/2 in bladder cancer cells. Wu Y, Zheng Q, Li Y, Wang G, Gao S, Zhang X, Yan X, Zhang X, Xie J, Wang Y, Sun X, Meng X, Yin B, Wang B. J. Exp. Clin. Cancer Res. 38 376 (2019)
  81. 1H, 13C, 15N resonance assignment of human YAP 50-171 fragment. Feichtinger M, Sára T, Platzer G, Mateos B, Bokhovchuk F, Chène P, Konrat R. Biomol NMR Assign 12 179-182 (2018)
  82. Biochemical properties of VGLL4 from Homo sapiens and Tgi from Drosophila melanogaster and possible biological implications. Mesrouze Y, Meyerhofer M, Zimmermann C, Fontana P, Erdmann D, Chène P. Protein Sci 30 1871-1881 (2021)
  83. Characterization of the transcriptional activation domains of human TEF3-1 (transcription enhancer factor 3 isoform 1). Qiao C, Jiang Y, Deng C, Huang Z, Teng K, Chen L, Liu X. Arch. Biochem. Biophys. 569 54-61 (2015)
  84. Degron masking outlines degronons, co-degrading functional modules in the proteome. Guharoy M, Lazar T, Macossay-Castillo M, Tompa P. Commun Biol 5 445 (2022)
  85. Discovery of a subtype-selective, covalent inhibitor against palmitoylation pocket of TEAD3. Lu T, Li Y, Lu W, Spitters T, Fang X, Wang J, Cai S, Gao J, Zhou Y, Duan Z, Xiong H, Liu L, Li Q, Jiang H, Chen K, Zhou H, Lin H, Feng H, Zhou B, Antos CL, Luo C. Acta Pharm Sin B 11 3206-3219 (2021)
  86. RACO-1 modulates Hippo signalling in oesophageal squamous cell carcinoma. Pang D, Wang W, Zhou X, Lu K, Zhang J, Chen Z, Wang L, Shen F, Chen Z, Wang S, Hou J, Zhang A, Lv B, Gao C, Yan Z, Hu Y, Chang T, Wang L, Li X. J Cell Mol Med 24 11912-11921 (2020)
  87. The Hippo pathway drives the cellular response to hydrostatic pressure. Park J, Jia S, Salter D, Bagnaninchi P, Hansen CG. EMBO J 41 e108719 (2022)
  88. The hippo signaling pathway: implications for heart regeneration and disease. Del Re DP. Clin Transl Med 3 27 (2014)
  89. Activation of Yap-Directed Transcription by Knockdown of Conserved Cellular Functions. Agarinis C, Orsini V, Megel P, Abraham Y, Yang H, Mickanin C, Myer V, Bouwmeester T, Tchorz JS, Parker CN. J Biomol Screen 21 269-276 (2016)
  90. Androgen attenuates the inactivating phospho-Ser-127 modification of yes-associated protein 1 (YAP1) and promotes YAP1 nuclear abundance and activity. Cinar B, Al-Mathkour MM, Khan SA, Moreno CS. J Biol Chem 295 8550-8559 (2020)
  91. Homeobox A4 suppresses vascular remodeling by repressing YAP/TEAD transcriptional activity. Kimura M, Horie T, Baba O, Ide Y, Tsuji S, Ruiz Rodriguez R, Watanabe T, Yamasaki T, Otani C, Xu S, Miyasaka Y, Nakashima Y, Kimura T, Ono K. EMBO Rep. 21 e48389 (2020)
  92. Identification of Celastrol as a Novel YAP-TEAD Inhibitor for Cancer Therapy by High Throughput Screening with Ultrasensitive YAP/TAZ-TEAD Biosensors. Nouri K, Azad T, Ling M, Janse van Rensburg HJ, Pipchuk A, Shen H, Hao Y, Zhang J, Yang X. Cancers (Basel) 11 (2019)
  93. Initiation of human mammary cell tumorigenesis by mutant KRAS requires YAP inactivation. Lefort S, Tan S, Balani S, Rafn B, Pellacani D, Hirst M, Sorensen PH, Eaves CJ. Oncogene 39 1957-1968 (2020)
  94. Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling. Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Boerckel JD, Chow BY. Adv Biol (Weinh) 5 e2100810 (2021)
  95. Transcriptional Enhancer Factor Domain Family member 4 Exerts an Oncogenic Role in Hepatocellular Carcinoma by Hippo-Independent Regulation of Heat Shock Protein 70 Family Members. Coto-Llerena M, Tosti N, Taha-Mehlitz S, Kancherla V, Paradiso V, Gallon J, Bianco G, Garofoli A, Ghosh S, Tang F, Ercan C, Christofori GM, Matter MS, Droeser RA, Zavolan M, Soysal SD, von Flüe M, Kollmar O, Terracciano LM, Ng CKY, Piscuoglio S. Hepatol Commun 5 661-674 (2021)
  96. YAP antagonizes TEAD-mediated AR signaling and prostate cancer growth. Li X, Zhuo S, Cho YS, Liu Y, Yang Y, Zhu J, Jiang J. EMBO J 42 e112184 (2023)
  97. A covalent inhibitor of the YAP-TEAD transcriptional complex identified by high-throughput screening. Nutsch K, Song L, Chen E, Hull M, Chatterjee AK, Chen JJ, Bollong MJ. RSC Chem Biol 4 894-905 (2023)
  98. Aortic Stress Activates an Adaptive Program in Thoracic Aortic Smooth Muscle Cells That Maintains Aortic Strength and Protects Against Aneurysm and Dissection in Mice. Zhang C, Li Y, Chakraborty A, Li Y, Rebello KR, Ren P, Luo W, Zhang L, Lu HS, Cassis LA, Coselli JS, Daugherty A, LeMaire SA, Shen YH. Arterioscler Thromb Vasc Biol 43 234-252 (2023)
  99. Aurintricarboxylic acid is a canonical disruptor of the TAZ-TEAD transcriptional complex. Che K, Pobbati AV, Seavey CN, Fedorov Y, Komar AA, Burtscher A, Ma S, Rubin BP. PLoS One 17 e0266143 (2022)
  100. Autophagy-mediated negative feedback attenuates the oncogenic activity of YAP in pancreatic cancer. Sun T, Peng H, Mao W, Ma L, Liu H, Mai J, Jiao L. Int J Biol Sci 17 3634-3645 (2021)
  101. Chloroacetamide fragment library screening identifies new scaffolds for covalent inhibition of the TEAD·YAP1 interaction. Bum-Erdene K, Ghozayel MK, Zhang MJ, Gonzalez-Gutierrez G, Meroueh SO. RSC Med Chem 14 1803-1816 (2023)
  102. Development of HC-258, a Covalent Acrylamide TEAD Inhibitor That Reduces Gene Expression and Cell Migration. Fnaiche A, Chan HC, Paquin A, González Suárez N, Vu V, Li F, Allali-Hassani A, Cao MA, Szewczyk MM, Bolotokova A, Allemand F, Gelin M, Barsyte-Lovejoy D, Santhakumar V, Vedadi M, Guichou JF, Annabi B, Gagnon A. ACS Med Chem Lett 14 1746-1753 (2023)
  103. Extract2Chip-Bypassing Protein Purification in Drug Discovery Using Surface Plasmon Resonance. Paiva ACF, Lemos AR, Busse P, Martins MT, Silva DO, Freitas MC, Santos SP, Freire F, Barrey EJ, Manival X, Koetzner L, Heinrich T, Wegener A, Grädler U, Bandeiras TM, Schwarz D, Sousa PMF. Biosensors (Basel) 13 913 (2023)
  104. Hippo signaling pathway activation during SARS-CoV-2 infection contributes to host antiviral response. Garcia G, Jeyachandran AV, Wang Y, Irudayam JI, Cario SC, Sen C, Li S, Li Y, Kumar A, Nielsen-Saines K, French SW, Shah PS, Morizono K, Gomperts BN, Deb A, Ramaiah A, Arumugaswami V. PLoS Biol 20 e3001851 (2022)
  105. Hippo signaling suppresses tumor cell metastasis via a Yki-Src42A positive feedback loop. Ding Y, Wang G, Zhan M, Sun X, Deng Y, Zhao Y, Liu B, Liu Q, Wu S, Zhou Z. Cell Death Dis 12 1126 (2021)
  106. Identification of Components of the Hippo Pathway in Hydra and Potential Role of YAP in Cell Division and Differentiation. Unni M, Reddy PC, Pal M, Sagi I, Galande S. Front Genet 12 676182 (2021)
  107. Irbesartan overcomes gemcitabine resistance in pancreatic cancer by suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis. Zhou T, Xie Y, Hou X, Bai W, Li X, Liu Z, Man Q, Sun J, Fu D, Yan J, Zhang Z, Wang Y, Wang H, Jiang W, Gao S, Zhao T, Chang A, Wang X, Sun H, Zhang X, Yang S, Huang C, Hao J, Liu J. J Exp Clin Cancer Res 42 111 (2023)
  108. MicroRNA-497-5p negatively regulates the proliferation and cisplatin resistance of non-small cell lung cancer cells by targeting YAP1 and TEAD1. Zeng SG, Xie JH, Zeng QY, Dai SH, Wang Y, Wan XM, Zhou XL. Transl Cancer Res 8 2470-2480 (2019)
  109. Narciclasine is a novel YAP inhibitor that disturbs interaction between YAP and TEAD4. Kawamoto R, Nakano N, Ishikawa H, Tashiro E, Nagano W, Sano K, Irie M, Ikuta M, Kishi F, Nakane T, Naito M, Itoh S. BBA Adv 1 100008 (2021)
  110. RNF181 modulates Hippo signaling and triple negative breast cancer progression. Zhou R, Ding Y, Xue M, Xiong B, Zhuang T. Cancer Cell Int. 20 291 (2020)
  111. Regorafenib inhibits epithelial-mesenchymal transition and suppresses cholangiocarcinoma metastasis via YAP1-AREG axis. Chang YC, Li CH, Chan MH, Chen MH, Yeh CN, Hsiao M. Cell Death Dis 13 391 (2022)
  112. SHARPIN Inhibits Esophageal Squamous Cell Carcinoma Progression by Modulating Hippo Signaling. Zhang A, Wang W, Chen Z, Pang D, Zhou X, Lu K, Hou J, Wang S, Gao C, Lv B, Yan Z, Chen Z, Zhu J, Wang L, Zhuang T, Li X. Neoplasia 22 76-85 (2020)
  113. SNHG16 upregulation-induced positive feedback loop with YAP1/TEAD1 complex in Colorectal Cancer cell lines facilitates liver metastasis of colorectal cancer by modulating CTCs epithelial-mesenchymal transition. Xiang Z, Huang G, Wu H, He Q, Yang C, Dou R, Liu Q, Song J, Fang Y, Wang S, Xiong B. Int J Biol Sci 18 5291-5308 (2022)
  114. The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility. Al-Mathkour MM, Dwead AM, Alp E, Boston AM, Cinar B. Sci Rep 12 3840 (2022)
  115. The proliferation role of LH on porcine primordial germ cell-like cells (pPGCLCs) through ceRNA network construction. Zhang MY, Tian Y, Zhang SE, Yan HC, Ge W, Han BQ, Yan ZH, Cheng SF, Shen W. Clin Transl Med 11 e560 (2021)
  116. The role of lysine palmitoylation/myristoylation in the function of the TEAD transcription factors. Mesrouze Y, Aguilar G, Meyerhofer M, Bokhovchuk F, Zimmermann C, Fontana P, Vissières A, Voshol H, Erdmann D, Affolter M, Chène P. Sci Rep 12 4984 (2022)
  117. Transformation of normal cells by aberrant activation of YAP via cMyc with TEAD. Nishimoto M, Uranishi K, Asaka MN, Suzuki A, Mizuno Y, Hirasaki M, Okuda A. Sci Rep 9 10933 (2019)
  118. YAP induces an oncogenic transcriptional program through TET1-mediated epigenetic remodeling in liver growth and tumorigenesis. Wu BK, Mei SC, Chen EH, Zheng Y, Pan D. Nat Genet 54 1202-1213 (2022)
  119. YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro. Caire R, Audoux E, Thomas M, Dalix E, Peyron A, Rodriguez K, Pordone N, Guillemot J, Dickerscheit Y, Marotte H, Vandenesch F, Laurent F, Josse J, Verhoeven PO. Nat Commun 13 6995 (2022)
  120. YAP1 plays a key role of the conversion of normal fibroblasts into cancer-associated fibroblasts that contribute to prostate cancer progression. Shen T, Li Y, Zhu S, Yu J, Zhang B, Chen X, Zhang Z, Ma Y, Niu Y, Shang Z. J. Exp. Clin. Cancer Res. 39 36 (2020)
  121. YAP1/TAZ-TEAD transcriptional networks maintain skin homeostasis by regulating cell proliferation and limiting KLF4 activity. Yuan Y, Park J, Feng A, Awasthi P, Wang Z, Chen Q, Iglesias-Bartolome R. Nat Commun 11 1472 (2020)