3kcz Citations

Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-888.

Biochemistry 49 1056-8 (2010)
Cited: 46 times
EuropePMC logo PMID: 20092359

Abstract

Poly-ADP-ribose polymerases (PARPs) catalyze transfer of ADP-ribose from NAD(+) to specific residues in their substrate proteins or to growing ADP-ribose chains. PARP activity is involved in processes such as chromatin remodeling, transcription control, and DNA repair. Inhibitors of PARP activity may be useful in cancer therapy. PARP2 is the family member that is most similar to PARP1, and the two can act together as heterodimers. We used X-ray crystallography to determine two structures of the catalytic domain of human PARP2: the complexes with PARP inhibitors 3-aminobenzamide and ABT-888. These results contribute to our understanding of structural features and compound properties that can be employed to develop selective inhibitors of human ADP-ribosyltransferases.

Reviews - 3kcz mentioned but not cited (1)

  1. Structural Implications for Selective Targeting of PARPs. Steffen JD, Brody JR, Armen RS, Pascal JM. Front Oncol 3 301 (2013)

Articles - 3kcz mentioned but not cited (6)

  1. Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4. Haikarainen T, Venkannagari H, Narwal M, Obaji E, Lee HW, Nkizinkiko Y, Lehtiö L. PLoS One 8 e65404 (2013)
  2. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Aoyagi-Scharber M, Gardberg AS, Yip BK, Wang B, Shen Y, Fitzpatrick PA. Acta Crystallogr F Struct Biol Commun 70 1143-1149 (2014)
  3. Characterization of the DNA dependent activation of human ARTD2/PARP2. Obaji E, Haikarainen T, Lehtiö L. Sci Rep 6 34487 (2016)
  4. A new arylbenzofuran derivative functions as an anti-tumour agent by inducing DNA damage and inhibiting PARP activity. Chen H, Zeng X, Gao C, Ming P, Zhang J, Guo C, Zhou L, Lu Y, Wang L, Huang L, He X, Mei L. Sci Rep 5 10893 (2015)
  5. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2. Qiu W, Lam R, Voytyuk O, Romanov V, Gordon R, Gebremeskel S, Vodsedalek J, Thompson C, Beletskaya I, Battaile KP, Pai EF, Rottapel R, Chirgadze NY. Acta Crystallogr D Biol Crystallogr 70 2740-2753 (2014)
  6. Ligand fitting with CCP4. Nicholls RA. Acta Crystallogr D Struct Biol 73 158-170 (2017)


Reviews citing this publication (11)

  1. PARP inhibition: PARP1 and beyond. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. Nat Rev Cancer 10 293-301 (2010)
  2. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis. Langelier MF, Pascal JM. Curr Opin Struct Biol 23 134-143 (2013)
  3. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Rosado MM, Bennici E, Novelli F, Pioli C. Immunology 139 428-437 (2013)
  4. Poly(ADP-ribose): PARadigms and PARadoxes. Bürkle A, Virág L. Mol Aspects Med 34 1046-1065 (2013)
  5. Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Szántó M, Brunyánszki A, Kiss B, Nagy L, Gergely P, Virág L, Bai P. Cell Mol Life Sci 69 4079-4092 (2012)
  6. Targeting poly(ADP-ribose) polymerase activity for cancer therapy. Mégnin-Chanet F, Bollet MA, Hall J. Cell Mol Life Sci 67 3649-3662 (2010)
  7. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T, Langelier MF, Pascal JM, Schüler H. Mol Aspects Med 34 1088-1108 (2013)
  8. PARP inhibitors in cancer therapy: an update. Papeo G, Casale E, Montagnoli A, Cirla A. Expert Opin Ther Pat 23 503-514 (2013)
  9. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. Int J Mol Sci 22 5112 (2021)
  10. A decade of the human genome sequence--how does the medicinal chemist benefit? Brunschweiger A, Hall J. ChemMedChem 7 194-203 (2012)
  11. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Poltronieri P, Miwa M, Masutani M. Int J Mol Sci 22 10829 (2021)

Articles citing this publication (28)

  1. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG, Pol E, Frostell Å, Ekblad T, Öncü D, Kull B, Robertson GM, Pellicciari R, Schüler H, Weigelt J. Nat Biotechnol 30 283-288 (2012)
  2. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. Thorsell AG, Ekblad T, Karlberg T, Löw M, Pinto AF, Trésaugues L, Moche M, Cohen MS, Schüler H. J Med Chem 60 1262-1271 (2017)
  3. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. Forli S, Olson AJ. J Med Chem 55 623-638 (2012)
  4. PARP-1 and PARP-2: New players in tumour development. Yelamos J, Farres J, Llacuna L, Ampurdanes C, Martin-Caballero J. Am J Cancer Res 1 328-346 (2011)
  5. Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. Carter-O'Connell I, Jin H, Morgan RK, David LL, Cohen MS. J Am Chem Soc 136 5201-5204 (2014)
  6. DTX3L and ARTD9 inhibit IRF1 expression and mediate in cooperation with ARTD8 survival and proliferation of metastatic prostate cancer cells. Bachmann SB, Frommel SC, Camicia R, Winkler HC, Santoro R, Hassa PO. Mol Cancer 13 125 (2014)
  7. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Riccio AA, Cingolani G, Pascal JM. Nucleic Acids Res 44 1691-1702 (2016)
  8. Structural basis for lack of ADP-ribosyltransferase activity in poly(ADP-ribose) polymerase-13/zinc finger antiviral protein. Karlberg T, Klepsch M, Thorsell AG, Andersson CD, Linusson A, Schüler H. J Biol Chem 290 7336-7344 (2015)
  9. Novel binding mode of a potent and selective tankyrase inhibitor. Gunaydin H, Gu Y, Huang X. PLoS One 7 e33740 (2012)
  10. 7-Azaindole-1-carboxamides as a new class of PARP-1 inhibitors. Cincinelli R, Musso L, Merlini L, Giannini G, Vesci L, Milazzo FM, Carenini N, Perego P, Penco S, Artali R, Zunino F, Pisano C, Dallavalle S. Bioorg Med Chem 22 1089-1103 (2014)
  11. microRNA-383 suppresses the PI3K-AKT-MTOR signaling pathway to inhibit development of cervical cancer via down-regulating PARP2. Teng P, Jiao Y, Hao M, Tang X. J Cell Biochem 119 5243-5252 (2018)
  12. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. Obaji E, Maksimainen MM, Galera-Prat A, Lehtiö L. Nat Commun 12 3479 (2021)
  13. Crystal structure of human ADP-ribose transferase ARTD15/PARP16 reveals a novel putative regulatory domain. Karlberg T, Thorsell AG, Kallas Å, Schüler H. J Biol Chem 287 24077-24081 (2012)
  14. Inhibition of poly(ADP-ribose) polymerase interferes with Trypanosoma cruzi infection and proliferation of the parasite. Vilchez Larrea SC, Haikarainen T, Narwal M, Schlesinger M, Venkannagari H, Flawiá MM, Villamil SH, Lehtiö L. PLoS One 7 e46063 (2012)
  15. Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity. Tanaka T, Yamamoto D, Sato T, Tanaka S, Usui K, Manabe M, Aoki Y, Iwashima Y, Saito Y, Mino Y, Deguchi H. J Nutr Sci Vitaminol (Tokyo) 57 192-196 (2011)
  16. Sirtuins are Unaffected by PARP Inhibitors Containing Planar Nicotinamide Bioisosteres. Ekblad T, Schüler H. Chem Biol Drug Des 87 478-482 (2016)
  17. Nanoparticle-mediated measurement of target-drug binding in cancer cells. Ullal AV, Reiner T, Yang KS, Gorbatov R, Min C, Issadore D, Lee H, Weissleder R. ACS Nano 5 9216-9224 (2011)
  18. Discovery of potent and selective nonplanar tankyrase inhibiting nicotinamide mimics. Nkizinkiko Y, Suneel Kumar BVS, Jeankumar VU, Haikarainen T, Koivunen J, Madhuri C, Yogeeswari P, Venkannagari H, Obaji E, Pihlajaniemi T, Sriram D, Lehtiö L. Bioorg Med Chem 23 4139-4149 (2015)
  19. Synthesis and Evaluation of a Mitochondria-Targeting Poly(ADP-ribose) Polymerase-1 Inhibitor. Krainz T, Lamade AM, Du L, Maskrey TS, Calderon MJ, Watkins SC, Epperly MW, Greenberger JS, Bayır H, Wipf P, Clark RSB. ACS Chem Biol 13 2868-2879 (2018)
  20. Design, Synthesis and Molecular Modeling Study of Conjugates of ADP and Morpholino Nucleosides as A Novel Class of Inhibitors of PARP-1, PARP-2 and PARP-3. Sherstyuk YV, Ivanisenko NV, Zakharenko AL, Sukhanova MV, Peshkov RY, Eltsov IV, Kutuzov MM, Kurgina TA, Belousova EA, Ivanisenko VA, Lavrik OI, Silnikov VN, Abramova TV. Int J Mol Sci 21 E214 (2019)
  21. Discovery of 2-substituted 1H-benzo[d]immidazole-4-carboxamide derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors with in vivo anti-tumor activity. Zhou J, Ji M, Zhu Z, Cao R, Chen X, Xu B. Eur J Med Chem 132 26-41 (2017)
  22. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy. Marchand JR, Carotti A, Passeri D, Filipponi P, Liscio P, Camaioni E, Pellicciari R, Gioiello A, Macchiarulo A. Biochim Biophys Acta 1844 1765-1772 (2014)
  23. Molecular insights on TNKS1/TNKS2 and inhibitor-IWR1 interactions. Kirubakaran P, Kothandan G, Cho SJ, Muthusamy K. Mol Biosyst 10 281-293 (2014)
  24. Inhibition of Poly(ADP-Ribose) Polymerase by Nucleic Acid Metabolite 7-Methylguanine. Nilov DK, Tararov VI, Kulikov AV, Zakharenko AL, Gushchina IV, Mikhailov SN, Lavrik OI, Švedas VK. Acta Naturae 8 108-115 (2016)
  25. Discovery of an NAD+ analogue with enhanced specificity for PARP1. Zhang XN, Lam AT, Cheng Q, Courouble VV, Strutzenberg TS, Li J, Wang Y, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. Chem Sci 13 1982-1991 (2022)
  26. Synthesis of 4-alkyl-, 4-aryl- and 4-arylamino-5-aminoisoquinolin-1-ones and identification of a new PARP-2 selective inhibitor. Sunderland PT, Dhami A, Mahon MF, Jones LA, Tully SR, Lloyd MD, Thompson AS, Javaid H, Martin NM, Threadgill MD. Org Biomol Chem 9 881-891 (2011)
  27. Crystal structures of pertussis toxin with NAD+ and analogs provide structural insights into the mechanism of its cytosolic ADP-ribosylation activity. Sakari M, Tran MT, Rossjohn J, Pulliainen AT, Beddoe T, Littler DR. J Biol Chem 298 101892 (2022)
  28. Structural basis of tankyrase activation by polymerization. Pillay N, Mariotti L, Zaleska M, Inian O, Jessop M, Hibbs S, Desfosses A, Hopkins PCR, Templeton CM, Beuron F, Morris EP, Guettler S. Nature 612 162-169 (2022)