3kar Citations

X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3 A resolution.

Biochemistry 37 1769-76 (1998)
Cited: 68 times
EuropePMC logo PMID: 9485302

Abstract

The kinesin family of motor proteins, which contain a conserved motor domain of approximately 350 amino acids, generate movement against microtubules. Over 90 members of this family have been identified, including motors that move toward the minus or plus end of microtubules. The Kar3 protein from Saccharomyces cerevisiae is a minus end-directed kinesin family member that is involved in both nuclear fusion, or karyogamy, and mitosis. The Kar3 protein is 729 residues in length with the motor domain located in the C-terminal 347 residues. Recently, the three-dimensional structures of two kinesin family members have been reported. These structures include the motor domains of the plus end-directed kinesin heavy chain [Kull, F. J., et al. (1996) Nature 380, 550-555] and the minus end-directed Ncd [Sablin, E. P., et al. (1996) Nature 380, 555-559]. We now report the structure of the Kar3 protein complexed with Mg.ADP obtained from crystallographic data to 2.3 A. The structure is similar to those of the earlier kinesin family members, but shows differences as well, most notably in the length of helix alpha 4, a helix which is believed to be involved in conformational changes during the hydrolysis cycle.

Articles - 3kar mentioned but not cited (13)

  1. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  2. LiveBench-1: continuous benchmarking of protein structure prediction servers. Bujnicki JM, Elofsson A, Fischer D, Rychlewski L. Protein Sci 10 352-361 (2001)
  3. Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin. Zheng W, Brooks BR. Biophys J 89 167-178 (2005)
  4. Vik1 modulates microtubule-Kar3 interactions through a motor domain that lacks an active site. Allingham JS, Sproul LR, Rayment I, Gilbert SP. Cell 128 1161-1172 (2007)
  5. Kar3 interaction with Cik1 alters motor structure and function. Chu HM, Yun M, Anderson DE, Sage H, Park HW, Endow SA. EMBO J. 24 3214-3223 (2005)
  6. Protein evolution along phylogenetic histories under structurally constrained substitution models. Arenas M, Dos Santos HG, Posada D, Bastolla U. Bioinformatics 29 3020-3028 (2013)
  7. B-cyclin/CDKs regulate mitotic spindle assembly by phosphorylating kinesins-5 in budding yeast. Chee MK, Haase SB. PLoS Genet. 6 e1000935 (2010)
  8. Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern. Rank KC, Chen CJ, Cope J, Porche K, Hoenger A, Gilbert SP, Rayment I. J. Cell Biol. 197 957-970 (2012)
  9. Mapping the structural and dynamical features of kinesin motor domains. Scarabelli G, Grant BJ. PLoS Comput. Biol. 9 e1003329 (2013)
  10. Maximum-Likelihood Phylogenetic Inference with Selection on Protein Folding Stability. Arenas M, Sánchez-Cobos A, Bastolla U. Mol. Biol. Evol. 32 2195-2207 (2015)
  11. Neck rotation and neck mimic docking in the noncatalytic Kar3-associated protein Vik1. Duan D, Jia Z, Joshi M, Brunton J, Chan M, Drew D, Davis D, Allingham JS. J. Biol. Chem. 287 40292-40301 (2012)
  12. Kinesin Motor Enzymology: Chemistry, Structure, and Physics of Nanoscale Molecular Machines. Cochran JC. Biophys Rev 7 269-299 (2015)
  13. Common mechanistic themes for the powerstroke of kinesin-14 motors. Gonzalez MA, Cope J, Rank KC, Chen CJ, Tittmann P, Rayment I, Gilbert SP, Hoenger A. J. Struct. Biol. 184 335-344 (2013)


Reviews citing this publication (16)

  1. Mitotic motors in Saccharomyces cerevisiae. Hildebrandt ER, Hoyt MA. Biochim. Biophys. Acta 1496 99-116 (2000)
  2. Motor proteins of the kinesin family. Structures, variations, and nucleotide binding sites. Sack S, Kull FJ, Mandelkow E. Eur. J. Biochem. 262 1-11 (1999)
  3. Determinants of molecular motor directionality. Endow SA. Nat. Cell Biol. 1 E163-7 (1999)
  4. Structures of kinesin and kinesin-microtubule interactions. Mandelkow E, Hoenger A. Curr. Opin. Cell Biol. 11 34-44 (1999)
  5. Kinesin: what gives? Block SM. Cell 93 5-8 (1998)
  6. The structural and mechanochemical cycle of kinesin. Mandelkow E, Johnson KA. Trends Biochem. Sci. 23 429-433 (1998)
  7. Why have chloroplasts developed a unique motility system? Suetsugu N, Dolja VV, Wada M. Plant Signal Behav 5 1190-1196 (2010)
  8. Kinesins and microtubules: their structures and motor mechanisms. Sablin EP. Curr. Opin. Cell Biol. 12 35-41 (2000)
  9. Unconventional motoring: an overview of the Kin C and Kin I kinesins. Ovechkina Y, Wordeman L. Traffic 4 367-375 (2003)
  10. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal conventional kinesins. Kirchner J, Woehlke G, Schliwa M. Biol. Chem. 380 915-921 (1999)
  11. The conformational cycle of kinesin. Cross RA, Crevel I, Carter NJ, Alonso MC, Hirose K, Amos LA. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355 459-464 (2000)
  12. Searching for kinesin's mechanical amplifier. Vale RD, Case R, Sablin E, Hart C, Fletterick R. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355 449-457 (2000)
  13. Action at the ends of microtubules. Saunders WS. Curr. Opin. Cell Biol. 11 129-133 (1999)
  14. Directional motility of kinesin motor proteins. Woehlke G, Schliwa M. Biochim. Biophys. Acta 1496 117-127 (2000)
  15. A look into kinesin's powerhouse. Woehlke G. FEBS Lett. 508 291-294 (2001)
  16. These motors were made for walking. Hunter B, Allingham JS. Protein Sci 29 1707-1723 (2020)

Articles citing this publication (39)

  1. A new method to detect related function among proteins independent of sequence and fold homology. Schmitt S, Kuhn D, Klebe G. J. Mol. Biol. 323 387-406 (2002)
  2. Switch-based mechanism of kinesin motors. Kikkawa M, Sablin EP, Okada Y, Yajima H, Fletterick RJ, Hirokawa N. Nature 411 439-445 (2001)
  3. Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Suetsugu N, Yamada N, Kagawa T, Yonekura H, Uyeda TQ, Kadota A, Wada M. Proc. Natl. Acad. Sci. U.S.A. 107 8860-8865 (2010)
  4. The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Braun M, Drummond DR, Cross RA, McAinsh AD. Nat. Cell Biol. 11 724-730 (2009)
  5. Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. Manning BD, Barrett JG, Wallace JA, Granok H, Snyder M. J. Cell Biol. 144 1219-1233 (1999)
  6. A structural pathway for activation of the kinesin motor ATPase. Yun M, Zhang X, Park CG, Park HW, Endow SA. EMBO J. 20 2611-2618 (2001)
  7. Large conformational changes in a kinesin motor catalyzed by interaction with microtubules. Hirose K, Akimaru E, Akiba T, Endow SA, Amos LA. Mol. Cell 23 913-923 (2006)
  8. Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules. Song YH, Marx A, Müller J, Woehlke G, Schliwa M, Krebs A, Hoenger A, Mandelkow E. EMBO J. 20 6213-6225 (2001)
  9. Mechanistic analysis of the mitotic kinesin Eg5. Cochran JC, Sontag CA, Maliga Z, Kapoor TM, Correia JJ, Gilbert SP. J. Biol. Chem. 279 38861-38870 (2004)
  10. Decoupling of nucleotide- and microtubule-binding sites in a kinesin mutant. Song H, Endow SA. Nature 396 587-590 (1998)
  11. Allele-specific activators and inhibitors for kinesin. Kapoor TM, Mitchison TJ. Proc. Natl. Acad. Sci. U.S.A. 96 9106-9111 (1999)
  12. The crystal structure of the minus-end-directed microtubule motor protein ncd reveals variable dimer conformations. Kozielski F, De Bonis S, Burmeister WP, Cohen-Addad C, Wade RH. Structure 7 1407-1416 (1999)
  13. Molecular dynamics study of the energetic, mechanistic, and structural implications of a closed phosphate tube in ncd. Minehardt TJ, Cooke R, Pate E, Kollman PA. Biophys. J. 80 1151-1168 (2001)
  14. A classical and ab initio study of the interaction of the myosin triphosphate binding domain with ATP. Minehardt TJ, Marzari N, Cooke R, Pate E, Kollman PA, Car R. Biophys. J. 82 660-675 (2002)
  15. EPR spectroscopy shows a microtubule-dependent conformational change in the kinesin switch 1 domain. Naber N, Rice S, Matuska M, Vale RD, Cooke R, Pate E. Biophys. J. 84 3190-3196 (2003)
  16. KIF14 binds tightly to microtubules and adopts a rigor-like conformation. Arora K, Talje L, Asenjo AB, Andersen P, Atchia K, Joshi M, Sosa H, Allingham JS, Kwok BH. J. Mol. Biol. 426 2997-3015 (2014)
  17. The ATPase cross-bridge cycle of the Kar3 motor domain. Implications for single head motility. Mackey AT, Gilbert SP. J. Biol. Chem. 278 3527-3535 (2003)
  18. Kinesin Kar3Cik1 ATPase pathway for microtubule cross-linking. Chen CJ, Rayment I, Gilbert SP. J. Biol. Chem. 286 29261-29272 (2011)
  19. Structural dynamics of the microtubule binding and regulatory elements in the kinesin-like calmodulin binding protein. Vinogradova MV, Malanina GG, Reddy VS, Reddy AS, Fletterick RJ. J. Struct. Biol. 163 76-83 (2008)
  20. The structure of the nucleotide-binding site of kinesin. Müller J, Marx A, Sack S, Song YH, Mandelkow E. Biol. Chem. 380 981-992 (1999)
  21. A kinesin mutation that uncouples motor domains and desensitizes the gamma-phosphate sensor. Brendza KM, Sontag CA, Saxton WM, Gilbert SP. J. Biol. Chem. 275 22187-22195 (2000)
  22. Mechanistic analysis of the Saccharomyces cerevisiae kinesin Kar3. Mackey AT, Sproul LR, Sontag CA, Satterwhite LL, Correia JJ, Gilbert SP. J. Biol. Chem. 279 51354-51361 (2004)
  23. Microtubule-kinesin interface mutants reveal a site critical for communication. Klumpp LM, Brendza KM, Gatial JE, Hoenger A, Saxton WM, Gilbert SP. Biochemistry 43 2792-2803 (2004)
  24. Crystal structure of the Kar3-like kinesin motor domain from the filamentous fungus Ashbya gossypii. Duan D, Hnatchuk DJ, Brenner J, Davis D, Allingham JS. Proteins 80 1016-1027 (2012)
  25. A coordinated molecular 'fishing' mechanism in heterodimeric kinesin. Hou R, Wang Z. Phys Biol 7 036003 (2010)
  26. Cos2/Kif7 and Osm-3/Kif17 regulate onset of outer segment development in zebrafish photoreceptors through distinct mechanisms. Lewis TR, Kundinger SR, Pavlovich AL, Bostrom JR, Link BA, Besharse JC. Dev. Biol. 425 176-190 (2017)
  27. Distinct kinesin motors drive two types of maize neocentromeres. Swentowsky KW, Gent JI, Lowry EG, Schubert V, Ran X, Tseng KF, Harkess AE, Qiu W, Dawe RK. Genes Dev 34 1239-1251 (2020)
  28. Kar3Vik1 uses a minus-end directed powerstroke for movement along microtubules. Cope J, Rank KC, Gilbert SP, Rayment I, Hoenger A. PLoS ONE 8 e53792 (2013)
  29. Multiple conformations of the nucleotide site of Kinesin family motors in the triphosphate state. Naber N, Larson A, Rice S, Cooke R, Pate E. J. Mol. Biol. 408 628-642 (2011)
  30. Regulation of ncd by the oligomeric state of tubulin. Smyczynski C, Derancourt J, Chaussepied P. J. Mol. Biol. 295 325-336 (2000)
  31. Are coiled-coils of dimeric kinesins unwound during their walking on microtubule? Duan ZW, Xie P, Li W, Wang PY. PLoS ONE 7 e36071 (2012)
  32. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein. Delorme C, Joshi M, Allingham JS. Biochem. Biophys. Res. Commun. 428 427-432 (2012)
  33. NCD activation of tubulin polymerization. Highsmith S, Thoene M, Sablin E, Polosukhina K. Biophys. Chem. 92 127-139 (2001)
  34. Sequence landmark patterns identify and characterize protein families. Wade RH. Structure 10 1329-1336 (2002)
  35. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: tracks, motors, and polymerization machines. Bearer EL, Satpute-Krishnan P. Curr Drug Targets Infect Disord 2 247-264 (2002)
  36. Visualizing a new binding site of ncd-motor domain on tubulin. Han Y, Sablin EP, Nogales E, Fletterick RJ, Downing KH. J. Struct. Biol. 128 26-33 (1999)
  37. Removal of tightly bound ADP induces distinct structural changes of the two tryptophan-containing regions of the ncd motor domain. Morii H, Shimizu T, Mizuno N, Edamatsu M, Ogawa K, Shimizu Y, Toyoshima YY. J. Biochem. 138 95-104 (2005)
  38. Anchoring geometry is a significant factor in determining the direction of kinesin-14 motility on microtubules. Yamagishi M, Sumiyoshi R, Drummond DR, Yajima J. Sci Rep 12 15417 (2022)
  39. Crystallization and preliminary X-ray diffraction studies of the GhKCH2 motor domain: alteration of pH significantly improved the quality of the crystals. Qin X, Chen Z, Xu T, Li P, Liu G. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 798-801 (2012)