3k8s Citations

T2384, a novel antidiabetic agent with unique peroxisome proliferator-activated receptor gamma binding properties.

Abstract

The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma) plays central roles in adipogenesis and glucose homeostasis and is the molecular target for the thiazolidinedione (TZD) class of antidiabetic drugs. Activation of PPARgamma by TZDs improves insulin sensitivity; however, this is accompanied by the induction of several undesirable side effects. We have identified a novel synthetic PPARgamma ligand, T2384, to explore the biological activities associated with occupying different regions of the receptor ligand-binding pocket. X-ray crystallography studies revealed that T2384 can adopt two distinct binding modes, which we have termed "U" and "S", interacting with the ligand-binding pocket of PPARgamma primarily via hydrophobic contacts that are distinct from full agonists. The different binding modes occupied by T2384 induced distinct patterns of coregulatory protein interaction with PPARgamma in vitro and displayed unique receptor function in cell-based activity assays. We speculate that these unique biochemical and cellular activities may be responsible for the novel in vivo profile observed in animals treated systemically with T2384. When administered to diabetic KKAy mice, T2384 rapidly improved insulin sensitivity in the absence of weight gain, hemodilution, and anemia characteristics of treatment with rosiglitazone (a TZD). Moreover, upon coadministration with rosiglitazone, T2384 was able to antagonize the side effects induced by rosiglitazone treatment alone while retaining robust effects on glucose disposal. These results are consistent with the hypothesis that interactions between ligands and specific regions of the receptor ligand-binding pocket might selectively trigger a subset of receptor-mediated biological responses leading to the improvement of insulin sensitivity, without eliciting less desirable responses associated with full activation of the receptor. We suggest that T2384 may represent a prototype for a novel class of PPARgamma ligand and, furthermore, that molecules sharing some of these properties would be useful for treatment of type 2 diabetes.

Reviews - 3k8s mentioned but not cited (1)

  1. Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. Kroker AJ, Bruning JB. PPAR Res 2015 816856 (2015)

Articles - 3k8s mentioned but not cited (9)

  1. An alternate binding site for PPARγ ligands. Hughes TS, Giri PK, de Vera IM, Marciano DP, Kuruvilla DS, Shin Y, Blayo AL, Kamenecka TM, Burris TP, Griffin PR, Kojetin DJ. Nat Commun 5 3571 (2014)
  2. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  3. Betulinic acid is a PPARγ antagonist that improves glucose uptake, promotes osteogenesis and inhibits adipogenesis. Brusotti G, Montanari R, Capelli D, Cattaneo G, Laghezza A, Tortorella P, Loiodice F, Peiretti F, Bonardo B, Paiardini A, Calleri E, Pochetti G. Sci Rep 7 5777 (2017)
  4. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Elife 7 e43320 (2018)
  5. In Silico Identification of Potent PPAR-γ Agonists from Traditional Chinese Medicine: A Bioactivity Prediction, Virtual Screening, and Molecular Dynamics Study. Chen KC, Chen CY. Evid Based Complement Alternat Med 2014 192452 (2014)
  6. Probing the Complex Binding Modes of the PPARγ Partial Agonist 2-Chloro-N-(3-chloro-4-((5-chlorobenzo[d]thiazol-2-yl)thio)phenyl)-4-(trifluoromethyl)benzenesulfonamide (T2384) to Orthosteric and Allosteric Sites with NMR Spectroscopy. Hughes TS, Shang J, Brust R, de Vera IMS, Fuhrmann J, Ruiz C, Cameron MD, Kamenecka TM, Kojetin DJ. J Med Chem 59 10335-10341 (2016)
  7. A novel chemo-phenotypic method identifies mixtures of salpn, vitamin D3, and pesticides involved in the development of colorectal and pancreatic cancer. Issa NT, Wathieu H, Glasgow E, Peran I, Parasido E, Li T, Simbulan-Rosenthal CM, Rosenthal D, Medvedev AV, Makarov SS, Albanese C, Byers SW, Dakshanamurthy S. Ecotoxicol Environ Saf 233 113330 (2022)
  8. Exploring Anti-Nonalcoholic Fatty Liver Disease Mechanism of Gardeniae Fructus by Network Pharmacology, Molecular Docking, and Experiment Validation. Tang Z, Li L, Xia Z. ACS Omega 7 25521-25531 (2022)
  9. Phloretin enhances remyelination by stimulating oligodendrocyte precursor cell differentiation. Dierckx T, Vanherle S, Haidar M, Grajchen E, Mingneau F, Gervois P, Wolfs E, Bylemans D, Voet A, Nguyen T, Hamad I, Kleinewietfeld M, Bogie JFJ, Hendriks JJA. Proc Natl Acad Sci U S A 119 e2120393119 (2022)


Reviews citing this publication (5)

  1. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Christofides A, Konstantinidou E, Jani C, Boussiotis VA. Metabolism 114 154338 (2021)
  2. PPARgamma and its ligands: therapeutic implications in cardiovascular disease. Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE. Clin Sci (Lond) 116 205-218 (2009)
  3. Discovery and development of selective PPAR gamma modulators as safe and effective antidiabetic agents. Doshi LS, Brahma MK, Bahirat UA, Dixit AV, Nemmani KV. Expert Opin Investig Drugs 19 489-512 (2010)
  4. A step ahead of PPARγ full agonists to PPARγ partial agonists: therapeutic perspectives in the management of diabetic insulin resistance. Chigurupati S, Dhanaraj SA, Balakumar P. Eur J Pharmacol 755 50-57 (2015)
  5. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. Kaupang Å, Hansen TV. PPAR Res 2020 9657380 (2020)

Articles citing this publication (25)

  1. Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions. Schopfer FJ, Cole MP, Groeger AL, Chen CS, Khoo NK, Woodcock SR, Golin-Bisello F, Motanya UN, Li Y, Zhang J, Garcia-Barrio MT, Rudolph TK, Rudolph V, Bonacci G, Baker PR, Xu HE, Batthyany CI, Chen YE, Hallis TM, Freeman BA. J Biol Chem 285 12321-12333 (2010)
  2. Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice. Delhanty PJ, Sun Y, Visser JA, van Kerkwijk A, Huisman M, van Ijcken WF, Swagemakers S, Smith RG, Themmen AP, van der Lely AJ. PLoS One 5 e11749 (2010)
  3. INT131: a selective modulator of PPAR gamma. Motani A, Wang Z, Weiszmann J, McGee LR, Lee G, Liu Q, Staunton J, Fang Z, Fuentes H, Lindstrom M, Liu J, Biermann DH, Jaen J, Walker NP, Learned RM, Chen JL, Li Y. J Mol Biol 386 1301-1311 (2009)
  4. Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S. Sci Rep 5 9530 (2015)
  5. Three-in-one agonists for PPAR-α, PPAR-γ, and PPAR-δ from traditional Chinese medicine. Chen KC, Chang SS, Huang HJ, Lin TL, Wu YJ, Chen CY. J Biomol Struct Dyn 30 662-683 (2012)
  6. Long-term treatment with sergliflozin etabonate improves disturbed glucose metabolism in KK-A(y) mice. Katsuno K, Fujimori Y, Ishikawa-Takemura Y, Isaji M. Eur J Pharmacol 618 98-104 (2009)
  7. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex. Ricci CG, Silveira RL, Rivalta I, Batista VS, Skaf MS. Sci Rep 6 19940 (2016)
  8. Selective PPARγ modulator INT131 normalizes insulin signaling defects and improves bone mass in diet-induced obese mice. Lee DH, Huang H, Choi K, Mantzoros C, Kim YB. Am J Physiol Endocrinol Metab 302 E552-60 (2012)
  9. Pharmacophore-driven identification of PPARγ agonists from natural sources. Petersen RK, Christensen KB, Assimopoulou AN, Fretté X, Papageorgiou VP, Kristiansen K, Kouskoumvekaki I. J Comput Aided Mol Des 25 107-116 (2011)
  10. Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Lee MA, Tan L, Yang H, Im YG, Im YJ. Sci Rep 7 16837 (2017)
  11. Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. Brust R, Lin H, Fuhrmann J, Asteian A, Kamenecka TM, Kojetin DJ. ACS Chem Biol 12 969-978 (2017)
  12. LT175 is a novel PPARα/γ ligand with potent insulin-sensitizing effects and reduced adipogenic properties. Gilardi F, Giudici M, Mitro N, Maschi O, Guerrini U, Rando G, Maggi A, Cermenati G, Laghezza A, Loiodice F, Pochetti G, Lavecchia A, Caruso D, De Fabiani E, Bamberg K, Crestani M. J Biol Chem 289 6908-6920 (2014)
  13. Methylsulfonylmethane (MSM), an organosulfur compound, is effective against obesity-induced metabolic disorders in mice. Sousa-Lima I, Park SY, Chung M, Jung HJ, Kang MC, Gaspar JM, Seo JA, Macedo MP, Park KS, Mantzoros C, Lee SH, Kim YB. Metabolism 65 1508-1521 (2016)
  14. Discovery of new nanomolar peroxisome proliferator-activated receptor γ activators via elaborate ligand-based modeling. Al-Najjar BO, Wahab HA, Tengku Muhammad TS, Shu-Chien AC, Ahmad Noruddin NA, Taha MO. Eur J Med Chem 46 2513-2529 (2011)
  15. Effects of Three Thiazolidinediones on Metabolic Regulation and Cold-Induced Thermogenesis. Sohn JH, Kim JI, Jeon YG, Park J, Kim JB. Mol Cells 41 900-908 (2018)
  16. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. J Struct Biol 191 332-340 (2015)
  17. Pharmacology and in vitro profiling of a novel peroxisome proliferator-activated receptor γ ligand, Cerco-A. Wakabayashi K, Hayashi S, Matsui Y, Matsumoto T, Furukawa A, Kuroha M, Tanaka N, Inaba T, Kanda S, Tanaka J, Okuyama R, Wakimoto S, Ogata T, Araki K, Ohsumi J. Biol Pharm Bull 34 1094-1104 (2011)
  18. Chiglitazar Preferentially Regulates Gene Expression via Configuration-Restricted Binding and Phosphorylation Inhibition of PPARγ. Pan DS, Wang W, Liu NS, Yang QJ, Zhang K, Zhu JZ, Shan S, Li ZB, Ning ZQ, Huang L, Lu XP. PPAR Res 2017 4313561 (2017)
  19. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. J Comput Aided Mol Des 29 421-439 (2015)
  20. Structural mechanism underlying ligand binding and activation of PPARγ. Shang J, Kojetin DJ. Structure 29 940-950.e4 (2021)
  21. Ethyl Gallate Dual-Targeting PTPN6 and PPARγ Shows Anti-Diabetic and Anti-Obese Effects. Ahn D, Kim J, Nam G, Zhao X, Kwon J, Hwang JY, Kim JK, Yoon SY, Chung SJ. Int J Mol Sci 23 5020 (2022)
  22. The conjugate addition-Peterson olefination reaction for the preparation of cross-conjugated cyclopentenone, PPAR-gamma ligands. Iqbal M, Duffy P, Evans P, Cloughley G, Allan B, Lledó A, Verdaguer X, Riera A. Org Biomol Chem 6 4649-4661 (2008)
  23. (-)-O-Methylcubebin from Vitex trifolia Enhanced Adipogenesis in 3T3-L1 Cells via the Inhibition of ERK1/2 and p38MAPK Phosphorylation. Ukiya M, Sato D, Kimura H, Koketsu M, Phay N, Nishina A. Molecules 25 E73 (2019)
  24. In search for potential antidiabetic compounds from natural sources: docking, synthesis and biological screening of small molecules from Lycium spp. (Goji). Yalamanchili C, Chittiboyina AG, Haider S, Vasquez Y, Khan S, do Carmo JM, da Silva AA, Pinkerton M, Hall JE, Walker LA, Khan IA. Heliyon 6 e02782 (2020)
  25. Combined In Silico and In Vitro Analyses to Assess the Anticancer Potential of Thiazolidinedione-Thiosemicarbazone Hybrid Molecules. Paneth A, Kaproń B, Plech T, Paduch R, Trotsko N, Paneth P. Int J Mol Sci 24 17521 (2023)