3jcr Citations

Molecular architecture of the human U4/U6.U5 tri-snRNP.

Science 351 1416-20 (2016)
Cited: 115 times
EuropePMC logo PMID: 26912367

Abstract

The U4/U6.U5 triple small nuclear ribonucleoprotein (tri-snRNP) is a major spliceosome building block. We obtained a three-dimensional structure of the 1.8-megadalton human tri-snRNP at a resolution of 7 angstroms using single-particle cryo-electron microscopy (cryo-EM). We fit all known high-resolution structures of tri-snRNP components into the EM density map and validated them by protein cross-linking. Our model reveals how the spatial organization of Brr2 RNA helicase prevents premature U4/U6 RNA unwinding in isolated human tri-snRNPs and how the ubiquitin C-terminal hydrolase-like protein Sad1 likely tethers the helicase Brr2 to its preactivation position. Comparison of our model with cryo-EM three-dimensional structures of the Saccharomyces cerevisiae tri-snRNP and Schizosaccharomyces pombe spliceosome indicates that Brr2 undergoes a marked conformational change during spliceosome activation, and that the scaffolding protein Prp8 is also rearranged to accommodate the spliceosome's catalytic RNA network.

Reviews - 3jcr mentioned but not cited (5)

  1. Host DDX Helicases as Possible SARS-CoV-2 Proviral Factors: A Structural Overview of Their Hijacking Through Multiple Viral Proteins. Squeglia F, Romano M, Ruggiero A, Maga G, Berisio R. Front Chem 8 602162 (2020)
  2. Functions and regulation of the Brr2 RNA helicase during splicing. Absmeier E, Santos KF, Wahl MC. Cell Cycle 15 3362-3377 (2016)
  3. Genetics and biochemistry remain essential in the structural era of the spliceosome. Mayerle M, Guthrie C. Methods 125 3-9 (2017)
  4. RNA and Proteins: Mutual Respect. Hall KB. F1000Res 6 345 (2017)
  5. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. RNA 29 531-550 (2023)

Articles - 3jcr mentioned but not cited (6)

  1. Structure of a pre-catalytic spliceosome. Plaschka C, Lin PC, Nagai K. Nature 546 617-621 (2017)
  2. DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras. Zhang X, Luukkonen LM, Eissler CL, Crowley VM, Yamashita Y, Schafroth MA, Kikuchi S, Weinstein DS, Symons KT, Nordin BE, Rodriguez JL, Wucherpfennig TG, Bauer LG, Dix MM, Stamos D, Kinsella TM, Simon GM, Baltgalvis KA, Cravatt BF. J Am Chem Soc 143 5141-5149 (2021)
  3. Separating distinct structures of multiple macromolecular assemblies from cryo-EM projections. Verbeke EJ, Zhou Y, Horton AP, Mallam AL, Taylor DW, Marcotte EM. J Struct Biol 209 107416 (2020)
  4. Prespliceosome structure provides insights into spliceosome assembly and regulation. Plaschka C, Lin PC, Charenton C, Nagai K. Nature 559 419-422 (2018)
  5. The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations. Jia J, Absmeier E, Holton N, Pietrzyk-Brzezinska AJ, Hackert P, Bohnsack KE, Bohnsack MT, Wahl MC. Nat Commun 11 5535 (2020)
  6. The inactive C-terminal cassette of the dual-cassette RNA helicase BRR2 both stimulates and inhibits the activity of the N-terminal helicase unit. Vester K, Santos KF, Kuropka B, Weise C, Wahl MC. J Biol Chem 295 2097-2112 (2020)


Reviews citing this publication (34)

  1. Unravelling biological macromolecules with cryo-electron microscopy. Fernandez-Leiro R, Scheres SH. Nature 537 339-346 (2016)
  2. Structural Insights into Nuclear pre-mRNA Splicing in Higher Eukaryotes. Kastner B, Will CL, Stark H, Lührmann R. Cold Spring Harb Perspect Biol 11 a032417 (2019)
  3. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Shi Y. Nat. Rev. Mol. Cell Biol. 18 655-670 (2017)
  4. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Fica SM, Nagai K. Nat. Struct. Mol. Biol. 24 791-799 (2017)
  5. The Spliceosome: A Protein-Directed Metalloribozyme. Shi Y. J. Mol. Biol. 429 2640-2653 (2017)
  6. Cryo-EM: beyond the microscope. Earl LA, Falconieri V, Milne JL, Subramaniam S. Curr. Opin. Struct. Biol. 46 71-78 (2017)
  7. Integration of mRNP formation and export. Björk P, Wieslander L. Cell. Mol. Life Sci. 74 2875-2897 (2017)
  8. Cryo-EM in drug discovery: achievements, limitations and prospects. Renaud JP, Chari A, Ciferri C, Liu WT, Rémigy HW, Stark H, Wiesmann C. Nat Rev Drug Discov 17 471-492 (2018)
  9. The nuts and bolts of the endogenous spliceosome. Sperling R. Wiley Interdiscip Rev RNA 8 (2017)
  10. What have single-molecule studies taught us about gene expression? Chen H, Larson DR. Genes Dev. 30 1796-1810 (2016)
  11. The life of U6 small nuclear RNA, from cradle to grave. Didychuk AL, Butcher SE, Brow DA. RNA 24 437-460 (2018)
  12. Co-transcriptional splicing and the CTD code. Custódio N, Carmo-Fonseca M. Crit. Rev. Biochem. Mol. Biol. 51 395-411 (2016)
  13. Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Plaschka C, Newman AJ, Nagai K. Cold Spring Harb Perspect Biol 11 (2019)
  14. Cajal bodies and snRNPs - friends with benefits. Staněk D. RNA Biol 14 671-679 (2017)
  15. Frontiers in Cryo Electron Microscopy of Complex Macromolecular Assemblies. Ognjenović J, Grisshammer R, Subramaniam S. Annu Rev Biomed Eng 21 395-415 (2019)
  16. While the revolution will not be crystallized, biochemistry reigns supreme. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD. Protein Sci. 26 69-81 (2017)
  17. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Yan C, Wan R, Shi Y. Cold Spring Harb Perspect Biol 11 (2019)
  18. Spliceosomal snRNA Epitranscriptomics. Morais P, Adachi H, Yu YT. Front Genet 12 652129 (2021)
  19. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling. Politis A, Schmidt C. J Proteomics 175 34-41 (2018)
  20. RNA methylation in nuclear pre-mRNA processing. Covelo-Molares H, Bartosovic M, Vanacova S. Wiley Interdiscip Rev RNA 9 e1489 (2018)
  21. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Wilkinson ME, Lin PC, Plaschka C, Nagai K. Annu Rev Biophys 47 175-199 (2018)
  22. Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy. Wheway G, Douglas A, Baralle D, Guillot E. Exp Eye Res 192 107950 (2020)
  23. Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Blijlevens M, Li J, van Beusechem VW. Int J Mol Sci 22 5110 (2021)
  24. Dysregulation and therapeutic targeting of RNA splicing in cancer. Stanley RF, Abdel-Wahab O. Nat Cancer 3 536-546 (2022)
  25. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Yu L, Majerciak V, Zheng ZM. Int J Mol Sci 23 4943 (2022)
  26. Methodologies for studying the spliceosome's RNA dynamics with single-molecule FRET. van der Feltz C, Hoskins AA. Methods 125 45-54 (2017)
  27. Structural proteomics, electron cryo-microscopy and structural modeling approaches in bacteria-human protein interactions. Chowdhury S, Happonen L, Khakzad H, Malmström L, Malmström J. Med Microbiol Immunol 209 265-275 (2020)
  28. Biological Applications at the Cutting Edge of Cryo-Electron Microscopy. Dillard RS, Hampton CM, Strauss JD, Ke Z, Altomara D, Guerrero-Ferreira RC, Kiss G, Wright ER. Microsc. Microanal. 24 406-419 (2018)
  29. Cooperative Analysis of Structural Dynamics in RNA-Protein Complexes by Single-Molecule Förster Resonance Energy Transfer Spectroscopy. Meiser N, Fuks C, Hengesbach M. Molecules 25 (2020)
  30. Identifying Novel Actionable Targets in Colon Cancer. Cerrito MG, Grassilli E. Biomedicines 9 579 (2021)
  31. Structural and Functional Insights into Human Nuclear Cyclophilins. Rajiv C, Davis TL. Biomolecules 8 (2018)
  32. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. Peck SA, Hughes KD, Victorino JF, Mosley AL. Wiley Interdiscip Rev RNA 10 e1529 (2019)
  33. Structural dynamics of the N-terminal domain and the Switch loop of Prp8 during spliceosome assembly and activation. Jia X, Sun C. Nucleic Acids Res. 46 3833-3840 (2018)
  34. The Role of the U5 snRNP in Genetic Disorders and Cancer. Wood KA, Eadsforth MA, Newman WG, O'Keefe RT. Front Genet 12 636620 (2021)

Articles citing this publication (70)

  1. Structure of a yeast activated spliceosome at 3.5 Å resolution. Yan C, Wan R, Bai R, Huang G, Shi Y. Science 353 904-911 (2016)
  2. Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution. Wan R, Yan C, Bai R, Huang G, Shi Y. Science 353 895-904 (2016)
  3. Molecular architecture of the Saccharomyces cerevisiae activated spliceosome. Rauhut R, Fabrizio P, Dybkov O, Hartmuth K, Pena V, Chari A, Kumar V, Lee CT, Urlaub H, Kastner B, Stark H, Lührmann R. Science 353 1399-1405 (2016)
  4. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Bertram K, Agafonov DE, Liu WT, Dybkov O, Will CL, Hartmuth K, Urlaub H, Kastner B, Stark H, Lührmann R. Nature 542 318-323 (2017)
  5. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE, Bohnsack MT, Bohnsack MT. EMBO Rep. 18 2004-2014 (2017)
  6. Cryo-EM Structure of a Pre-catalytic Human Spliceosome Primed for Activation. Bertram K, Agafonov DE, Dybkov O, Haselbach D, Leelaram MN, Will CL, Urlaub H, Kastner B, Lührmann R, Stark H. Cell 170 701-713.e11 (2017)
  7. Transcription Dynamics Prevent RNA-Mediated Genomic Instability through SRPK2-Dependent DDX23 Phosphorylation. Sridhara SC, Carvalho S, Grosso AR, Gallego-Paez LM, Carmo-Fonseca M, de Almeida SF. Cell Rep 18 334-343 (2017)
  8. Molecular architecture of the human 17S U2 snRNP. Zhang Z, Will CL, Bertram K, Dybkov O, Hartmuth K, Agafonov DE, Hofele R, Urlaub H, Kastner B, Lührmann R, Stark H. Nature 583 310-313 (2020)
  9. Structural insights into Gemin5-guided selection of pre-snRNAs for snRNP assembly. Xu C, Ishikawa H, Izumikawa K, Li L, He H, Nobe Y, Yamauchi Y, Shahjee HM, Wu XH, Yu YT, Isobe T, Takahashi N, Min J. Genes Dev. 30 2376-2390 (2016)
  10. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins. Huang R, Han M, Meng L, Chen X. Proc. Natl. Acad. Sci. U.S.A. 115 E3879-E3887 (2018)
  11. Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5. Jin W, Wang Y, Liu CP, Yang N, Jin M, Cong Y, Wang M, Xu RM. Genes Dev. 30 2391-2403 (2016)
  12. Defining the Caprin-1 Interactome in Unstressed and Stressed Conditions. Vu L, Ghosh A, Tran C, Tebung WA, Sidibé H, Garcia-Mansfield K, David-Dirgo V, Sharma R, Pirrotte P, Bowser R, Vande Velde C. J Proteome Res 20 3165-3178 (2021)
  13. Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase. Theuser M, Höbartner C, Wahl MC, Santos KF. Proc. Natl. Acad. Sci. U.S.A. 113 7798-7803 (2016)
  14. Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu. Ho CM, Li X, Lai M, Terwilliger TC, Beck JR, Wohlschlegel J, Goldberg DE, Fitzpatrick AWP, Zhou ZH. Nat Methods 17 79-85 (2020)
  15. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes. Montemayor EJ, Virta JM, Hayes SM, Nomura Y, Brow DA, Butcher SE. RNA 26 1400-1413 (2020)
  16. Spliceosome SNRNP200 Promotes Viral RNA Sensing and IRF3 Activation of Antiviral Response. Tremblay N, Baril M, Chatel-Chaix L, Es-Saad S, Park AY, Koenekoop RK, Lamarre D. PLoS Pathog. 12 e1005772 (2016)
  17. Identification of a small molecule inhibitor that stalls splicing at an early step of spliceosome activation. Sidarovich A, Will CL, Anokhina MM, Ceballos J, Sievers S, Agafonov DE, Samatov T, Bao P, Kastner B, Urlaub H, Waldmann H, Lührmann R. Elife 6 (2017)
  18. Mechanism of 5' splice site transfer for human spliceosome activation. Charenton C, Wilkinson ME, Nagai K. Science 364 362-367 (2019)
  19. Mutation in Eftud2 causes craniofacial defects in mice via mis-splicing of Mdm2 and increased P53. Beauchamp MC, Djedid A, Bareke E, Merkuri F, Aber R, Tam AS, Lines MA, Boycott KM, Stirling PC, Fish JL, Majewski J, Jerome-Majewska LA. Hum Mol Genet 30 739-757 (2021)
  20. STRUCTURE. A Big Bang in spliceosome structural biology. Cate JH. Science 351 1390-1392 (2016)
  21. Structures of the human pre-catalytic spliceosome and its precursor spliceosome. Zhan X, Yan C, Zhang X, Lei J, Shi Y. Cell Res. 28 1129-1140 (2018)
  22. Comparative Genomic Analysis of Rapidly Evolving SARS-CoV-2 Reveals Mosaic Pattern of Phylogeographical Distribution. Kumar R, Verma H, Singhvi N, Sood U, Gupta V, Singh M, Kumari R, Hira P, Nagar S, Talwar C, Nayyar N, Anand S, Rawat CD, Verma M, Negi RK, Singh Y, Lal R. mSystems 5 (2020)
  23. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes. Vindry C, Marnef A, Broomhead H, Twyffels L, Ozgur S, Stoecklin G, Llorian M, Smith CW, Mata J, Weil D, Standart N. Cell Rep 20 1187-1200 (2017)
  24. Identification of a 35S U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP) complex intermediate in spliceosome assembly. Chen Z, Gui B, Zhang Y, Xie G, Li W, Liu S, Xu B, Wu C, He L, Yang J, Yi X, Yang X, Sun L, Liang J, Shang Y. J. Biol. Chem. 292 18113-18128 (2017)
  25. Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2. Absmeier E, Becke C, Wollenhaupt J, Santos KF, Wahl MC. Cell Cycle 16 100-112 (2017)
  26. SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes. Yildirim A, Mozaffari-Jovin S, Wallisch AK, Schäfer J, Ludwig SEJ, Urlaub H, Lührmann R, Wolfrum U. Nucleic Acids Res 49 5845-5866 (2021)
  27. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression. Kim JS, He X, Liu J, Duan Z, Kim T, Gerard J, Kim B, Pillai MM, Lane WS, Noble WS, Budnik B, Waldman T. J Biol Chem 294 8760-8772 (2019)
  28. TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. Klimešová K, Vojáčková J, Radivojević N, Vandermoere F, Bertrand E, Verheggen C, Staněk D. Nat Commun 12 3646 (2021)
  29. Two novel mutations in PRPF3 causing autosomal dominant retinitis pigmentosa. Zhong Z, Yan M, Sun W, Wu Z, Han L, Zhou Z, Zheng F, Chen J. Sci Rep 6 37840 (2016)
  30. A new role for FBP21 as regulator of Brr2 helicase activity. Henning LM, Santos KF, Sticht J, Jehle S, Lee CT, Wittwer M, Urlaub H, Stelzl U, Wahl MC, Freund C. Nucleic Acids Res. 45 7922-7937 (2017)
  31. Basal-A Triple-Negative Breast Cancer Cells Selectively Rely on RNA Splicing for Survival. Chan S, Sridhar P, Kirchner R, Lock YJ, Herbert Z, Buonamici S, Smith P, Lieberman J, Petrocca F. Mol. Cancer Ther. 16 2849-2861 (2017)
  32. Bayesian Modeling of Biomolecular Assemblies with Cryo-EM Maps. Habeck M. Front Mol Biosci 4 15 (2017)
  33. Radical probing of spliceosome assembly. Grewal CS, Kent OA, MacMillan AM. Methods 125 16-24 (2017)
  34. Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity. Ledoux S, Guthrie C. J. Biol. Chem. 291 11954-11965 (2016)
  35. Structural analysis of the spliceosomal RNA helicase Prp28 from the thermophilic eukaryote Chaetomium thermophilum. Tauchert MJ, Ficner R. Acta Crystallogr F Struct Biol Commun 72 409-416 (2016)
  36. A protein map of the yeast activated spliceosome as obtained by electron microscopy. Sun C, Rigo N, Fabrizio P, Kastner B, Lührmann R. RNA 22 1427-1440 (2016)
  37. Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing. Zhang J, Xie J, Huang J, Liu X, Xu R, Tholen J, Galej WP, Tong L, Manley JL, Liu Z. Genes Dev 37 968-983 (2023)
  38. Evolution of Structural Biology through the Lens of Mass Spectrometry. Kaur U, Johnson DT, Chea EE, Deredge DJ, Espino JA, Jones LM. Anal. Chem. 91 142-155 (2019)
  39. Identification and classification of papain-like cysteine proteinases. Ozhelvaci F, Steczkiewicz K. J Biol Chem 299 104801 (2023)
  40. Phosphorylation by Prp4 kinase releases the self-inhibition of FgPrp31 in Fusarium graminearum. Gao X, Zhang J, Song C, Yuan K, Wang J, Jin Q, Xu JR. Curr. Genet. 64 1261-1274 (2018)
  41. SNRP-27, the C. elegans homolog of the tri-snRNP 27K protein, has a role in 5' splice site positioning in the spliceosome. Zahler AM, Rogel LE, Glover ML, Yitiz S, Ragle JM, Katzman S. RNA 24 1314-1325 (2018)
  42. Systematic Discovery of Endogenous Human Ribonucleoprotein Complexes. Mallam AL, Sae-Lee W, Schaub JM, Tu F, Battenhouse A, Jang YJ, Kim J, Wallingford JB, Finkelstein IJ, Marcotte EM, Drew K. Cell Rep 29 1351-1368.e5 (2019)
  43. The spliceosomal proteins PPIH and PRPF4 exhibit bi-partite binding. Rajiv C, Jackson SR, Cocklin S, Eisenmesser EZ, Davis TL. Biochem. J. 474 3689-3704 (2017)
  44. A dual role of RBM42 in modulating splicing and translation of CDKN1A/p21 during DNA damage response. Ben-Oz BM, Machour FE, Nicola M, Argoetti A, Polyak G, Hanna R, Kleifeld O, Mandel-Gutfreund Y, Ayoub N. Nat Commun 14 7628 (2023)
  45. A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5' splice site identity. Suzuki JMNGL, Osterhoudt K, Cartwright-Acar CH, Gomez DR, Katzman S, Zahler AM. PLoS Genet 18 e1010028 (2022)
  46. An Allosteric Network for Spliceosome Activation Revealed by High-Throughput Suppressor Analysis in Saccharomyces cerevisiae. Brow DA. Genetics 212 111-124 (2019)
  47. Biallelic variants in RBM42 cause a multisystem disorder with neurological, facial, cardiac, and musculoskeletal involvement. Chen Y, Yang B, Zhang XM, Chen S, Wang M, Hu L, Pan N, Li S, Shi W, Yang Z, Wang L, Tan Y, Wang J, Wang Y, Xing Q, Ma Z, Li J, Huang HF, Zhang J, Xu C. Protein Cell 15 52-68 (2024)
  48. Combined bulk RNA and single-cell RNA analyses reveal TXNL4A as a new biomarker for hepatocellular carcinoma. Li Y, Zhu Q, Zhou S, Chen J, Du A, Qin C. Front Oncol 13 1202732 (2023)
  49. Disease modeling of core pre-mRNA splicing factor haploinsufficiency. Wood KA, Rowlands CF, Qureshi WMS, Thomas HB, Buczek WA, Briggs TA, Hubbard SJ, Hentges KE, Newman WG, O'Keefe RT. Hum. Mol. Genet. 28 3704-3723 (2019)
  50. Genome-Wide Identification and Characterization of UTR-Introns of Citrus sinensis. Shi X, Wu J, Mensah RA, Tian N, Liu J, Liu F, Chen J, Che J, Guo Y, Wu B, Zhong G, Cheng C. Int J Mol Sci 21 (2020)
  51. High Expression of Ubiquitin-Specific Protease 39 and Its Roles in Prognosis in Patients with Hepatocellular Carcinoma. Liao Y, Li L, Liu H, Song Y. Evid Based Complement Alternat Med 2021 6233175 (2021)
  52. Human spliceosomal snRNA sequence variants generate variant spliceosomes. Mabin JW, Lewis PW, Brow DA, Dvinge H. RNA 27 1186-1203 (2021)
  53. IARA: a complete and curated atlas of the biogenesis of spliceosome machinery during RNA splicing. Rodrigues KS, Petroski LP, Utumi PH, Ferrasa A, Herai RH. Life Sci Alliance 6 e202201593 (2023)
  54. Intrinsically Disordered Protein Ntr2 Modulates the Spliceosomal RNA Helicase Brr2. Wollenhaupt J, Henning LM, Sticht J, Becke C, Freund C, Santos KF, Wahl MC. Biophys. J. 114 788-799 (2018)
  55. Small molecule-RNA targeting: starting with the fundamentals. Hargrove AE. Chem Commun (Camb) 56 14744-14756 (2020)
  56. Spliceosome component Usp39 contributes to hepatic lipid homeostasis through the regulation of autophagy. Cui D, Wang Z, Dang Q, Wang J, Qin J, Song J, Zhai X, Zhou Y, Zhao L, Lu G, Liu H, Liu G, Liu R, Shao C, Zhang X, Liu Z. Nat Commun 14 7032 (2023)
  57. Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8. Preussner M, Santos KF, Alles J, Heroven C, Heyd F, Wahl MC, Weber G. Acta Crystallogr D Struct Biol 78 1373-1383 (2022)
  58. Structural biology: Catalytic spliceosome captured. Kosmyna B, Query CC. Nature 537 175-176 (2016)
  59. Systematic evaluation of AML-associated antigens identifies anti-U5 SNRNP200 therapeutic antibodies for the treatment of acute myeloid leukemia. Knorr K, Rahman J, Erickson C, Wang E, Monetti M, Li Z, Ortiz-Pacheco J, Jones A, Lu SX, Stanley RF, Baez M, Fox N, Castro C, Marino AE, Jiang C, Penson A, Hogg SJ, Mi X, Nakajima H, Kunimoto H, Nishimura K, Inoue D, Greenbaum B, Knorr D, Ravetch J, Abdel-Wahab O. Nat Cancer (2023)
  60. TXNL4B regulates radioresistance by controlling the PRP3-mediated alternative splicing of FANCI. Ju Z, Xiang J, Xiao L, He Y, Zhang L, Wang Y, Lei R, Nie Y, Yang L, Miszczyk J, Zhou P, Huang R. MedComm (2020) 4 e258 (2023)
  61. The Deubiquitinase USP39 Promotes Esophageal Squamous Cell Carcinoma Malignancy as a Splicing Factor. Zhu X, Ma J, Lu M, Liu Z, Sun Y, Chen H. Genes (Basel) 13 819 (2022)
  62. The RNA binding protein FgRbp1 regulates specific pre-mRNA splicing via interacting with U2AF23 in Fusarium. Wang M, Ma T, Wang H, Liu J, Chen Y, Shim WB, Ma Z. Nat Commun 12 2661 (2021)
  63. The SMN complex drives structural changes in human snRNAs to enable snRNP assembly. Pánek J, Roithová A, Radivojević N, Sýkora M, Prusty AB, Huston N, Wan H, Pyle AM, Fischer U, Staněk D. Nat Commun 14 6580 (2023)
  64. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Roithová A, Klimešová K, Pánek J, Will CL, Lührmann R, Stanek D, Girard C. Nucleic Acids Res. 46 3774-3790 (2018)
  65. The intrinsically disordered TSSC4 protein acts as a helicase inhibitor, placeholder and multi-interaction coordinator during snRNP assembly and recycling. Bergfort A, Hilal T, Kuropka B, Ilik İA, Weber G, Aktaş T, Freund C, Wahl MC. Nucleic Acids Res 50 2938-2958 (2022)
  66. The mechanism of LSM2 in the progression of live hepatocellular carcinoma was analyzed based on bioinformatics. Qin P, Huang H, Wang J, Jiang T, Zeng N, Wang Q, He Y, Zhou Y. Med Oncol 40 276 (2023)
  67. The tri-snRNP specific protein FgSnu66 is functionally related to FgPrp4 kinase in Fusarium graminearum. Sun M, Zhang Y, Wang Q, Wu C, Jiang C, Xu JR. Mol. Microbiol. 109 494-508 (2018)
  68. Topology of the U12-U6atac snRNA Complex of the Minor Spliceosome and Binding by NTC-Related Protein RBM22. Ciavarella J, Perea W, Greenbaum NL. ACS Omega 5 23549-23558 (2020)
  69. Transcriptome-Wide Identification of Coding and Noncoding RNA-Binding Proteins Defines the Comprehensive RNA Interactome of Leishmania mexicana. Kalesh K, Wei W, Mantilla BS, Roumeliotis TI, Choudhary J, Denny PW. Microbiol Spectr 10 e0242221 (2022)
  70. ZNF76 predicts prognosis and response to platinum chemotherapy in human ovarian cancer. Hua T, Wang RM, Zhang XC, Zhao BB, Fan SB, Liu DX, Wang W. Biosci Rep 41 BSR20212026 (2021)