3jce Citations

EF4 disengages the peptidyl-tRNA CCA end and facilitates back-translocation on the 70S ribosome.

Nat Struct Mol Biol 23 125-31 (2016)
Cited: 18 times
EuropePMC logo PMID: 26809121

Abstract

EF4 catalyzes tRNA back-translocation through an unknown mechanism. We report cryo-EM structures of Escherichia coli EF4 in post- and pretranslocational ribosomes (Post- and Pre-EF4) at 3.7- and 3.2-Å resolution, respectively. In Post-EF4, peptidyl-tRNA occupies the peptidyl (P) site, but the interaction between its CCA end and the P loop is disrupted. In Pre-EF4, the peptidyl-tRNA assumes a unique position near the aminoacyl (A) site, denoted the A site/EF4 bound (A/4) site, with a large displacement at its acceptor arm. Mutagenesis analyses suggest that a specific region in the EF4 C-terminal domain (CTD) interferes with base-pairing between the peptidyl-tRNA 3'-CCA and the P loop, whereas the EF4 CTD enhances peptidyl-tRNA interaction at the A/4 site. Therefore, EF4 induces back-translocation by disengaging the tRNA's CCA end from the peptidyl transferase center of the translating ribosome.

Reviews - 3jce mentioned but not cited (1)

  1. Taking a Step Back from Back-Translocation: an Integrative View of LepA/EF4's Cellular Function. Heller JLE, Kamalampeta R, Wieden HJ. Mol Cell Biol 37 e00653-16 (2017)

Articles - 3jce mentioned but not cited (1)



Reviews citing this publication (5)

Articles citing this publication (11)

  1. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Gao Y, Bai X, Zhang D, Han C, Yuan J, Liu W, Cao X, Chen Z, Shangguan F, Zhu Z, Gao F, Qin Y. Nat Struct Mol Biol 23 441-449 (2016)
  2. Conserved GTPase LepA (Elongation Factor 4) functions in biogenesis of the 30S subunit of the 70S ribosome. Gibbs MR, Moon KM, Chen M, Balakrishnan R, Foster LJ, Fredrick K. Proc Natl Acad Sci U S A 114 980-985 (2017)
  3. Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs. Desai VP, Frank F, Lee A, Righini M, Lancaster L, Noller HF, Tinoco I, Bustamante C. Mol Cell 75 1007-1019.e5 (2019)
  4. Elongation factor 4 remodels the A-site tRNA on the ribosome. Gagnon MG, Lin J, Steitz TA. Proc Natl Acad Sci U S A 113 4994-4999 (2016)
  5. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. Susorov D, Zakharov N, Shuvalova E, Ivanov A, Egorova T, Shuvalov A, Shatsky IN, Alkalaeva E. J Biol Chem 293 5220-5229 (2018)
  6. Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome. Kumar V, Ero R, Ahmed T, Goh KJ, Zhan Y, Bhushan S, Gao YG. J Biol Chem 291 12943-12950 (2016)
  7. Translation Elongation Factor 4 (LepA) Contributes to Tetracycline Susceptibility by Stalling Elongating Ribosomes. Liu B, Chen C. Antimicrob Agents Chemother 62 e02356-17 (2018)
  8. The conserved translation factor LepA is required for optimal synthesis of a porin family in Mycobacterium smegmatis. Fishbein SRS, Tomasi FG, Wolf ID, Dulberger CL, Wang A, Keshishian H, Wallace L, Carr SA, Ioerger TR, Rego EH, Rubin EJ. J Bacteriol JB.00604-20 (2020)
  9. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Nucleic Acids Res 50 8302-8320 (2022)
  10. Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases. Das A, Adiletta N, Ermolenko DN. Int J Mol Sci 24 6878 (2023)
  11. Step back for seminal translation. Qian SB. Nat Struct Mol Biol 23 362-363 (2016)