3j41 Citations

Allosteric mechanism of water-channel gating by Ca2+-calmodulin.

Nat Struct Mol Biol 20 1085-92 (2013)
Cited: 62 times
EuropePMC logo PMID: 23893133

Abstract

Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudoatomic structure of full-length mammalian aquaporin-0 (AQP0, Bos taurus) in complex with CaM, using EM to elucidate how this signaling protein modulates water-channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits.

Reviews - 3j41 mentioned but not cited (4)

  1. Aquaporin Protein-Protein Interactions. Roche JV, Törnroth-Horsefield S. Int J Mol Sci 18 (2017)
  2. Molecular mechanisms governing aquaporin relocalisation. Markou A, Unger L, Abir-Awan M, Saadallah A, Halsey A, Balklava Z, Conner M, Törnroth-Horsefield S, Greenhill SD, Conner A, Bill RM, Salman MM, Kitchen P. Biochim Biophys Acta Biomembr 1864 183853 (2022)
  3. Phosphorylation-Dependent Regulation of Mammalian Aquaporins. Nesverova V, Törnroth-Horsefield S. Cells 8 (2019)
  4. Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels. Ozu M, Alvear-Arias JJ, Fernandez M, Caviglia A, Peña-Pichicoi A, Carrillo C, Carmona E, Otero-Gonzalez A, Garate JA, Amodeo G, Gonzalez C. Int J Mol Sci 23 12317 (2022)

Articles - 3j41 mentioned but not cited (6)

  1. Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Reichow SL, Clemens DM, Freites JA, Németh-Cahalan KL, Heyden M, Tobias DJ, Hall JE, Gonen T. Nat. Struct. Mol. Biol. 20 1085-1092 (2013)
  2. Calmodulin Gates Aquaporin 0 Permeability through a Positively Charged Cytoplasmic Loop. Fields JB, Németh-Cahalan KL, Freites JA, Vorontsova I, Hall JE, Tobias DJ. J. Biol. Chem. 292 185-195 (2017)
  3. Cooperativity and allostery in aquaporin 0 regulation by Ca2. Freites JA, Németh-Cahalan KL, Hall JE, Tobias DJ. Biochim Biophys Acta Biomembr 1861 988-996 (2019)
  4. Variability of Protein Structure Models from Electron Microscopy. Monroe L, Terashi G, Kihara D. Structure 25 592-602.e2 (2017)
  5. A structural preview of aquaporin 8 via homology modeling of seven vertebrate isoforms. Kirscht A, Sonntag Y, Kjellbom P, Johanson U. BMC Struct. Biol. 18 2 (2018)
  6. Auto-Adhesion Potential of Extraocular Aqp0 during Teleost Development. Chauvigné F, Fjelldal PG, Cerdà J, Finn RN. PLoS ONE 11 e0154592 (2016)


Reviews citing this publication (19)

  1. The ever changing moods of calmodulin: how structural plasticity entails transductional adaptability. Villarroel A, Taglialatela M, Bernardo-Seisdedos G, Alaimo A, Agirre J, Alberdi A, Gomis-Perez C, Soldovieri MV, Ambrosino P, Malo C, Areso P. J. Mol. Biol. 426 2717-2735 (2014)
  2. Recent computational advances in the identification of allosteric sites in proteins. Lu S, Huang W, Zhang J. Drug Discov. Today 19 1595-1600 (2014)
  3. Aquaporins in the eye: expression, function, and roles in ocular disease. Schey KL, Wang Z, L Wenke J, Qi Y. Biochim. Biophys. Acta 1840 1513-1523 (2014)
  4. The many structural faces of calmodulin: a multitasking molecular jackknife. Kursula P. Amino Acids 46 2295-2304 (2014)
  5. Structural insights into aquaporin selectivity and regulation. Kreida S, Törnroth-Horsefield S. Curr. Opin. Struct. Biol. 33 126-134 (2015)
  6. Gap junction regulation by calmodulin. Zou J, Salarian M, Chen Y, Veenstra R, Louis CF, Yang JJ. FEBS Lett. 588 1430-1438 (2014)
  7. Insights into structural mechanisms of gating induced regulation of aquaporins. Sachdeva R, Singh B. Prog. Biophys. Mol. Biol. 114 69-79 (2014)
  8. Unraveling aquaporin interaction partners. Sjöhamn J, Hedfalk K. Biochim. Biophys. Acta 1840 1614-1623 (2014)
  9. The aquaporin zero puzzle. Hall JE, Mathias RT. Biophys. J. 107 10-15 (2014)
  10. Calmodulin-Mediated Regulation of Gap Junction Channels. Peracchia C. Int J Mol Sci 21 (2020)
  11. Signaling Mechanisms and Pharmacological Modulators Governing Diverse Aquaporin Functions in Human Health and Disease. Wagner K, Unger L, Salman MM, Kitchen P, Bill RM, Yool AJ. Int J Mol Sci 23 1388 (2022)
  12. The Role of Aquaporins in Ocular Lens Homeostasis. Schey KL, Petrova RS, Gletten RB, Donaldson PJ. Int J Mol Sci 18 (2017)
  13. Endothelial Dysfunction in Neurodegenerative Diseases. Fang YC, Hsieh YC, Hu CJ, Tu YK. Int J Mol Sci 24 2909 (2023)
  14. Aquaporin water channels: roles beyond renal water handling. Login FH, Nejsum LN. Nat Rev Nephrol 19 604-618 (2023)
  15. Aquaporins: More Than Functional Monomers in a Tetrameric Arrangement. Ozu M, Galizia L, Acuña C, Amodeo G. Cells 7 (2018)
  16. Beyond the Channels: Adhesion Functions of Aquaporin 0 and Connexin 50 in Lens Development. Li Z, Quan Y, Gu S, Jiang JX. Front Cell Dev Biol 10 866980 (2022)
  17. Calmodulin-Connexin Partnership in Gap Junction Channel Regulation-Calmodulin-Cork Gating Model. Peracchia C, Leverone Peracchia LM. Int J Mol Sci 22 13055 (2021)
  18. Insight into the Mammalian Aquaporin Interactome. Törnroth-Horsefield S, Chivasso C, Strandberg H, D'Agostino C, O'Neale CVT, Schey KL, Delporte C. Int J Mol Sci 23 9615 (2022)
  19. Regulation of AQP4 in the Central Nervous System. Vandebroek A, Yasui M. Int J Mol Sci 21 (2020)

Articles citing this publication (33)

  1. X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Frick A, Eriksson UK, de Mattia F, Oberg F, Hedfalk K, Neutze R, de Grip WJ, Deen PM, Törnroth-Horsefield S. Proc. Natl. Acad. Sci. U.S.A. 111 6305-6310 (2014)
  2. Plasma Membrane Abundance of Human Aquaporin 5 Is Dynamically Regulated by Multiple Pathways. Kitchen P, Öberg F, Sjöhamn J, Hedfalk K, Bill RM, Conner AC, Conner MT, Törnroth-Horsefield S. PLoS ONE 10 e0143027 (2015)
  3. Intact and N- or C-terminal end truncated AQP0 function as open water channels and cell-to-cell adhesion proteins: end truncation could be a prelude for adjusting the refractive index of the lens to prevent spherical aberration. Sindhu Kumari S, Varadaraj K. Biochim. Biophys. Acta 1840 2862-2877 (2014)
  4. The pilus usher controls protein interactions via domain masking and is functional as an oligomer. Werneburg GT, Henderson NS, Portnoy EB, Sarowar S, Hultgren SJ, Li H, Thanassi DG. Nat. Struct. Mol. Biol. 22 540-546 (2015)
  5. Calmodulin and PI(3,4,5)P₃ cooperatively bind to the Itk pleckstrin homology domain to promote efficient calcium signaling and IL-17A production. Wang X, Boyken SE, Hu J, Xu X, Rimer RP, Shea MA, Shaw AS, Andreotti AH, Huang YH. Sci Signal 7 ra74 (2014)
  6. Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema. Kitchen P, Salman MM, Halsey AM, Clarke-Bland C, MacDonald JA, Ishida H, Vogel HJ, Almutiri S, Logan A, Kreida S, Al-Jubair T, Winkel Missel J, Gourdon P, Törnroth-Horsefield S, Conner MT, Ahmed Z, Conner AC, Bill RM. Cell 181 784-799.e19 (2020)
  7. MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0. Wenke JL, Rose KL, Spraggins JM, Schey KL. Invest. Ophthalmol. Vis. Sci. 56 7398-7405 (2015)
  8. A Proteomic Approach for the Identification of Up-Regulated Proteins Involved in the Metabolic Process of the Leiomyoma. Ura B, Scrimin F, Arrigoni G, Franchin C, Monasta L, Ricci G. Int J Mol Sci 17 540 (2016)
  9. Contribution of Coiled-Coil Assembly to Ca2+/Calmodulin-Dependent Inactivation of TRPC6 Channel and its Impacts on FSGS-Associated Phenotypes. Polat OK, Uno M, Maruyama T, Tran HN, Imamura K, Wong CF, Sakaguchi R, Ariyoshi M, Itsuki K, Ichikawa J, Morii T, Shirakawa M, Inoue R, Asanuma K, Reiser J, Tochio H, Mori Y, Mori MX. J Am Soc Nephrol 30 1587-1603 (2019)
  10. Novel regulation of equlibrative nucleoside transporter 1 (ENT1) by receptor-stimulated Ca2+-dependent calmodulin binding. Bicket A, Mehrabi P, Naydenova Z, Wong V, Donaldson L, Stagljar I, Coe IR. Am. J. Physiol., Cell Physiol. 310 C808-20 (2016)
  11. A Mechanism of Calmodulin Modulation of the Human Cardiac Sodium Channel. Johnson CN, Potet F, Thompson MK, Kroncke BM, Glazer AM, Voehler MW, Knollmann BC, George AL, Chazin WJ. Structure 26 683-694.e3 (2018)
  12. Native Mass Spectrometry and Surface Induced Dissociation Provide Insight into the Post-Translational Modifications of Tetrameric AQP0 Isolated from Bovine Eye Lens. Harvey SR, O'Neale C, Schey KL, Wysocki VH. Anal Chem 94 1515-1519 (2022)
  13. Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes. Sjöhamn J, Båth P, Neutze R, Hedfalk K. Protein Sci. 25 2196-2208 (2016)
  14. Single-file transport of water through membrane channels. Horner A, Pohl P. Faraday Discuss. 209 9-33 (2018)
  15. BFSP1 C-terminal domains released by post-translational processing events can alter significantly the calcium regulation of AQP0 water permeability. Tapodi A, Clemens DM, Uwineza A, Jarrin M, Goldberg MW, Thinon E, Heal WP, Tate EW, Nemeth-Cahalan K, Vorontsova I, Hall JE, Quinlan RA. Exp Eye Res 185 107585 (2019)
  16. Protein-protein interactions in AQP regulation - biophysical characterization of AQP0-CaM and AQP2-LIP5 complex formation. Kreida S, Roche JV, Olsson C, Linse S, Törnroth-Horsefield S. Faraday Discuss. 209 35-54 (2018)
  17. Role of Pore-Lining Residues in Defining the Rate of Water Conduction by Aquaporin-0. Saboe PO, Rapisarda C, Kaptan S, Hsiao YS, Summers SR, De Zorzi R, Dukovski D, Yu J, de Groot BL, Kumar M, Walz T. Biophys. J. 112 953-965 (2017)
  18. Sub-nanometre mapping of the aquaporin-water interface using multifrequency atomic force microscopy. Ricci M, Quinlan RA, Voïtchovsky K. Soft Matter 13 187-195 (2016)
  19. The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. Lopez D, Amira MB, Brown D, Muries B, Brunel-Michac N, Bourgerie S, Porcheron B, Lemoine R, Chrestin H, Mollison E, Di Cola A, Frigerio L, Julien JL, Gousset-Dupont A, Fumanal B, Label P, Pujade-Renaud V, Auguin D, Venisse JS. Plant Mol. Biol. 91 375-396 (2016)
  20. Unraveling Human AQP5-PIP Molecular Interaction and Effect on AQP5 Salivary Glands Localization in SS Patients. Chivasso C, Nesverova V, Järvå M, Blanchard A, Rose KL, Öberg FK, Wang Z, Martin M, Lhotellerie F, Zindy E, Junqueira B, Leroy K, Vanhollebeke B, Delforge V, Bolaky N, Perret J, Soyfoo MS, Moscato S, Baldini C, Chaumont F, Mattii L, Schey KL, Myal Y, Törnroth-Horsefield S, Delporte C. Cells 10 2108 (2021)
  21. Aqp0a Regulates Suture Stability in the Zebrafish Lens. Vorontsova I, Gehring I, Hall JE, Schilling TF. Invest. Ophthalmol. Vis. Sci. 59 2869-2879 (2018)
  22. Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9 Å. Flores JA, Haddad BG, Dolan KA, Myers JB, Yoshioka CC, Copperman J, Zuckerman DM, Reichow SL. Nat Commun 11 4331 (2020)
  23. Spatial distributions of phosphorylated membrane proteins aquaporin 0 and MP20 across young and aged human lenses. Gutierrez DB, Garland DL, Schwacke JH, Hachey DL, Schey KL. Exp. Eye Res. 149 59-65 (2016)
  24. Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Myers JB, Haddad BG, O'Neill SE, Chorev DS, Yoshioka CC, Robinson CV, Zuckerman DM, Reichow SL. Nature 564 372-377 (2018)
  25. Cloning and Stress-Induced Expression Analysis of Calmodulin in the Antarctic Alga Chlamydomonas sp. ICE-L. He YY, Wang YB, Zheng Z, Liu FM, An ML, He XD, Qu CF, Li LL, Miao JL. Curr. Microbiol. 74 921-929 (2017)
  26. Cortisol Interaction with Aquaporin-2 Modulates Its Water Permeability: Perspectives for Non-Genomic Effects of Corticosteroids. Mom R, Réty S, Auguin D. Int J Mol Sci 24 1499 (2023)
  27. Dynamic Na+/H+ exchanger 1 (NHE1) - calmodulin complexes of varying stoichiometry and structure regulate Ca2+-dependent NHE1 activation. Sjøgaard-Frich LM, Prestel A, Pedersen ES, Severin M, Kristensen KK, Olsen JG, Kragelund BB, Pedersen SF. Elife 10 e60889 (2021)
  28. Fragment Screening of Human Aquaporin 1. To J, Torres J. Int J Mol Sci 17 449 (2016)
  29. High-resolution structure of a fish aquaporin reveals a novel extracellular fold. Zeng J, Schmitz F, Isaksson S, Glas J, Arbab O, Andersson M, Sundell K, Eriksson LA, Swaminathan K, Törnroth-Horsefield S, Hedfalk K. Life Sci Alliance 5 e202201491 (2022)
  30. Proteomic analysis showing the signaling pathways involved in the rhizome enlargement process in Nelumbo nucifera. Cao D, Damaris RN, Zhang Y, Liu M, Li M, Yang P. BMC Genomics 20 766 (2019)
  31. Structural Insights into AQP2 Targeting to Multivesicular Bodies. Roche JV, Nesverova V, Olsson C, Deen PM, Törnroth-Horsefield S. Int J Mol Sci 20 (2019)
  32. TMT-based quantitative proteomic analysis unveils uterine fluid difference in hens producing normal and pimpled eggs. Song L, Weng K, Bao Q, Wu J, Zhang Y, Xu Q, Zhang Y. Poult Sci 102 103081 (2023)
  33. The malate-activated ALMT12 anion channel in the grass Brachypodium distachyon is co-activated by Ca2+/calmodulin. Luu K, Rajagopalan N, Ching JCH, Loewen MC, Loewen ME. J Biol Chem 294 6142-6156 (2019)