3hd7 Citations

Helical extension of the neuronal SNARE complex into the membrane.

Nature 460 525-8 (2009)
Cited: 273 times
EuropePMC logo PMID: 19571812

Abstract

Neurotransmission relies on synaptic vesicles fusing with the membrane of nerve cells to release their neurotransmitter content into the synaptic cleft, a process requiring the assembly of several members of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) family. SNAREs represent an evolutionarily conserved protein family that mediates membrane fusion in the secretory and endocytic pathways of eukaryotic cells. On membrane contact, these proteins assemble in trans between the membranes as a bundle of four alpha-helices, with the energy released during assembly being thought to drive fusion. However, it is unclear how the energy is transferred to the membranes and whether assembly is conformationally linked to fusion. Here, we report the X-ray structure of the neuronal SNARE complex, consisting of rat syntaxin 1A, SNAP-25 and synaptobrevin 2, with the carboxy-terminal linkers and transmembrane regions at 3.4 A resolution. The structure shows that assembly proceeds beyond the already known core SNARE complex, resulting in a continuous helical bundle that is further stabilized by side-chain interactions in the linker region. Our results suggest that the final phase of SNARE assembly is directly coupled to membrane merger.

Reviews - 3hd7 mentioned but not cited (7)

  1. Chaperoning SNARE Folding and Assembly. Zhang Y, Hughson FM. Annu Rev Biochem 90 581-603 (2021)
  2. Tuning microbial hosts for membrane protein production. Freigassner M, Pichler H, Glieder A. Microb Cell Fact 8 69 (2009)
  3. SNARE zippering. Lou X, Shin YK. Biosci Rep 36 e00327 (2016)
  4. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains. Wu Z, Thiyagarajan S, O'Shaughnessy B, Karatekin E. Front Mol Neurosci 10 315 (2017)
  5. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. Wang S, Ma C. FEBS Open Bio 12 1939-1957 (2022)
  6. SNARE Modulators and SNARE Mimetic Peptides. Khvotchev M, Soloviev M. Biomolecules 12 1779 (2022)
  7. In vitro single vesicle fusion assays based on pore-spanning membranes: merits and drawbacks. Mühlenbrock P, Sari M, Steinem C. Eur Biophys J 50 239-252 (2021)

Articles - 3hd7 mentioned but not cited (20)

  1. Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Wang S, Li Y, Gong J, Ye S, Yang X, Zhang R, Ma C. Nat Commun 10 69 (2019)
  2. Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment. Salpietro V, Malintan NT, Llano-Rivas I, Spaeth CG, Efthymiou S, Striano P, Vandrovcova J, Cutrupi MC, Chimenz R, David E, Di Rosa G, Marce-Grau A, Raspall-Chaure M, Martin-Hernandez E, Zara F, Minetti C, Deciphering Developmental Disorders Study, SYNAPS Study Group, Bello OD, De Zorzi R, Fortuna S, Dauber A, Alkhawaja M, Sultan T, Mankad K, Vitobello A, Thomas Q, Mau-Them FT, Faivre L, Martinez-Azorin F, Prada CE, Macaya A, Kullmann DM, Rothman JE, Krishnakumar SS, Houlden H. Am J Hum Genet 104 721-730 (2019)
  3. A conserved membrane attachment site in alpha-SNAP facilitates N-ethylmaleimide-sensitive factor (NSF)-driven SNARE complex disassembly. Winter U, Chen X, Fasshauer D. J Biol Chem 284 31817-31826 (2009)
  4. Dilation of fusion pores by crowding of SNARE proteins. Wu Z, Bello OD, Thiyagarajan S, Auclair SM, Vennekate W, Krishnakumar SS, O'Shaughnessy B, Karatekin E. Elife 6 e22964 (2017)
  5. Entropic forces drive self-organization and membrane fusion by SNARE proteins. Mostafavi H, Thiyagarajan S, Stratton BS, Karatekin E, Warner JM, Rothman JE, O'Shaughnessy B. Proc Natl Acad Sci U S A 114 5455-5460 (2017)
  6. An activated Q-SNARE/SM protein complex as a possible intermediate in SNARE assembly. Jakhanwal S, Lee CT, Urlaub H, Jahn R. EMBO J 36 1788-1802 (2017)
  7. A Coarse Grained Model for a Lipid Membrane with Physiological Composition and Leaflet Asymmetry. Sharma S, Kim BN, Stansfeld PJ, Sansom MS, Lindau M. PLoS One 10 e0144814 (2015)
  8. Molecular mechanism of fusion pore formation driven by the neuronal SNARE complex. Sharma S, Lindau M. Proc Natl Acad Sci U S A 115 12751-12756 (2018)
  9. Phosphatidylinositol 4,5-biphosphate (PIP(2)) lipids regulate the phosphorylation of syntaxin N-terminus by modulating both its position and local structure. Khelashvili G, Galli A, Weinstein H. Biochemistry 51 7685-7698 (2012)
  10. Intracellular Vesicle Fusion Requires a Membrane-Destabilizing Peptide Located at the Juxtamembrane Region of the v-SNARE. Rathore SS, Liu Y, Yu H, Wan C, Lee M, Yin Q, Stowell MHB, Shen J. Cell Rep 29 4583-4592.e3 (2019)
  11. The neuronal calcium sensor Synaptotagmin-1 and SNARE proteins cooperate to dilate fusion pores. Wu Z, Dharan N, McDargh ZA, Thiyagarajan S, O'Shaughnessy B, Karatekin E. Elife 10 e68215 (2021)
  12. All-atom molecular dynamics simulations of Synaptotagmin-SNARE-complexin complexes bridging a vesicle and a flat lipid bilayer. Rizo J, Sari L, Qi Y, Im W, Lin MM. Elife 11 e76356 (2022)
  13. Fluorescence Lifetime Imaging Microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation. Verboogen DRJ, González Mancha N, Ter Beest M, van den Bogaart G. Elife 6 e23525 (2017)
  14. t-SNARE Transmembrane Domain Clustering Modulates Lipid Organization and Membrane Curvature. Sharma S, Lindau M. J Am Chem Soc 139 18440-18443 (2017)
  15. Lipid⁻Protein Interactions in Niemann⁻Pick Type C Disease: Insights from Molecular Modeling. Wheeler S, Schmid R, Sillence DJ. Int J Mol Sci 20 E717 (2019)
  16. The conserved carboxyl domain of MorC, an inner membrane protein of Aggregatibacter actinomycetemcomitans, is essential for membrane function. Smith KP, Voogt RD, Ruiz T, Mintz KP. Mol Oral Microbiol 31 43-58 (2016)
  17. Analysis of conformational variation in macromolecular structural models. Srivastava SK, Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. PLoS One 7 e39993 (2012)
  18. Synaptobrevin-2 C-Terminal Flexible Region Regulates the Discharge of Catecholamine Molecules. Weiss AN. Biophys J 116 921-929 (2019)
  19. Identification of potential modulators of IFITM3 by in-silico modeling and virtual screening. Tiwari V, Viswanath S. Sci Rep 12 15952 (2022)
  20. SNAP25 is a potential target for early stage Alzheimer's disease and Parkinson's disease. Wang Q, Tao S, Xing L, Liu J, Xu C, Xu X, Ding H, Shen Q, Yu X, Zheng Y. Eur J Med Res 28 570 (2023)


Reviews citing this publication (62)

  1. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? Rizo J, Südhof TC. Annu Rev Cell Dev Biol 28 279-308 (2012)
  2. Botulinum neurotoxin: a marvel of protein design. Montal M. Annu Rev Biochem 79 591-617 (2010)
  3. The Synaptic Vesicle Release Machinery. Rizo J, Xu J. Annu Rev Biophys 44 339-367 (2015)
  4. Membrane Repair: Mechanisms and Pathophysiology. Cooper ST, McNeil PL. Physiol Rev 95 1205-1240 (2015)
  5. Protein-driven membrane stresses in fusion and fission. Kozlov MM, McMahon HT, Chernomordik LV. Trends Biochem Sci 35 699-706 (2010)
  6. Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Alabi AA, Tsien RW. Annu Rev Physiol 75 393-422 (2013)
  7. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Han J, Pluhackova K, Böckmann RA. Front Physiol 8 5 (2017)
  8. Chaperoning SNARE assembly and disassembly. Baker RW, Hughson FM. Nat Rev Mol Cell Biol 17 465-479 (2016)
  9. Synaptic vesicle recycling: steps and principles. Rizzoli SO. EMBO J 33 788-822 (2014)
  10. Mechanism of neurotransmitter release coming into focus. Rizo J. Protein Sci 27 1364-1391 (2018)
  11. Distinct initial SNARE configurations underlying the diversity of exocytosis. Kasai H, Takahashi N, Tokumaru H. Physiol Rev 92 1915-1964 (2012)
  12. The hallmarks of cell-cell fusion. Hernández JM, Podbilewicz B. Development 144 4481-4495 (2017)
  13. Molecular Mechanisms of Fast Neurotransmitter Release. Brunger AT, Choi UB, Lai Y, Leitz J, Zhou Q. Annu Rev Biophys 47 469-497 (2018)
  14. The molecular machinery of neurotransmitter release (Nobel lecture). Südhof TC. Angew Chem Int Ed Engl 53 12696-12717 (2014)
  15. Transmembrane helix dimerization: beyond the search for sequence motifs. Li E, Wimley WC, Hristova K. Biochim Biophys Acta 1818 183-193 (2012)
  16. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Pharmacol Rev 66 513-569 (2014)
  17. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Pantano S, Montecucco C. Cell Mol Life Sci 71 793-811 (2014)
  18. Organization of SNAREs within the Golgi stack. Malsam J, Söllner TH. Cold Spring Harb Perspect Biol 3 a005249 (2011)
  19. The SNARE complex in neuronal and sensory cells. Ramakrishnan NA, Drescher MJ, Drescher DG. Mol Cell Neurosci 50 58-69 (2012)
  20. Invited review: Mechanisms of GTP hydrolysis and conformational transitions in the dynamin superfamily. Daumke O, Praefcke GJ. Biopolymers 105 580-593 (2016)
  21. Hypothesis - buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission. Rothman JE, Krishnakumar SS, Grushin K, Pincet F. FEBS Lett 591 3459-3480 (2017)
  22. Fusion of the endoplasmic reticulum by membrane-bound GTPases. Hu J, Rapoport TA. Semin Cell Dev Biol 60 105-111 (2016)
  23. Transport logistics in pollen tubes. Chebli Y, Kroeger J, Geitmann A. Mol Plant 6 1037-1052 (2013)
  24. Rules and tools to predict the splicing effects of exonic and intronic mutations. Ohno K, Takeda JI, Masuda A. Wiley Interdiscip Rev RNA 9 (2018)
  25. How could SNARE proteins open a fusion pore? Fang Q, Lindau M. Physiology (Bethesda) 29 278-285 (2014)
  26. Endosomal and Phagosomal SNAREs. Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Physiol Rev 98 1465-1492 (2018)
  27. Lipid dynamics in exocytosis. Chasserot-Golaz S, Coorssen JR, Meunier FA, Vitale N. Cell Mol Neurobiol 30 1335-1342 (2010)
  28. Relating structure to evolution in class II viral membrane fusion proteins. Modis Y. Curr Opin Virol 5 34-41 (2014)
  29. Review: Progresses in understanding N-ethylmaleimide sensitive factor (NSF) mediated disassembly of SNARE complexes. Ryu JK, Jahn R, Yoon TY. Biopolymers 105 518-531 (2016)
  30. Three steps forward, two steps back: mechanistic insights into the assembly and disassembly of the SNARE complex. Bombardier JP, Munson M. Curr Opin Chem Biol 29 66-71 (2015)
  31. The fusion pore, 60 years after the first cartoon. Sharma S, Lindau M. FEBS Lett 592 3542-3562 (2018)
  32. Mechanics of membrane fusion/pore formation. Fuhrmans M, Marelli G, Smirnova YG, Müller M. Chem Phys Lipids 185 109-128 (2015)
  33. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. Vermaas JV, Baylon JL, Arcario MJ, Muller MP, Wu Z, Pogorelov TV, Tajkhorshid E. J Membr Biol 248 563-582 (2015)
  34. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Zhang Y. Protein Sci 26 1252-1265 (2017)
  35. Subcellular phosphoproteomics. Trost M, Bridon G, Desjardins M, Thibault P. Mass Spectrom Rev 29 962-990 (2010)
  36. Organization and dynamics of SNARE proteins in the presynaptic membrane. Milovanovic D, Jahn R. Front Physiol 6 89 (2015)
  37. Recent insights into the structure and function of Mitofusins in mitochondrial fusion. Cohen MM, Tareste D. F1000Res 7 F1000 Faculty Rev-1983 (2018)
  38. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Liu YS, Dai X, Wu W, Yuan FF, Gu X, Chen JG, Zhu LQ, Wu J. Mol Neurobiol 54 2189-2200 (2017)
  39. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Sauvola CW, Littleton JT. Front Mol Neurosci 14 733138 (2021)
  40. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion. Kiessling V, Liang B, Kreutzberger AJ, Tamm LK. Front Mol Neurosci 10 72 (2017)
  41. SNARE protein analog-mediated membrane fusion. Kumar P, Guha S, Diederichsen U. J Pept Sci 21 621-629 (2015)
  42. Dynamic Relationship of the SNARE Complex with a Membrane. Holz RW, Zimmerberg J. Biophys J 117 627-630 (2019)
  43. Fast, Ca2+-dependent exocytosis at nerve terminals: shortcomings of SNARE-based models. Meriney SD, Umbach JA, Gundersen CB. Prog Neurobiol 121 55-90 (2014)
  44. Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly. Rehman A, Archbold JK, Hu SH, Norwood SJ, Collins BM, Martin JL. IUCrJ 1 505-513 (2014)
  45. SNAREs: could they be the answer to an energy landscape riddle in exocytosis? Liu W, Parpura V. ScientificWorldJournal 10 1258-1268 (2010)
  46. Toward a unified picture of the exocytotic fusion pore. Karatekin E. FEBS Lett 592 3563-3585 (2018)
  47. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Mol Biomed 3 29 (2022)
  48. Nanomachinery Organizing Release at Neuronal and Ribbon Synapses. Chakrabarti R, Wichmann C. Int J Mol Sci 20 E2147 (2019)
  49. Energetics, kinetics, and pathways of SNARE assembly in membrane fusion. Zhang Y, Ma L, Bao H. Crit Rev Biochem Mol Biol 57 443-460 (2022)
  50. Solution NMR of SNAREs, complexin and α-synuclein in association with membrane-mimetics. Liang B, Tamm LK. Prog Nucl Magn Reson Spectrosc 105 41-53 (2018)
  51. How proteins open fusion pores: insights from molecular simulations. Risselada HJ, Grubmüller H. Eur Biophys J 50 279-293 (2021)
  52. Ångstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion. Kreft M, Jorgačevski J, Stenovec M, Zorec R. Mol Cell Endocrinol 463 65-71 (2018)
  53. Exocytosis through the Lens. Graczyk A, Rickman C. Front Endocrinol (Lausanne) 4 147 (2013)
  54. Knockin' on Egg's Door: Maternal Control of Egg Activation That Influences Cortical Granule Exocytosis in Animal Species. Rojas J, Hinostroza F, Vergara S, Pinto-Borguero I, Aguilera F, Fuentes R, Carvacho I. Front Cell Dev Biol 9 704867 (2021)
  55. The beginning and the end of SNARE-induced membrane fusion. Mion D, Bunel L, Heo P, Pincet F. FEBS Open Bio 12 1958-1979 (2022)
  56. v-SNARE function in chromaffin cells. Dhara M, Mohrmann R, Bruns D. Pflugers Arch 470 169-180 (2018)
  57. Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens. Yang Y, Margam NN. Cells 10 160 (2021)
  58. Mechanisms of SNARE proteins in membrane fusion. Jahn R, Cafiso DC, Tamm LK. Nat Rev Mol Cell Biol 25 101-118 (2024)
  59. Membrane fusion studied by colloidal probes. Witt H, Savić F, Verbeek S, Dietz J, Tarantola G, Oelkers M, Geil B, Janshoff A. Eur Biophys J 50 223-237 (2021)
  60. Reconstruction of destruction - in vitro reconstitution methods in autophagy research. Moparthi SB, Moparthi SB, Wollert T. J Cell Sci 132 jcs223792 (2018)
  61. The function of VAMP2 in mediating membrane fusion: An overview. Yan C, Jiang J, Yang Y, Geng X, Dong W. Front Mol Neurosci 15 948160 (2022)
  62. EPR Lineshape Analysis to Investigate the SNARE Folding Intermediates. Khounlo R, Hawk BJD, Shin YK. Methods Mol Biol 1860 33-51 (2019)

Articles citing this publication (184)

  1. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Sharpe HJ, Stevens TJ, Munro S. Cell 142 158-169 (2010)
  2. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Gao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, Rothman JE, Zhang Y. Science 337 1340-1343 (2012)
  3. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Shi L, Shen QT, Kiel A, Wang J, Wang HW, Melia TJ, Rothman JE, Pincet F. Science 335 1355-1359 (2012)
  4. Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. Buzon V, Natrajan G, Schibli D, Campelo F, Kozlov MM, Weissenhorn W. PLoS Pathog 6 e1000880 (2010)
  5. Mechanistic insights into the recycling machine of the SNARE complex. Zhao M, Wu S, Zhou Q, Vivona S, Cipriano DJ, Cheng Y, Brunger AT. Nature 518 61-67 (2015)
  6. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A, Farsi Z, Walla PJ, Raunser S, Jahn R. Science 336 1581-1584 (2012)
  7. Membrane curvature in synaptic vesicle fusion and beyond. McMahon HT, Kozlov MM, Martens S. Cell 140 601-605 (2010)
  8. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Low HH, Sachse C, Amos LA, Löwe J. Cell 139 1342-1352 (2009)
  9. Complexin cross-links prefusion SNAREs into a zigzag array. Kümmel D, Krishnakumar SS, Radoff DT, Li F, Giraudo CG, Pincet F, Rothman JE, Reinisch KM. Nat Struct Mol Biol 18 927-933 (2011)
  10. Complexin clamps asynchronous release by blocking a secondary Ca(2+) sensor via its accessory α helix. Yang X, Kaeser-Woo YJ, Pang ZP, Xu W, Südhof TC. Neuron 68 907-920 (2010)
  11. A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Karatekin E, Di Giovanni J, Iborra C, Coleman J, O'Shaughnessy B, Seagar M, Rothman JE. Proc Natl Acad Sci U S A 107 3517-3521 (2010)
  12. Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE-Sec1/Munc18 membrane fusion complex. Rathore SS, Bend EG, Yu H, Hammarlund M, Jorgensen EM, Shen J. Proc Natl Acad Sci U S A 107 22399-22406 (2010)
  13. Structural basis of eukaryotic cell-cell fusion. Pérez-Vargas J, Krey T, Valansi C, Avinoam O, Haouz A, Jamin M, Raveh-Barak H, Podbilewicz B, Rey FA. Cell 157 407-419 (2014)
  14. Caught in the act: visualization of SNARE-mediated fusion events in molecular detail. Risselada HJ, Kutzner C, Grubmüller H. Chembiochem 12 1049-1055 (2011)
  15. Energetics of stalk intermediates in membrane fusion are controlled by lipid composition. Aeffner S, Reusch T, Weinhausen B, Salditt T. Proc Natl Acad Sci U S A 109 E1609-18 (2012)
  16. An extended helical conformation in domain 3a of Munc18-1 provides a template for SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex assembly. Parisotto D, Pfau M, Scheutzow A, Wild K, Mayer MP, Malsam J, Sinning I, Söllner TH. J Biol Chem 289 9639-9650 (2014)
  17. Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation. Ellena JF, Liang B, Wiktor M, Stein A, Cafiso DS, Jahn R, Tamm LK. Proc Natl Acad Sci U S A 106 20306-20311 (2009)
  18. SNARE bundle and syntaxin N-peptide constitute a minimal complement for Munc18-1 activation of membrane fusion. Shen J, Rathore SS, Khandan L, Rothman JE. J Cell Biol 190 55-63 (2010)
  19. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Milovanovic D, Honigmann A, Koike S, Göttfert F, Pähler G, Junius M, Müllar S, Diederichsen U, Janshoff A, Grubmüller H, Risselada HJ, Eggeling C, Hell SW, van den Bogaart G, Jahn R. Nat Commun 6 5984 (2015)
  20. Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Zhou P, Bacaj T, Yang X, Pang ZP, Südhof TC. Neuron 80 470-483 (2013)
  21. Synaptotagmin-1 binds to PIP(2)-containing membrane but not to SNAREs at physiological ionic strength. Park Y, Seo JB, Fraind A, Pérez-Lara A, Yavuz H, Han K, Jung SR, Kattan I, Walla PJ, Choi M, Cafiso DS, Koh DS, Jahn R. Nat Struct Mol Biol 22 815-823 (2015)
  22. Influenza hemagglutinin membrane anchor. Benton DJ, Nans A, Calder LJ, Turner J, Neu U, Lin YP, Ketelaars E, Kallewaard NL, Corti D, Lanzavecchia A, Gamblin SJ, Rosenthal PB, Skehel JJ. Proc Natl Acad Sci U S A 115 10112-10117 (2018)
  23. Yeast lipin 1 orthologue pah1p regulates vacuole homeostasis and membrane fusion. Sasser T, Qiu QS, Karunakaran S, Padolina M, Reyes A, Flood B, Smith S, Gonzales C, Fratti RA. J Biol Chem 287 2221-2236 (2012)
  24. Complexin arrests a pool of docked vesicles for fast Ca2+-dependent release. Malsam J, Parisotto D, Bharat TA, Scheutzow A, Krause JM, Briggs JA, Söllner TH. EMBO J 31 3270-3281 (2012)
  25. Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism. Min D, Kim K, Hyeon C, Cho YH, Shin YK, Yoon TY. Nat Commun 4 1705 (2013)
  26. Role of the synaptobrevin C terminus in fusion pore formation. Ngatchou AN, Kisler K, Fang Q, Walter AM, Zhao Y, Bruns D, Sørensen JB, Lindau M. Proc Natl Acad Sci U S A 107 18463-18468 (2010)
  27. Munc13-1 and Munc18-1 together prevent NSF-dependent de-priming of synaptic vesicles. He E, Wierda K, van Westen R, Broeke JH, Toonen RF, Cornelisse LN, Verhage M. Nat Commun 8 15915 (2017)
  28. Exocytotic fusion pores are composed of both lipids and proteins. Bao H, Goldschen-Ohm M, Jeggle P, Chanda B, Edwardson JM, Chapman ER. Nat Struct Mol Biol 23 67-73 (2016)
  29. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. Zorman S, Rebane AA, Ma L, Yang G, Molski MA, Coleman J, Pincet F, Rothman JE, Zhang Y. Elife 3 e03348 (2014)
  30. Expansion of the fusion stalk and its implication for biological membrane fusion. Risselada HJ, Bubnis G, Grubmüller H. Proc Natl Acad Sci U S A 111 11043-11048 (2014)
  31. Controlling synaptotagmin activity by electrostatic screening. Park Y, Hernandez JM, van den Bogaart G, Ahmed S, Holt M, Riedel D, Jahn R. Nat Struct Mol Biol 19 991-997 (2012)
  32. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. Ma L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y. Elife 4 e09580 (2015)
  33. A half-zippered SNARE complex represents a functional intermediate in membrane fusion. Li F, Kümmel D, Coleman J, Reinisch KM, Rothman JE, Pincet F. J Am Chem Soc 136 3456-3464 (2014)
  34. Transmembrane orientation and possible role of the fusogenic peptide from parainfluenza virus 5 (PIV5) in promoting fusion. Donald JE, Zhang Y, Fiorin G, Carnevale V, Slochower DR, Gai F, Klein ML, DeGrado WF. Proc Natl Acad Sci U S A 108 3958-3963 (2011)
  35. t-SNARE protein conformations patterned by the lipid microenvironment. Rickman C, Medine CN, Dun AR, Moulton DJ, Mandula O, Halemani ND, Rizzoli SO, Chamberlain LH, Duncan RR. J Biol Chem 285 13535-13541 (2010)
  36. Association of GTF2i in the Williams-Beuren syndrome critical region with autism spectrum disorders. Malenfant P, Liu X, Hudson ML, Qiao Y, Hrynchak M, Riendeau N, Hildebrand MJ, Cohen IL, Chudley AE, Forster-Gibson C, Mickelson EC, Rajcan-Separovic E, Lewis ME, Holden JJ. J Autism Dev Disord 42 1459-1469 (2012)
  37. A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores. Chang CW, Hui E, Bai J, Bruns D, Chapman ER, Jackson MB. J Neurosci 35 5772-5780 (2015)
  38. Prefusion structure of syntaxin-1A suggests pathway for folding into neuronal trans-SNARE complex fusion intermediate. Liang B, Kiessling V, Tamm LK. Proc Natl Acad Sci U S A 110 19384-19389 (2013)
  39. Molecular mechanism of cholesterol- and polyphosphoinositide-mediated syntaxin clustering. Murray DH, Tamm LK. Biochemistry 50 9014-9022 (2011)
  40. Novel interactions of CAPS (Ca2+-dependent activator protein for secretion) with the three neuronal SNARE proteins required for vesicle fusion. Daily NJ, Boswell KL, James DJ, Martin TF. J Biol Chem 285 35320-35329 (2010)
  41. Structural Basis for Substrate Recognition by the Ankyrin Repeat Domain of Human DHHC17 Palmitoyltransferase. Verardi R, Kim JS, Ghirlando R, Banerjee A, Banerjee A. Structure 25 1337-1347.e6 (2017)
  42. Structural characterization of full-length NSF and 20S particles. Chang LF, Chen S, Liu CC, Pan X, Jiang J, Bai XC, Xie X, Wang HW, Sui SF. Nat Struct Mol Biol 19 268-275 (2012)
  43. Coarse-grain simulations reveal movement of the synaptobrevin C-terminus in response to piconewton forces. Lindau M, Hall BA, Chetwynd A, Beckstein O, Sansom MS. Biophys J 103 959-969 (2012)
  44. SNARE force synchronizes synaptic vesicle fusion and controls the kinetics of quantal synaptic transmission. Guzman RE, Schwarz YN, Rettig J, Bruns D. J Neurosci 30 10272-10281 (2010)
  45. A lipid-anchored SNARE supports membrane fusion. Xu H, Zick M, Wickner WT, Jun Y. Proc Natl Acad Sci U S A 108 17325-17330 (2011)
  46. Dissection of SNARE-driven membrane fusion and neuroexocytosis by wedging small hydrophobic molecules into the SNARE zipper. Yang Y, Shin JY, Oh JM, Jung CH, Hwang Y, Kim S, Kim JS, Yoon KJ, Ryu JY, Shin J, Hwang JS, Yoon TY, Shin YK, Kweon DH. Proc Natl Acad Sci U S A 107 22145-22150 (2010)
  47. Extension of Helix 12 in Munc18-1 Induces Vesicle Priming. Munch AS, Kedar GH, van Weering JR, Vazquez-Sanchez S, He E, André T, Braun T, Söllner TH, Verhage M, Sørensen JB. J Neurosci 36 6881-6891 (2016)
  48. Individual vesicle fusion events mediated by lipid-anchored DNA. van Lengerich B, Rawle RJ, Bendix PM, Boxer SG. Biophys J 105 409-419 (2013)
  49. Reluctance to membrane binding enables accessibility of the synaptobrevin SNARE motif for SNARE complex formation. Brewer KD, Li W, Horne BE, Rizo J. Proc Natl Acad Sci U S A 108 12723-12728 (2011)
  50. SNARE and regulatory proteins induce local membrane protrusions to prime docked vesicles for fast calcium-triggered fusion. Bharat TA, Malsam J, Hagen WJ, Scheutzow A, Söllner TH, Briggs JA. EMBO Rep 15 308-314 (2014)
  51. SNARE complex zipping as a driving force in the dilation of proteinaceous fusion pores. Jackson MB. J Membr Biol 235 89-100 (2010)
  52. v-SNARE transmembrane domains function as catalysts for vesicle fusion. Dhara M, Yarzagaray A, Makke M, Schindeldecker B, Schwarz Y, Shaaban A, Sharma S, Böckmann RA, Lindau M, Mohrmann R, Bruns D. Elife 5 e17571 (2016)
  53. Cryo-EM structure of SNAP-SNARE assembly in 20S particle. Zhou Q, Huang X, Sun S, Li X, Wang HW, Sui SF. Cell Res 25 551-560 (2015)
  54. A novel membrane fusion protein family in Flaviviridae? Li Y, Modis Y. Trends Microbiol 22 176-182 (2014)
  55. Direct simulation of protein-mediated vesicle fusion: lung surfactant protein B. Baoukina S, Tieleman DP. Biophys J 99 2134-2142 (2010)
  56. Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Furukawa N, Mima J. Sci Rep 4 4277 (2014)
  57. Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes. Song H, Orr A, Duan M, Merz AJ, Wickner W. Elife 6 e26646 (2017)
  58. DNA variation in the SNAP25 gene confers risk to ADHD and is associated with reduced expression in prefrontal cortex. Hawi Z, Matthews N, Wagner J, Wallace RH, Butler TJ, Vance A, Kent L, Gill M, Bellgrove MA. PLoS One 8 e60274 (2013)
  59. Goliath family E3 ligases regulate the recycling endosome pathway via VAMP3 ubiquitylation. Yamazaki Y, Schönherr C, Varshney GK, Dogru M, Hallberg B, Palmer RH. EMBO J 32 524-537 (2013)
  60. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains. Wu Z, Auclair SM, Bello O, Vennekate W, Dudzinski NR, Krishnakumar SS, Karatekin E. Sci Rep 6 27287 (2016)
  61. Multiple conformations of a single SNAREpin between two nanodisc membranes reveal diverse pre-fusion states. Shin J, Lou X, Kweon DH, Shin YK. Biochem J 459 95-102 (2014)
  62. Pre-transition effects mediate forces of assembly between transmembrane proteins. Katira S, Mandadapu KK, Vaikuntanathan S, Smit B, Chandler D. Elife 5 e13150 (2016)
  63. SNAREpin assembly by Munc18-1 requires previous vesicle docking by synaptotagmin 1. Parisotto D, Malsam J, Scheutzow A, Krause JM, Söllner TH. J Biol Chem 287 31041-31049 (2012)
  64. Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Lygina AS, Meyenberg K, Jahn R, Diederichsen U. Angew Chem Int Ed Engl 50 8597-8601 (2011)
  65. SNARE derived peptide mimic inducing membrane fusion. Meyenberg K, Lygina AS, van den Bogaart G, Jahn R, Diederichsen U. Chem Commun (Camb) 47 9405-9407 (2011)
  66. SNARE machinery is optimized for ultrafast fusion. Manca F, Pincet F, Truskinovsky L, Rothman JE, Foret L, Caruel M. Proc Natl Acad Sci U S A 116 2435-2442 (2019)
  67. Thermodynamically reversible paths of the first fusion intermediate reveal an important role for membrane anchors of fusion proteins. Smirnova YG, Risselada HJ, Müller M. Proc Natl Acad Sci U S A 116 2571-2576 (2019)
  68. A systems model of vesicle trafficking in Arabidopsis pollen tubes. Kato N, He H, Steger AP. Plant Physiol 152 590-601 (2010)
  69. Cryo-EM structures of the ATP-bound Vps4E233Q hexamer and its complex with Vta1 at near-atomic resolution. Sun S, Li L, Yang F, Wang X, Fan F, Yang M, Chen C, Li X, Wang HW, Sui SF. Nat Commun 8 16064 (2017)
  70. Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. Wu M, Park YJ, Pardon E, Turley S, Hayhurst A, Deng J, Steyaert J, Hol WG. J Struct Biol 174 124-136 (2011)
  71. Synaptotagmin 1 and SNAREs form a complex that is structurally heterogeneous. Lai AL, Huang H, Herrick DZ, Epp N, Cafiso DS. J Mol Biol 405 696-706 (2011)
  72. Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection. Ronzone E, Paumet F. PLoS One 8 e69769 (2013)
  73. Vesicle pools: lessons from adrenal chromaffin cells. Stevens DR, Schirra C, Becherer U, Rettig J. Front Synaptic Neurosci 3 2 (2011)
  74. Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion. Chang CW, Chiang CW, Gaffaney JD, Chapman ER, Jackson MB. J Biol Chem 291 2848-2857 (2016)
  75. Membrane tension increases fusion efficiency of model membranes in the presence of SNAREs. Kliesch TT, Dietz J, Turco L, Halder P, Polo E, Tarantola M, Jahn R, Janshoff A. Sci Rep 7 12070 (2017)
  76. Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly. Wang X, Gong J, Zhu L, Wang S, Yang X, Xu Y, Yang X, Ma C. EMBO J 39 e103631 (2020)
  77. Secretory vesicles are preferentially targeted to areas of low molecular SNARE density. Yang L, Dun AR, Martin KJ, Qiu Z, Dunn A, Lord GJ, Lu W, Duncan RR, Rickman C. PLoS One 7 e49514 (2012)
  78. A highly tilted membrane configuration for the prefusion state of synaptobrevin. Blanchard AE, Arcario MJ, Schulten K, Tajkhorshid E. Biophys J 107 2112-2121 (2014)
  79. Nanobodies reveal an extra-synaptic population of SNAP-25 and Syntaxin 1A in hippocampal neurons. Maidorn M, Olichon A, Rizzoli SO, Opazo F. MAbs 11 305-321 (2019)
  80. Resolving kinetic intermediates during the regulated assembly and disassembly of fusion pores. Das D, Bao H, Courtney KC, Wu L, Chapman ER. Nat Commun 11 231 (2020)
  81. A molecular mechanism for calcium-mediated synaptotagmin-triggered exocytosis. Kiessling V, Kreutzberger AJB, Liang B, Nyenhuis SB, Seelheim P, Castle JD, Cafiso DS, Tamm LK. Nat Struct Mol Biol 25 911-917 (2018)
  82. Complexin Suppresses Spontaneous Exocytosis by Capturing the Membrane-Proximal Regions of VAMP2 and SNAP25. Malsam J, Bärfuss S, Trimbuch T, Zarebidaki F, Sonnen AF, Wild K, Scheutzow A, Rohland L, Mayer MP, Sinning I, Briggs JAG, Rosenmund C, Söllner TH. Cell Rep 32 107926 (2020)
  83. Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors. Shi X, Halder P, Yavuz H, Jahn R, Shuman HA. Proc Natl Acad Sci U S A 113 8807-8812 (2016)
  84. Reconstituting Intracellular Vesicle Fusion Reactions: The Essential Role of Macromolecular Crowding. Yu H, Rathore SS, Shen C, Liu Y, Ouyang Y, Stowell MH, Shen J. J Am Chem Soc 137 12873-12883 (2015)
  85. Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers. Rebane AA, Ma L, Zhang Y. Biophys J 110 441-454 (2016)
  86. Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. Popa A, Carter JR, Smith SE, Hellman L, Fried MG, Dutch RE. J Virol 86 3014-3026 (2012)
  87. A test for ancient selective sweeps and an application to candidate sites in modern humans. Racimo F, Kuhlwilm M, Slatkin M. Mol Biol Evol 31 3344-3358 (2014)
  88. Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion. Zdanowicz R, Kreutzberger A, Liang B, Kiessling V, Tamm LK, Cafiso DS. Biophys J 113 1235-1250 (2017)
  89. Deficiency in RNA editing enzyme ADAR2 impairs regulated exocytosis. Yang L, Zhao L, Gan Z, He Z, Xu J, Gao X, Wang X, Han W, Chen L, Xu T, Li W, Liu Y. FASEB J 24 3720-3732 (2010)
  90. SM protein Munc18-2 facilitates transition of Syntaxin 11-mediated lipid mixing to complete fusion for T-lymphocyte cytotoxicity. Spessott WA, Sanmillan ML, McCormick ME, Kulkarni VV, Giraudo CG. Proc Natl Acad Sci U S A 114 E2176-E2185 (2017)
  91. SNARE zippering requires activation by SNARE-like peptides in Sec1/Munc18 proteins. Yu H, Shen C, Liu Y, Menasche BL, Ouyang Y, Stowell MHB, Shen J. Proc Natl Acad Sci U S A 115 E8421-E8429 (2018)
  92. SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. D'Agostino M, D'Agostino M, Risselada HJ, Endter LJ, Comte-Miserez V, Mayer A. EMBO J 37 e99193 (2018)
  93. Docking, not fusion, as the rate-limiting step in a SNARE-driven vesicle fusion assay. Smith EA, Weisshaar JC. Biophys J 100 2141-2150 (2011)
  94. NMR characterization of membrane protein-detergent micelle solutions by use of microcoil equipment. Stanczak P, Horst R, Serrano P, Wüthrich K. J Am Chem Soc 131 18450-18456 (2009)
  95. A convenient protocol for generating giant unilamellar vesicles containing SNARE proteins using electroformation. Witkowska A, Jablonski L, Jahn R. Sci Rep 8 9422 (2018)
  96. Mechanistic insights into the SNARE complex disassembly. Huang X, Sun S, Wang X, Fan F, Zhou Q, Lu S, Cao Y, Wang QW, Dong MQ, Yao J, Sui SF. Sci Adv 5 eaau8164 (2019)
  97. SNARE-mediated membrane fusion trajectories derived from force-clamp experiments. Oelkers M, Witt H, Halder P, Jahn R, Janshoff A. Proc Natl Acad Sci U S A 113 13051-13056 (2016)
  98. Synip arrests soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding inhibitor. Yu H, Rathore SS, Shen J. J Biol Chem 288 18885-18893 (2013)
  99. The lipid composition and physical properties of the yeast vacuole affect the hemifusion-fusion transition. Karunakaran S, Fratti RA. Traffic 14 650-662 (2013)
  100. The synaptotagmin 1 linker may function as an electrostatic zipper that opens for docking but closes for fusion pore opening. Lai Y, Lou X, Jho Y, Yoon TY, Shin YK. Biochem J 456 25-33 (2013)
  101. α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle. Ma L, Kang Y, Jiao J, Rebane AA, Cha HK, Xi Z, Qu H, Zhang Y. Cell Rep 15 531-539 (2016)
  102. Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion. Yavuz H, Kattan I, Hernandez JM, Hofnagel O, Witkowska A, Raunser S, Walla PJ, Jahn R. J Biol Chem 293 8645-8655 (2018)
  103. Explaining general anesthesia: a two-step hypothesis linking sleep circuits and the synaptic release machinery. van Swinderen B, Kottler B. Bioessays 36 372-381 (2014)
  104. Oxidized phagosomal NOX2 complex is replenished from lysosomes. Dingjan I, Linders PT, van den Bekerom L, Baranov MV, Halder P, Ter Beest M, van den Bogaart G. J Cell Sci 130 1285-1298 (2017)
  105. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers. Jiao J, Rebane AA, Ma L, Zhang Y. Methods Mol Biol 1486 357-390 (2017)
  106. Vacuolar SNARE protein transmembrane domains serve as nonspecific membrane anchors with unequal roles in lipid mixing. Pieren M, Desfougères Y, Michaillat L, Schmidt A, Mayer A. J Biol Chem 290 12821-12832 (2015)
  107. A Chemical Controller of SNARE-Driven Membrane Fusion That Primes Vesicles for Ca(2+)-Triggered Millisecond Exocytosis. Heo P, Yang Y, Han KY, Kong B, Shin JH, Jung Y, Jeong C, Shin J, Shin YK, Ha T, Kweon DH. J Am Chem Soc 138 4512-4521 (2016)
  108. A coiled coil trigger site is essential for rapid binding of synaptobrevin to the SNARE acceptor complex. Wiederhold K, Kloepper TH, Walter AM, Stein A, Kienle N, Sørensen JB, Fasshauer D. J Biol Chem 285 21549-21559 (2010)
  109. Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes. Brouwer I, Giniatullina A, Laurens N, van Weering JRT, Bald D, Wuite GJL, Groffen AJ. Nat Commun 6 8387 (2015)
  110. Structural dynamics and transient lipid binding of synaptobrevin-2 tune SNARE assembly and membrane fusion. Lakomek NA, Yavuz H, Jahn R, Pérez-Lara Á. Proc Natl Acad Sci U S A 116 8699-8708 (2019)
  111. Chemomechanical regulation of SNARE proteins studied with molecular dynamics simulations. Bock LV, Hutchings B, Grubmüller H, Woodbury DJ. Biophys J 99 1221-1230 (2010)
  112. Juxtamembrane tryptophans of synaptobrevin 2 control the process of membrane fusion. Fang Q, Zhao Y, Lindau M. FEBS Lett 587 67-72 (2013)
  113. Tight docking of membranes before fusion represents a metastable state with unique properties. Witkowska A, Heinz LP, Grubmüller H, Jahn R. Nat Commun 12 3606 (2021)
  114. A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis. Hastoy B, Scotti PA, Milochau A, Fezoua-Boubegtiten Z, Rodas J, Megret R, Desbat B, Laguerre M, Castano S, Perrais D, Rorsman P, Oda R, Lang J. Sci Rep 7 2835 (2017)
  115. Efficient replication of a paramyxovirus independent of full zippering of the fusion protein six-helix bundle domain. Brindley MA, Plattet P, Plemper RK. Proc Natl Acad Sci U S A 111 E3795-804 (2014)
  116. Structural insights into membrane fusion at the endoplasmic reticulum. Daumke O, Praefcke GJ. Proc Natl Acad Sci U S A 108 2175-2176 (2011)
  117. Synaptotagmin-1 is an antagonist for Munc18-1 in SNARE zippering. Lou X, Shin J, Yang Y, Kim J, Shin YK. J Biol Chem 290 10535-10543 (2015)
  118. The SNAP-25 linker supports fusion intermediates by local lipid interactions. Shaaban A, Dhara M, Frisch W, Harb A, Shaib AH, Becherer U, Bruns D, Mohrmann R. Elife 8 e41720 (2019)
  119. Synaptobrevin Transmembrane Domain Dimerization Studied by Multiscale Molecular Dynamics Simulations. Han J, Pluhackova K, Wassenaar TA, Böckmann RA. Biophys J 109 760-771 (2015)
  120. Complexin splits the membrane-proximal region of a single SNAREpin. Yin L, Kim J, Shin YK. Biochem J 473 2219-2224 (2016)
  121. ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating. Rogers JV, Arlow T, Inkellis ER, Koo TS, Rose MD. Mol Biol Cell 24 3896-3908 (2013)
  122. Munc18-1 protein molecules move between membrane molecular depots distinct from vesicle docking sites. Smyth AM, Yang L, Martin KJ, Hamilton C, Lu W, Cousin MA, Rickman C, Duncan RR. J Biol Chem 288 5102-5113 (2013)
  123. Positively charged amino acids at the SNAP-25 C terminus determine fusion rates, fusion pore properties, and energetics of tight SNARE complex zippering. Fang Q, Zhao Y, Herbst AD, Kim BN, Lindau M. J Neurosci 35 3230-3239 (2015)
  124. Retrograde trafficking and quality control of yeast synaptobrevin, Snc1, are conferred by its transmembrane domain. Ma M, Burd CG. Mol Biol Cell 30 1729-1742 (2019)
  125. SNARE Zippering Is Suppressed by a Conformational Constraint that Is Removed by v-SNARE Splitting. Liu Y, Wan C, Rathore SS, Stowell MHB, Yu H, Shen J. Cell Rep 34 108611 (2021)
  126. Steric hindrance of SNARE transmembrane domain organization impairs the hemifusion-to-fusion transition. D'Agostino M, Risselada HJ, Mayer A. EMBO Rep 17 1590-1608 (2016)
  127. The packing density of a supramolecular membrane protein cluster is controlled by cytoplasmic interactions. Merklinger E, Schloetel JG, Weber P, Batoulis H, Holz S, Karnowski N, Finke J, Lang T. Elife 6 e20705 (2017)
  128. Coarse-Grained Model of SNARE-Mediated Docking. Fortoul N, Singh P, Hui CY, Bykhovskaia M, Jagota A. Biophys J 108 2258-2269 (2015)
  129. Cross-linking mass spectrometry uncovers protein interactions and functional assemblies in synaptic vesicle membranes. Wittig S, Ganzella M, Barth M, Kostmann S, Riedel D, Pérez-Lara Á, Jahn R, Schmidt C. Nat Commun 12 858 (2021)
  130. En route to dynamic life processes by SNARE-mediated fusion of polymer and hybrid membranes. Otrin L, Witkowska A, Marušič N, Zhao Z, Lira RB, Kyrilis FL, Hamdi F, Ivanov I, Lipowsky R, Kastritis PL, Dimova R, Sundmacher K, Jahn R, Vidaković-Koch T. Nat Commun 12 4972 (2021)
  131. Molecular origins of synaptotagmin 1 activities on vesicle docking and fusion pore opening. Lai Y, Lou X, Diao J, Shin YK. Sci Rep 5 9267 (2015)
  132. Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Shon MJ, Kim H, Yoon TY. Nat Commun 9 3639 (2018)
  133. Reconstituting SNARE-mediated membrane fusion at the single liposome level. Kiessling V, Liang B, Tamm LK. Methods Cell Biol 128 339-363 (2015)
  134. Role of the transmembrane domain in SNARE protein mediated membrane fusion: peptide nucleic acid/peptide model systems. Wehland JD, Lygina AS, Kumar P, Guha S, Hubrich BE, Jahn R, Diederichsen U. Mol Biosyst 12 2770-2776 (2016)
  135. SNARE-mediated membrane fusion is a two-stage process driven by entropic forces. McDargh ZA, Polley A, O'Shaughnessy B. FEBS Lett 592 3504-3515 (2018)
  136. Synaptobrevin transmembrane domain influences exocytosis by perturbing vesicle membrane curvature. Chang CW, Jackson MB. Biophys J 109 76-84 (2015)
  137. Topological arrangement of the intracellular membrane fusion machinery. Rathore SS, Ghosh N, Ouyang Y, Shen J. Mol Biol Cell 22 2612-2619 (2011)
  138. Vesicle Fusion Mediated by Solanesol-Anchored DNA. Flavier KM, Boxer SG. Biophys J 113 1260-1268 (2017)
  139. Vesicular stomatitis virus G protein transmembrane region is crucial for the hemi-fusion to full fusion transition. Ci Y, Yang Y, Xu C, Shi L. Sci Rep 8 10669 (2018)
  140. Examination of Sec22 Homodimer Formation and Role in SNARE-dependent Membrane Fusion. Flanagan JJ, Mukherjee I, Barlowe C. J Biol Chem 290 10657-10666 (2015)
  141. Structural Roles for the Juxtamembrane Linker Region and Transmembrane Region of Synaptobrevin 2 in Membrane Fusion. Hu Y, Zhu L, Ma C. Front Cell Dev Biol 8 609708 (2020)
  142. Letter Tomosyn guides SNARE complex formation in coordination with Munc18 and Munc13. Li Y, Wang S, Li T, Zhu L, Ma C. FEBS Lett 592 1161-1172 (2018)
  143. An electrostatically preferred lateral orientation of SNARE complex suggests novel mechanisms for driving membrane fusion. Guo T, Gong LC, Sui SF. PLoS One 5 e8900 (2010)
  144. Coiled coil driven membrane fusion between cyclodextrin vesicles and liposomes. Versluis F, Voskuhl J, Vos J, Friedrich H, Ravoo BJ, Bomans PH, Stuart MC, Sommerdijk NA, Kros A. Soft Matter 10 9746-9751 (2014)
  145. Exploring the Formation and the Structure of Synaptobrevin Oligomers in a Model Membrane. Han J, Pluhackova K, Böckmann RA. Biophys J 110 2004-2015 (2016)
  146. Functional Reconstitution of Intracellular Vesicle Fusion Using Purified SNAREs and Sec1/Munc18 (SM) Proteins. Yu H, Crisman L, Stowell MHB, Shen J. Methods Mol Biol 1860 237-249 (2019)
  147. Oligomerisation of Synaptobrevin-2 Studied by Native Mass Spectrometry and Chemical Cross-Linking. Wittig S, Haupt C, Hoffmann W, Kostmann S, Pagel K, Schmidt C. J Am Soc Mass Spectrom 30 149-160 (2019)
  148. A novel phase of compressed bilayers that models the prestalk transition state of membrane fusion. Qian S, Huang HW. Biophys J 102 48-55 (2012)
  149. Botulinum Toxins A and E Inflict Dynamic Destabilization on t-SNARE to Impair SNARE Assembly and Membrane Fusion. Khounlo R, Kim J, Yin L, Shin YK. Structure 25 1679-1686.e5 (2017)
  150. Conserved conformational dynamics of membrane fusion protein transmembrane domains and flanking regions indicated by sequence statistics. Neumann S, Langosch D. Proteins 79 2418-2427 (2011)
  151. The crossover conformational shift of the GTPase atlastin provides the energy driving ER fusion. Winsor J, Hackney DD, Lee TH. J Cell Biol 216 1321-1335 (2017)
  152. Single-molecule measurements of dissociation rates and energy landscapes of binary trans snare complexes in parallel versus antiparallel orientation. Liu W, Montana V, Parpura V, Mohideen U. Biophys J 101 1854-1862 (2011)
  153. The Dual Function of the Polybasic Juxtamembrane Region of Syntaxin 1A in Clamping Spontaneous Release and Stimulating Ca2+-Triggered Release in Neuroendocrine Cells. Singer-Lahat D, Barak-Broner N, Sheinin A, Greitzer-Antes D, Michaelevski I, Lotan I. J Neurosci 38 220-231 (2018)
  154. The role of the N-D1 linker of the N-ethylmaleimide-sensitive factor in the SNARE disassembly. Liu CC, Sun S, Sui SF. PLoS One 8 e64346 (2013)
  155. Unzipping of neuronal snare protein with steered molecular dynamics occurs in three steps. Tekpinar M, Zheng W. J Mol Model 20 2381 (2014)
  156. WNK4 inhibits plasma membrane targeting of NCC through regulation of syntaxin13 SNARE formation. Chung WY, Park HW, Han JW, Lee MG, Kim JY. Cell Signal 25 2469-2477 (2013)
  157. Cholesterol stabilizes recombinant exocytic fusion pores by altering membrane bending rigidity. Wu L, Courtney KC, Chapman ER. Biophys J 120 1367-1377 (2021)
  158. Fusion with wild-type SNARE domains is controlled by juxtamembrane domains, transmembrane anchors, and Sec17. Orr A, Song H, Wickner W. Mol Biol Cell 33 ar38 (2022)
  159. Investigation of the juxtamembrane region of neuronal-Synaptobrevin in synaptic transmission at the Drosophila neuromuscular junction. DeMill CM, Qiu X, Kisiel M, Bolotta A, Stewart BA. J Neurophysiol 112 1356-1366 (2014)
  160. PNA Hybrid Sequences as Recognition Units in SNARE-Protein-Mimicking Peptides. Hubrich BE, Kumar P, Neitz H, Grunwald M, Grothe T, Walla PJ, Jahn R, Diederichsen U. Angew Chem Int Ed Engl 57 14932-14936 (2018)
  161. SNARE complex alters the interactions of the Ca2+ sensor synaptotagmin 1 with lipid bilayers. Bykhovskaia M. Biophys J 120 642-661 (2021)
  162. Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. Vardar G, Salazar-Lázaro A, Zobel S, Trimbuch T, Rosenmund C. Elife 11 e78182 (2022)
  163. Ternary SNARE complexes in parallel versus anti-parallel orientation: examination of their disassembly using single-molecule force spectroscopy. Liu W, Stout RF, Parpura V. Cell Calcium 52 241-249 (2012)
  164. The influence of cell membrane and SNAP25 linker loop on the dynamics and unzipping of SNARE complex. Shi Y, Zhang Y, Lou J. PLoS One 12 e0176235 (2017)
  165. The mesoscale organization of syntaxin 1A and SNAP25 is determined by SNARE-SNARE interactions. Mertins J, Finke J, Sies R, Rink KM, Hasenauer J, Lang T. Elife 10 e69236 (2021)
  166. The nature of the Syntaxin4 C-terminus affects Munc18c-supported SNARE assembly. Rehman A, Hu SH, Tnimov Z, Whitten AE, King GJ, Jarrott RJ, Norwood SJ, Alexandrov K, Collins BM, Christie MP, Martin JL. PLoS One 12 e0183366 (2017)
  167. Visualizing Intracellular SNARE Trafficking by Fluorescence Lifetime Imaging Microscopy. Verboogen DRJ, Baranov MV, Ter Beest M, van den Bogaart G. J Vis Exp (2017)
  168. Differential Diffusional Properties in Loose and Tight Docking Prior to Membrane Fusion. Witkowska A, Spindler S, Mahmoodabadi RG, Sandoghdar V, Jahn R. Biophys J 119 2431-2439 (2020)
  169. Exploring the Two Coupled Conformational Changes That Activate the Munc18-1/Syntaxin-1 Complex. Gong J, Wang X, Cui C, Qin Y, Jin Z, Ma C, Yang X. Front Mol Neurosci 14 785696 (2021)
  170. SNARE zippering is hindered by polyphenols in the neuron. Yang Y, Kim SH, Heo P, Kong B, Shin J, Jung YH, Yoon K, Chung WJ, Shin YK, Kweon DH. Biochem Biophys Res Commun 450 831-836 (2014)
  171. Synaptic vesicle fusion without SNARE transmembrane regions. Rizo J, Xu J. Dev Cell 27 124-126 (2013)
  172. Computation of Hemagglutinin Free Energy Difference by the Confinement Method. Boonstra S, Onck PR, van der Giessen E. J Phys Chem B 121 11292-11303 (2017)
  173. Conformational change of Syntaxin-3b in regulating SNARE complex assembly in the ribbon synapses. Gething C, Ferrar J, Misra B, Howells G, Andrzejewski AL, Bowen ME, Choi UB. Sci Rep 12 9261 (2022)
  174. Fusion pores with low conductance are cation selective. Delacruz JB, Sharma S, Rathore SS, Huang M, Lenz JS, Lindau M. Cell Rep 36 109580 (2021)
  175. SNARE Proteins in Synaptic Vesicle Fusion. Palfreyman MT, West SE, Jorgensen EM. Adv Neurobiol 33 63-118 (2023)
  176. A Membrane-Fusion Model That Exploits a β-to-α Transition in the Hydrophobic Domains of Syntaxin 1A and Synaptobrevin 2. Gundersen CB. Int J Mol Sci 18 E1582 (2017)
  177. Double-Transmembrane Domain of SNAREs Decelerates the Fusion by Increasing the Protein-Lipid Mismatch. Bu B, Tian Z, Li D, Zhang K, Chen W, Ji B, Diao J. J Mol Biol 435 168089 (2023)
  178. Efficient fusion requires a membrane anchor on the vacuolar Qa-SNARE. Wickner W, Lopes K, Song H, Rizo J, Orr A. Mol Biol Cell 34 ar88 (2023)
  179. Mass spectrometry uncovers intermediates and off-pathway complexes for SNARE complex assembly. Hesselbarth J, Schmidt C. Commun Biol 6 198 (2023)
  180. Porosome in Cystic Fibrosis. Jena BP. Discoveries (Craiova) 2 e24 (2014)
  181. Revisiting interaction specificity reveals neuronal and adipocyte Munc18 membrane fusion regulatory proteins differ in their binding interactions with partner SNARE Syntaxins. Christie MP, Hu SH, Whitten AE, Rehman A, Jarrott RJ, King GJ, Collins BM, Martin JL. PLoS One 12 e0187302 (2017)
  182. Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly. Ma L, Jiao J, Zhang Y. Methods Mol Biol 1860 95-114 (2019)
  183. Assembly-promoting protein Munc18c stimulates SNARE-dependent membrane fusion through its SNARE-like peptide. Liu F, He R, Zhu M, Zhou L, Liu Y, Yu H. J Biol Chem 298 102470 (2022)
  184. Identification of residues critical for the extension of Munc18-1 domain 3a. Wang X, Gong J, Zhu L, Chen H, Jin Z, Mo X, Wang S, Yang X, Ma C. BMC Biol 21 158 (2023)