3g6d Citations

Epitope mapping of anti-interleukin-13 neutralizing antibody CNTO607.

J Mol Biol 389 115-23 (2009)
Cited: 30 times
EuropePMC logo PMID: 19361524

Abstract

CNTO607 is a neutralizing anti-interleukin-13 (IL-13) human monoclonal antibody obtained from a phage display library. To determine how this antibody inhibits the biological effect of IL-13, we determined the binding epitope by X-ray crystallography. The crystal structure of the complex between CNTO607 Fab and IL-13 reveals the antibody epitope at the surface formed by helices A and D of IL-13. This epitope overlaps with the IL-4Ralpha/IL-13Ralpha1 receptor-binding site, which explains the neutralizing effect of CNTO607. The extensive antibody interface covers an area of 1000 A(2), which is consistent with the high binding affinity. The key features of the interface are the charge and shape complementarity of the molecules that include two hydrophobic pockets on IL-13 that accommodate Phe32 [complementarity-determining region (CDR) L2] and Trp100a (CDR H3) and a number of salt bridges between basic residues of IL-13 and acidic residues of the antibody. Comparison with the structure of the free Fab shows that the CDR residues do not change their conformation upon complex formation, with the exception of two residues in CDR H3, Trp100a and Asp100b, which change rotamer conformations. To evaluate the relative contribution of the epitope residues to CNTO607 binding, we performed alanine-scanning mutagenesis of the A-D region of IL-13. This study confirmed the primary role of electrostatic interactions for antigen recognition.

Reviews - 3g6d mentioned but not cited (1)

  1. An overview of kinase downregulators and recent advances in discovery approaches. Wang B, Wu H, Hu C, Wang H, Liu J, Wang W, Liu Q. Signal Transduct Target Ther 6 423 (2021)

Articles - 3g6d mentioned but not cited (10)

  1. Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. Vreven T, Moal IH, Vangone A, Pierce BG, Kastritis PL, Torchala M, Chaleil R, Jiménez-García B, Bates PA, Fernandez-Recio J, Bonvin AM, Weng Z. J Mol Biol 427 3031-3041 (2015)
  2. Vaccine-elicited primate antibodies use a distinct approach to the HIV-1 primary receptor binding site informing vaccine redesign. Tran K, Poulsen C, Guenaga J, de Val N, Wilson R, Sundling C, Li Y, Stanfield RL, Wilson IA, Ward AB, Karlsson Hedestam GB, Wyatt RT. Proc Natl Acad Sci U S A 111 E738-47 (2014)
  3. An ultra-specific avian antibody to phosphorylated tau protein reveals a unique mechanism for phosphoepitope recognition. Shih HH, Tu C, Cao W, Klein A, Ramsey R, Fennell BJ, Lambert M, Ní Shúilleabháin D, Autin B, Kouranova E, Laxmanan S, Braithwaite S, Wu L, Ait-Zahra M, Milici AJ, Dumin JA, LaVallie ER, Arai M, Corcoran C, Paulsen JE, Gill D, Cunningham O, Bard J, Mosyak L, Finlay WJ. J Biol Chem 287 44425-44434 (2012)
  4. OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes. Li T, Pantazes RJ, Maranas CD. PLoS One 9 e105954 (2014)
  5. Antibody-protein binding and conformational changes: identifying allosteric signalling pathways to engineer a better effector response. Al Qaraghuli MM, Kubiak-Ossowska K, Ferro VA, Mulheran PA. Sci Rep 10 13696 (2020)
  6. Transitions of CDR-L3 Loop Canonical Cluster Conformations on the Micro-to-Millisecond Timescale. Fernández-Quintero ML, Math BA, Loeffler JR, Liedl KR. Front Immunol 10 2652 (2019)
  7. Exploring protein-protein interactions using the site-identification by ligand competitive saturation methodology. Yu W, Jo S, Lakkaraju SK, Weber DJ, MacKerell AD. Proteins 87 289-301 (2019)
  8. Enhanced sampling of protein conformational states for dynamic cross-docking within the protein-protein docking server SwarmDock. Torchala M, Gerguri T, Chaleil RAG, Gordon P, Russell F, Keshani M, Bates PA. Proteins 88 962-972 (2020)
  9. Structural basis of the broadly neutralizing anti-interferon-α antibody rontalizumab. Maurer B, Bosanac I, Shia S, Kwong M, Corpuz R, Vandlen R, Schmidt K, Eigenbrot C. Protein Sci 24 1440-1450 (2015)
  10. A meta-learning approach for B-cell conformational epitope prediction. Hu YJ, Lin SC, Lin YL, Lin KH, You SN. BMC Bioinformatics 15 378 (2014)


Reviews citing this publication (2)

  1. Current approaches to fine mapping of antigen-antibody interactions. Abbott WM, Damschroder MM, Lowe DC. Immunology 142 526-535 (2014)
  2. Targeting the adaptive immune system: new strategies in the treatment of atherosclerosis. Zarzycka B, Nicolaes GA, Lutgens E. Expert Rev Clin Pharmacol 8 297-313 (2015)

Articles citing this publication (17)

  1. Structure-based engineering of a monoclonal antibody for improved solubility. Wu SJ, Luo J, O'Neil KT, Kang J, Lacy ER, Canziani G, Baker A, Huang M, Tang QM, Raju TS, Jacobs SA, Teplyakov A, Gilliland GL, Feng Y. Protein Eng Des Sel 23 643-651 (2010)
  2. Structural basis of signaling blockade by anti-IL-13 antibody Lebrikizumab. Ultsch M, Bevers J, Nakamura G, Vandlen R, Kelley RF, Wu LC, Eigenbrot C. J Mol Biol 425 1330-1339 (2013)
  3. Structural Characterisation Reveals Mechanism of IL-13-Neutralising Monoclonal Antibody Tralokinumab as Inhibition of Binding to IL-13Rα1 and IL-13Rα2. Popovic B, Breed J, Rees DG, Gardener MJ, Vinall LM, Kemp B, Spooner J, Keen J, Minter R, Uddin F, Colice G, Wilkinson T, Vaughan T, May RD. J Mol Biol 429 208-219 (2017)
  4. Mechanisms of self-association of a human monoclonal antibody CNTO607. Bethea D, Wu SJ, Luo J, Hyun L, Lacy ER, Teplyakov A, Jacobs SA, O'Neil KT, Gilliland GL, Feng Y. Protein Eng Des Sel 25 531-537 (2012)
  5. Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. Pandit D, Tuske SJ, Coales SJ, E SY, Liu A, Lee JE, Morrow JA, Nemeth JF, Hamuro Y. J Mol Recognit 25 114-124 (2012)
  6. Lateral clustering of TLR3:dsRNA signaling units revealed by TLR3ecd:3Fabs quaternary structure. Luo J, Obmolova G, Malia TJ, Wu SJ, Duffy KE, Marion JD, Bell JK, Ge P, Zhou ZH, Teplyakov A, Zhao Y, Lamb RJ, Jordan JL, San Mateo LR, Sweet RW, Gilliland GL. J Mol Biol 421 112-124 (2012)
  7. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering. Geoghegan JC, Fleming R, Damschroder M, Bishop SM, Sathish HA, Esfandiary R. MAbs 8 941-950 (2016)
  8. Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy. Wu J, Schultz JS, Weldon CL, Sule SV, Chai Q, Geng SB, Dickinson CD, Tessier PM. Protein Eng Des Sel 28 403-414 (2015)
  9. Computational Characterization of Antibody-Excipient Interactions for Rational Excipient Selection Using the Site Identification by Ligand Competitive Saturation-Biologics Approach. Jo S, Xu A, Curtis JE, Somani S, MacKerell AD. Mol Pharm 17 4323-4333 (2020)
  10. Signature biochemical properties of broadly cross-reactive HIV-1 neutralizing antibodies in human plasma. Sajadi MM, Lewis GK, Seaman MS, Guan Y, Redfield RR, DeVico AL. J Virol 86 5014-5025 (2012)
  11. Equilibrium and kinetic analysis of human interleukin-13 and IL-13 receptor alpha-2 complex formation. Lacy ER. J Mol Recognit 25 184-191 (2012)
  12. Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Ahmed L, Gupta P, Martin KP, Scheer JM, Nixon AE, Kumar S. Proc Natl Acad Sci U S A 118 e2020577118 (2021)
  13. Binding symmetry and surface flexibility mediate antibody self-association. Schrag JD, Picard MÈ, Gaudreault F, Gagnon LP, Baardsnes J, Manenda MS, Sheff J, Deprez C, Baptista C, Hogues H, Kelly JF, Purisima EO, Shi R, Sulea T. MAbs 11 1300-1318 (2019)
  14. Application of Site-Identification by Ligand Competitive Saturation in Computer-Aided Drug Design. Goel H, Hazel A, Yu W, Jo S, MacKerell AD. New J Chem 46 919-932 (2022)
  15. Characterization and Modeling of Reversible Antibody Self-Association Provide Insights into Behavior, Prediction, and Correction. Mieczkowski C, Cheng A, Fischmann T, Hsieh M, Baker J, Uchida M, Raghunathan G, Strickland C, Fayadat-Dilman L. Antibodies (Basel) 10 8 (2021)
  16. Raman spectroscopy characterization of antibody phases in serum. Baker AE, Mantz AR, Chiu ML. MAbs 6 1509-1517 (2014)
  17. Two physics-based models for pH-dependent calculations of protein solubility. Spassov VZ, Kemmish H, Yan L. Protein Sci 31 e4299 (2022)