3fwe Citations

Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding.

Proc Natl Acad Sci U S A 106 16604-9 (2009)
Cited: 49 times
EuropePMC logo PMID: 19805344

Abstract

The binding of cAMP to the Escherichia coli catabolite gene activator protein (CAP) produces a conformational change that enables it to bind specific DNA sequences and regulate transcription, which it cannot do in the absence of the nucleotide. The crystal structures of the unliganded CAP containing a D138L mutation and the unliganded WT CAP were determined at 2.3 and 3.6 A resolution, respectively, and reveal that the two DNA binding domains have dimerized into one rigid body and their two DNA recognition helices become buried. The WT structure shows multiple orientations of this rigid body relative to the nucleotide binding domain supporting earlier biochemical data suggesting that the inactive form exists in an equilibrium among different conformations. Comparison of the structures of the liganded and unliganded CAP suggests that cAMP stabilizes the active DNA binding conformation of CAP through the interactions that the N(6) of the adenosine makes with the C-helices. These interactions are associated with the reorientation and elongation of the C-helices that precludes the formation of the inactive structure.

Reviews - 3fwe mentioned but not cited (1)

  1. Mutations in the Global Transcription Factor CRP/CAP: Insights from Experimental Evolution and Deep Sequencing. Frendorf PO, Lauritsen I, Sekowska A, Danchin A, Nørholm MHH. Comput Struct Biotechnol J 17 730-736 (2019)

Articles - 3fwe mentioned but not cited (3)

  1. Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Sharma H, Yu S, Kong J, Wang J, Steitz TA. Proc Natl Acad Sci U S A 106 16604-16609 (2009)
  2. Protein purification and crystallization artifacts: The tale usually not told. Niedzialkowska E, Gasiorowska O, Handing KB, Majorek KA, Porebski PJ, Shabalin IG, Zasadzinska E, Cymborowski M, Minor W. Protein Sci 25 720-733 (2016)
  3. SIMBAD: a sequence-independent molecular-replacement pipeline. Simpkin AJ, Simkovic F, Thomas JMH, Savko M, Lebedev A, Uski V, Ballard C, Wojdyr M, Wu R, Sanishvili R, Xu Y, Lisa MN, Buschiazzo A, Shepard W, Rigden DJ, Keegan RM. Acta Crystallogr D Struct Biol 74 595-605 (2018)


Reviews citing this publication (5)

  1. The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite. Huergo LF, Dixon R. Microbiol Mol Biol Rev 79 419-435 (2015)
  2. Cyclic-AMP and bacterial cyclic-AMP receptor proteins revisited: adaptation for different ecological niches. Green J, Stapleton MR, Smith LJ, Artymiuk PJ, Kahramanoglou C, Hunt DM, Buxton RS. Curr Opin Microbiol 18 1-7 (2014)
  3. cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Geng H, Jiang R. Appl Microbiol Biotechnol 99 4533-4543 (2015)
  4. cAMP Activation of the cAMP Receptor Protein, a Model Bacterial Transcription Factor. Youn H, Carranza M. J Microbiol 61 277-287 (2023)
  5. Structural and functional diversity of bacterial cyclic nucleotide perception by CRP proteins. Krol E, Werel L, Essen LO, Becker A. Microlife 4 uqad024 (2023)

Articles citing this publication (40)

  1. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Yang H, Yang S, Kong J, Dong A, Yu S. Nat Protoc 10 382-396 (2015)
  2. Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Llácer JL, Espinosa J, Castells MA, Contreras A, Forchhammer K, Rubio V. Proc Natl Acad Sci U S A 107 15397-15402 (2010)
  3. Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Zhao MX, Jiang YL, He YX, Chen YF, Teng YB, Chen Y, Zhang CC, Zhou CZ. Proc Natl Acad Sci U S A 107 12487-12492 (2010)
  4. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel. Marques-Carvalho MJ, Sahoo N, Muskett FW, Vieira-Pires RS, Gabant G, Cadene M, Schönherr R, Morais-Cabral JH. J Mol Biol 423 34-46 (2012)
  5. Cyclic AMP regulation of protein lysine acetylation in Mycobacterium tuberculosis. Lee HJ, Lang PT, Fortune SM, Sassetti CM, Alber T. Nat Struct Mol Biol 19 811-818 (2012)
  6. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains. Mari SA, Pessoa J, Altieri S, Hensen U, Thomas L, Morais-Cabral JH, Müller DJ. Proc Natl Acad Sci U S A 108 20802-20807 (2011)
  7. Aspartate 141 is the fourth ligand of the oxygen-sensing [4Fe-4S]2+ cluster of Bacillus subtilis transcriptional regulator Fnr. Gruner I, Frädrich C, Böttger LH, Trautwein AX, Jahn D, Härtig E. J Biol Chem 286 2017-2021 (2011)
  8. Energetic redistribution in allostery to execute protein function. Liu J, Nussinov R. Proc Natl Acad Sci U S A 114 7480-7482 (2017)
  9. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). Chong H, Yeow J, Wang I, Song H, Jiang R. PLoS One 8 e77422 (2013)
  10. Ligand responses of Vfr, the virulence factor regulator from Pseudomonas aeruginosa. Serate J, Roberts GP, Berg O, Youn H. J Bacteriol 193 4859-4868 (2011)
  11. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors. Townsend PD, Jungwirth B, Pojer F, Bußmann M, Money VA, Cole ST, Pühler A, Tauch A, Bott M, Cann MJ, Pohl E. PLoS One 9 e113265 (2014)
  12. Resolution of mixed site DNA complexes with dimer-forming minor-groove binders by using electrospray ionization mass spectrometry: compound structure and DNA sequence effects. Laughlin S, Wang S, Kumar A, Farahat AA, Boykin DW, Wilson WD. Chemistry 21 5528-5539 (2015)
  13. Structures of inactive CRP species reveal the atomic details of the allosteric transition that discriminates cyclic nucleotide second messengers. Seok SH, Im H, Won HS, Seo MD, Lee YS, Yoon HJ, Cha MJ, Park JY, Lee BJ. Acta Crystallogr D Biol Crystallogr 70 1726-1742 (2014)
  14. The structure of Bradyrhizobium japonicum transcription factor FixK2 unveils sites of DNA binding and oxidation. Bonnet M, Kurz M, Mesa S, Briand C, Hennecke H, Grütter MG. J Biol Chem 288 14238-14246 (2013)
  15. An HcpR homologue from Desulfovibrio desulfuricans and its possible role in nitrate reduction and nitrosative stress. Cadby IT, Busby SJ, Cole JA. Biochem Soc Trans 39 224-229 (2011)
  16. The N-terminal capping propensities of the D-helix modulate the allosteric activation of the Escherichia coli cAMP receptor protein. Yu S, Maillard RA, Gribenko AV, Lee JC. J Biol Chem 287 39402-39411 (2012)
  17. X-ray crystal structure of TTHB099, a CRP/FNR superfamily transcriptional regulator from Thermus thermophilus HB8, reveals a DNA-binding protein with no required allosteric effector molecule. Agari Y, Kuramitsu S, Shinkai A. Proteins 80 1490-1494 (2012)
  18. Crystal structure of the Pseudomonas aeruginosa virulence factor regulator. Cordes TJ, Worzalla GA, Ginster AM, Forest KT. J Bacteriol 193 4069-4074 (2011)
  19. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA. Benabbas A, Karunakaran V, Youn H, Poulos TL, Champion PM. J Biol Chem 287 21729-21740 (2012)
  20. Asymmetric configurations in a reengineered homodimer reveal multiple subunit communication pathways in protein allostery. Lanfranco MF, Gárate F, Engdahl AJ, Maillard RA. J Biol Chem 292 6086-6093 (2017)
  21. Structural biology: Dynamic binding. Baldwin AJ, Kay LE. Nature 488 165-166 (2012)
  22. DNA-binding properties of a cGMP-binding CRP homologue that controls development of metabolically dormant cysts of Rhodospirillum centenum. Roychowdhury S, Dong Q, Bauer CE. Microbiology (Reading) 161 2256-2264 (2015)
  23. Modulation of allosteric behavior through adjustment of the differential stability of the two interacting domains in E. coli cAMP receptor protein. Li J, Lee JC. Biophys Chem 159 210-216 (2011)
  24. Theoretical analysis of inducer and operator binding for cyclic-AMP receptor protein mutants. Einav T, Duque J, Phillips R. PLoS One 13 e0204275 (2018)
  25. Directed evolution of the Escherichia coli cAMP receptor protein at the cAMP pocket. Gunasekara SM, Hicks MN, Park J, Brooks CL, Serate J, Saunders CV, Grover SK, Goto JJ, Lee JW, Youn H. J Biol Chem 290 26587-26596 (2015)
  26. Revisiting the mechanism of activation of cyclic AMP receptor protein (CRP) by cAMP in Escherichia coli: lessons from a subunit-crosslinked form of CRP. Saha A, Mukhopadhyay J, Datta AB, Parrack P. FEBS Lett 589 358-363 (2015)
  27. Structures during binding of cAMP receptor to promoter DNA: promoter search slowed by non-specific sites. Porschke D. Eur Biophys J 41 415-424 (2012)
  28. Using student-generated UV-induced Escherichia coli mutants in a directed inquiry undergraduate genetics laboratory. Healy FG, Livingstone KD. Genetics 186 33-39 (2010)
  29. Neglected role of cAMP receptor protein monomer. Tutar Y. Mol Biol Rep 39 4261-4265 (2012)
  30. RedB, a Member of the CRP/FNR Family, Functions as a Transcriptional Redox Brake. Ke N, Kumka JE, Fang M, Weaver B, Burstyn JN, Bauer CE. Microbiol Spectr 10 e0235322 (2022)
  31. The 1.6Å resolution structure of activated D138L mutant of catabolite gene activator protein with two cAMP bound in each monomer. Tao W, Gao Z, Gao Z, Zhou J, Huang Z, Dong Y, Yu S. Int J Biol Macromol 48 459-465 (2011)
  32. Allostery-driven changes in dynamics regulate the activation of bacterial copper transcription factor. Yakobov I, Mandato A, Hofmann L, Singewald K, Shenberger Y, Gevorkyan-Airapetov L, Saxena S, Ruthstein S. Protein Sci 31 e4309 (2022)
  33. C-terminal dimerization of apo-cyclic AMP receptor protein validated in solution. Sim DW, Choi JW, Kim JH, Ryu KS, Kim M, Yu HW, Jo KS, Kim EH, Seo MD, Jeon YH, Lee BJ, Kim YP, Won HS. FEBS Lett 591 1064-1070 (2017)
  34. Crystallization and preliminary X-ray analysis of the ligand-binding domain of cAMP receptor protein. Tao W, Li F, Liu H, Bao X, Gong W, Yu S. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 516-519 (2010)
  35. Differential effects of mutations of POPDC proteins on heteromeric interaction and membrane trafficking. Swan AH, Schindler RFR, Savarese M, Mayer I, Rinné S, Bleser F, Schänzer A, Hahn A, Sabatelli M, Perna F, Chapman K, Pfuhl M, Spivey AC, Decher N, Udd B, Tasca G, Brand T. Acta Neuropathol Commun 11 4 (2023)
  36. Discovery of Spatially Cohesive Itemsets in Three-Dimensional Protein Structures. Zhou C, Meysman P, Cule B, Laukens K, Goethals B. IEEE/ACM Trans Comput Biol Bioinform 11 814-825 (2014)
  37. Green fluorescent cAMP indicator of high speed and specificity suitable for neuronal live-cell imaging. Kawata S, Mukai Y, Nishimura Y, Takahashi T, Saitoh N. Proc Natl Acad Sci U S A 119 e2122618119 (2022)
  38. Protocol for determining protein dynamics using FT-IR spectroscopy. Shen H, Fu C, Zhang J, Feng B, Yu S. STAR Protoc 4 102587 (2023)
  39. Structural Energy Landscapes and Plasticity of the Microstates of Apo Escherichia coli cAMP Receptor Protein. Chkheidze R, Evangelista W, White MA, Yin YW, Lee JC. Biochemistry 59 460-470 (2020)
  40. cAMP is an allosteric modulator of DNA-binding specificity in the cAMP receptor protein from Mycobacterium tuberculosis. Gárate F, Dokas S, Lanfranco MF, Canavan C, Wang I, Correia JJ, Maillard RA. J Biol Chem 296 100480 (2021)