3ftk Citations

Molecular mechanisms for protein-encoded inheritance.

Nat Struct Mol Biol 16 973-8 (2009)
Related entries: 3fod, 3fpo, 3fr1, 3fth, 3ftl, 3ftr, 3fva, 4np8

Cited: 152 times
EuropePMC logo PMID: 19684598

Abstract

In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of beta-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct beta-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

Reviews - 3ftk mentioned but not cited (1)

Articles - 3ftk mentioned but not cited (4)

  1. Molecular mechanisms for protein-encoded inheritance. Wiltzius JJ, Landau M, Nelson R, Sawaya MR, Apostol MI, Goldschmidt L, Soriaga AB, Cascio D, Rajashankar K, Eisenberg D. Nat. Struct. Mol. Biol. 16 973-978 (2009)
  2. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. EMBO J 39 e102864 (2020)
  3. Interplay between peptide bond geometrical parameters in nonglobular structural contexts. Esposito L, Balasco N, De Simone A, Berisio R, Vitagliano L. Biomed Res Int 2013 326914 (2013)
  4. The zipper groups of the amyloid state of proteins. Stroud JC. Acta Crystallogr. D Biol. Crystallogr. 69 540-545 (2013)


Reviews citing this publication (40)

  1. The amyloid state of proteins in human diseases. Eisenberg D, Jucker M. Cell 148 1188-1203 (2012)
  2. Cellular strategies for controlling protein aggregation. Tyedmers J, Mogk A, Bukau B. Nat Rev Mol Cell Biol 11 777-788 (2010)
  3. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. King OD, Gitler AD, Shorter J. Brain Res. 1462 61-80 (2012)
  4. Biology of amyloid: structure, function, and regulation. Greenwald J, Riek R. Structure 18 1244-1260 (2010)
  5. A diversity of assembly mechanisms of a generic amyloid fold. Eichner T, Radford SE. Mol. Cell 43 8-18 (2011)
  6. Amyloid structure: conformational diversity and consequences. Toyama BH, Weissman JS. Annu. Rev. Biochem. 80 557-585 (2011)
  7. The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Turoverov KK, Kuznetsova IM, Uversky VN. Prog. Biophys. Mol. Biol. 102 73-84 (2010)
  8. Recent progress in understanding Alzheimer's β-amyloid structures. Fändrich M, Schmidt M, Grigorieff N. Trends Biochem. Sci. 36 338-345 (2011)
  9. Prion-like aggregates: infectious agents in human disease. Westermark GT, Westermark P. Trends Mol Med 16 501-507 (2010)
  10. Principles governing oligomer formation in amyloidogenic peptides. Straub JE, Thirumalai D. Curr. Opin. Struct. Biol. 20 187-195 (2010)
  11. RNA-binding proteins with prion-like domains in health and disease. Harrison AF, Shorter J. Biochem. J. 474 1417-1438 (2017)
  12. Propagation of Tau Aggregates and Neurodegeneration. Goedert M, Eisenberg DS, Crowther RA. Annu. Rev. Neurosci. 40 189-210 (2017)
  13. Considering protonation as a posttranslational modification regulating protein structure and function. Schönichen A, Webb BA, Jacobson MP, Barber DL. Annu Rev Biophys 42 289-314 (2013)
  14. Structural Studies of Amyloid Proteins at the Molecular Level. Eisenberg DS, Sawaya MR. Annu. Rev. Biochem. 86 69-95 (2017)
  15. Emergence and natural selection of drug-resistant prions. Shorter J. Mol Biosyst 6 1115-1130 (2010)
  16. Evolutionary selection for protein aggregation. Sanchez de Groot N, Torrent M, Villar-Piqué A, Lang B, Ventura S, Gsponer J, Babu MM. Biochem. Soc. Trans. 40 1032-1037 (2012)
  17. Prions and protein-folding diseases. Norrby E. J. Intern. Med. 270 1-14 (2011)
  18. Prions: what are they good for? Si K. Annu. Rev. Cell Dev. Biol. 31 149-169 (2015)
  19. Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. Kell DB, Pretorius E. Prog. Biophys. Mol. Biol. 123 16-41 (2017)
  20. Ubiquitous amyloids. Pulawski W, Ghoshdastider U, Andrisano V, Filipek S. Appl. Biochem. Biotechnol. 166 1626-1643 (2012)
  21. Prion and prion-like diseases in animals. Aguilar-Calvo P, García C, Espinosa JC, Andreoletti O, Torres JM. Virus Res. 207 82-93 (2015)
  22. Prion strains and amyloid polymorphism influence phenotypic variation. Stein KC, True HL. PLoS Pathog. 10 e1004328 (2014)
  23. The formation, function and regulation of amyloids: insights from structural biology. Landreh M, Sawaya MR, Hipp MS, Eisenberg DS, Wüthrich K, Hartl FU. J. Intern. Med. 280 164-176 (2016)
  24. Synthetic prions and other human neurodegenerative proteinopathies. Le NT, Narkiewicz J, Aulić S, Salzano G, Tran HT, Scaini D, Moda F, Giachin G, Legname G. Virus Res. 207 25-37 (2015)
  25. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Front Bioeng Biotechnol 9 641372 (2021)
  26. Prion-like properties of disease-relevant proteins in amyotrophic lateral sclerosis. Bräuer S, Zimyanin V, Hermann A. J Neural Transm (Vienna) 125 591-613 (2018)
  27. Toward the Atomic Structure of PrPSc. Rodriguez JA, Jiang L, Eisenberg DS. Cold Spring Harb Perspect Biol 9 (2017)
  28. Biology and Genetics of PrP Prion Strains. Ghaemmaghami S. Cold Spring Harb Perspect Med 7 (2017)
  29. Green Rust: The Simple Organizing 'Seed' of All Life? Russell MJ. Life (Basel) 8 (2018)
  30. Crystallographic studies on protein misfolding: Domain swapping and amyloid formation in the SH3 domain. Cámara-Artigas A. Arch. Biochem. Biophys. 602 116-126 (2016)
  31. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Front Mol Neurosci 14 670513 (2021)
  32. Comparing the Folds of Prions and Other Pathogenic Amyloids. Flores-Fernández JM, Rathod V, Wille H. Pathogens 7 (2018)
  33. Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. Chatani E, Yuzu K, Ohhashi Y, Goto Y. Int J Mol Sci 22 4349 (2021)
  34. Structural mechanisms of oligomer and amyloid fibril formation by the prion protein. Sengupta I, Udgaonkar JB. Chem. Commun. (Camb.) 54 6230-6242 (2018)
  35. Cellular toxicity of scrapie prions in prion diseases; a biochemical and molecular overview. Esmaili M, Eldeeb M. Mol Biol Rep 50 1743-1752 (2023)
  36. Challenges in sample preparation and structure determination of amyloids by cryo-EM. Zielinski M, Röder C, Schröder GF. J Biol Chem 297 100938 (2021)
  37. Fused in Sarcoma: Properties, Self-Assembly and Correlation with Neurodegenerative Diseases. Chen C, Ding X, Akram N, Xue S, Luo SZ. Molecules 24 (2019)
  38. Insights into the Structural Conformations of the Tau Protein in Different Aggregation Status. Pinzi L, Bisi N, Sorbi C, Franchini S, Tonali N, Rastelli G. Molecules 28 4544 (2023)
  39. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Loh D, Reiter RJ. Molecules 27 705 (2022)
  40. Why Study Functional Amyloids? Lessons from the Repeat Domain of Pmel17. McGlinchey RP, Lee JC. J. Mol. Biol. 430 3696-3706 (2018)

Articles citing this publication (107)

  1. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Goldschmidt L, Teng PK, Riek R, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 107 3487-3492 (2010)
  2. Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L, Zirafi O, Stevens JT, Münch J, Baker D, Eisenberg D. Nature 475 96-100 (2011)
  3. Prion-like disorders: blurring the divide between transmissibility and infectivity. Cushman M, Johnson BS, King OD, Gitler AD, Shorter J. J. Cell. Sci. 123 1191-1201 (2010)
  4. A new structural model of Aβ40 fibrils. Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A. J. Am. Chem. Soc. 133 16013-16022 (2011)
  5. Molecular basis for amyloid-beta polymorphism. Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 108 16938-16943 (2011)
  6. Towards a pharmacophore for amyloid. Landau M, Sawaya MR, Faull KF, Laganowsky A, Jiang L, Sievers SA, Liu J, Barrio JR, Eisenberg D. PLoS Biol. 9 e1001080 (2011)
  7. β₂-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Liu C, Sawaya MR, Eisenberg D. Nat. Struct. Mol. Biol. 18 49-55 (2011)
  8. Globular domain of the prion protein needs to be unlocked by domain swapping to support prion protein conversion. Hafner-Bratkovic I, Bester R, Pristovsek P, Gaedtke L, Veranic P, Gaspersic J, Mancek-Keber M, Avbelj M, Polymenidou M, Julius C, Aguzzi A, Vorberg I, Jerala R. J. Biol. Chem. 286 12149-12156 (2011)
  9. Cellular strategies for regulating functional and nonfunctional protein aggregation. Gsponer J, Babu MM. Cell Rep 2 1425-1437 (2012)
  10. Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic β-sheet mimics. Liu C, Sawaya MR, Cheng PN, Zheng J, Nowick JS, Eisenberg D. J. Am. Chem. Soc. 133 6736-6744 (2011)
  11. Two amyloid States of the prion protein display significantly different folding patterns. Ostapchenko VG, Sawaya MR, Makarava N, Savtchenko R, Nilsson KP, Eisenberg D, Baskakov IV. J. Mol. Biol. 400 908-921 (2010)
  12. Distinct prion strains are defined by amyloid core structure and chaperone binding site dynamics. Frederick KK, Debelouchina GT, Kayatekin C, Dorminy T, Jacavone AC, Griffin RG, Lindquist S. Chem. Biol. 21 295-305 (2014)
  13. Crystal structure of a human prion protein fragment reveals a motif for oligomer formation. Apostol MI, Perry K, Surewicz WK. J. Am. Chem. Soc. 135 10202-10205 (2013)
  14. Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. Apostol MI, Sawaya MR, Cascio D, Eisenberg D. J. Biol. Chem. 285 29671-29675 (2010)
  15. Resveratrol inhibits the formation of multiple-layered β-sheet oligomers of the human islet amyloid polypeptide segment 22-27. Jiang P, Li W, Shea JE, Mu Y. Biophys. J. 100 1550-1558 (2011)
  16. Atomic structures suggest determinants of transmission barriers in mammalian prion disease. Apostol MI, Wiltzius JJ, Sawaya MR, Cascio D, Eisenberg D. Biochemistry 50 2456-2463 (2011)
  17. Segmental polymorphism in a functional amyloid. Hu KN, McGlinchey RP, Wickner RB, Tycko R. Biophys. J. 101 2242-2250 (2011)
  18. Common features at the start of the neurodegeneration cascade. Hervás R, Oroz J, Galera-Prat A, Goñi O, Valbuena A, Vera AM, Gómez-Sicilia A, Losada-Urzáiz F, Uversky VN, Menéndez M, Laurents DV, Bruix M, Carrión-Vázquez M. PLoS Biol. 10 e1001335 (2012)
  19. Structure and dynamics of amyloid-β segmental polymorphisms. Berhanu WM, Hansmann UH. PLoS ONE 7 e41479 (2012)
  20. Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences. Hartman K, Brender JR, Monde K, Ono A, Evans ML, Popovych N, Chapman MR, Ramamoorthy A. PeerJ 1 e5 (2013)
  21. The Surprising Role of Amyloid Fibrils in HIV Infection. Castellano LM, Shorter J. Biology (Basel) 1 58-80 (2012)
  22. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region. Cobb NJ, Apostol MI, Chen S, Smirnovas V, Surewicz WK. J. Biol. Chem. 289 2643-2650 (2014)
  23. A DNA-promoted amyloid proteinopathy in Escherichia coli. Fernández-Tresguerres ME, de la Espina SM, Gasset-Rosa F, Giraldo R. Mol. Microbiol. 77 1456-1469 (2010)
  24. Beta structure motifs of islet amyloid polypeptides identified through surface-mediated assemblies. Mao XB, Wang CX, Wu XK, Ma XJ, Liu L, Zhang L, Niu L, Guo YY, Li DH, Yang YL, Wang C. Proc. Natl. Acad. Sci. U.S.A. 108 19605-19610 (2011)
  25. Polymorphism of Amyloid Fibrils In Vivo. Annamalai K, Gührs KH, Koehler R, Schmidt M, Michel H, Loos C, Gaffney PM, Sigurdson CJ, Hegenbart U, Schönland S, Fändrich M. Angew. Chem. Int. Ed. Engl. 55 4822-4825 (2016)
  26. Systematic examination of polymorphism in amyloid fibrils by molecular-dynamics simulation. Berryman JT, Radford SE, Harris SA. Biophys. J. 100 2234-2242 (2011)
  27. Driving forces and structural determinants of steric zipper peptide oligomer formation elucidated by atomistic simulations. Matthes D, Gapsys V, de Groot BL. J. Mol. Biol. 421 390-416 (2012)
  28. Structural polymorphism in amyloids: new insights from studies with Y145Stop prion protein fibrils. Jones EM, Wu B, Surewicz K, Nadaud PS, Helmus JJ, Chen S, Jaroniec CP, Surewicz WK. J. Biol. Chem. 286 42777-42784 (2011)
  29. Molecular Basis of Orb2 Amyloidogenesis and Blockade of Memory Consolidation. Hervás R, Li L, Majumdar A, Fernández-Ramírez Mdel C, Unruh JR, Slaughter BD, Galera-Prat A, Santana E, Suzuki M, Nagai Y, Bruix M, Casas-Tintó S, Menéndez M, Laurents DV, Si K, Carrión-Vázquez M. PLoS Biol. 14 e1002361 (2016)
  30. Structure of the β2-α2 loop and interspecies prion transmission. Bett C, Fernández-Borges N, Kurt TD, Lucero M, Nilsson KP, Castilla J, Sigurdson CJ. FASEB J. 26 2868-2876 (2012)
  31. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. Krotee P, Rodriguez JA, Sawaya MR, Cascio D, Reyes FE, Shi D, Hattne J, Nannenga BL, Oskarsson ME, Philipp S, Griner S, Jiang L, Glabe CG, Westermark GT, Gonen T, Eisenberg DS. Elife 6 (2017)
  32. Mapping the conformational dynamics and pathways of spontaneous steric zipper Peptide oligomerization. Matthes D, Gapsys V, Daebel V, de Groot BL. PLoS ONE 6 e19129 (2011)
  33. Polymorphic triple beta-sheet structures contribute to amide hydrogen/deuterium (H/D) exchange protection in the Alzheimer amyloid beta42 peptide. Ma B, Nussinov R. J. Biol. Chem. 286 34244-34253 (2011)
  34. Polymorphism of β2-microglobulin amyloid fibrils manifested by ultrasonication-enhanced fibril formation in trifluoroethanol. Chatani E, Yagi H, Naiki H, Goto Y. J. Biol. Chem. 287 22827-22837 (2012)
  35. Human prion protein sequence elements impede cross-species chronic wasting disease transmission. Kurt TD, Jiang L, Fernández-Borges N, Bett C, Liu J, Yang T, Spraker TR, Castilla J, Eisenberg D, Kong Q, Sigurdson CJ. J. Clin. Invest. 125 1485-1496 (2015)
  36. Molecular dynamic simulation of wild type and mutants of the polymorphic amyloid NNQNTF segments of elk prion: structural stability and thermodynamic of association. Berhanu WM, Masunov AE. Biopolymers 95 573-590 (2011)
  37. Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Cao Q, Boyer DR, Sawaya MR, Ge P, Eisenberg DS. Nat Struct Mol Biol 26 619-627 (2019)
  38. Structure-based inhibitors of tau aggregation. Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray K, Gonen T, Eisenberg DS. Nat Chem 10 170-176 (2018)
  39. Extensive diversity of prion strains is defined by differential chaperone interactions and distinct amyloidogenic regions. Stein KC, True HL. PLoS Genet. 10 e1004337 (2014)
  40. Protein structure along the order-disorder continuum. Fisher CK, Stultz CM. J. Am. Chem. Soc. 133 10022-10025 (2011)
  41. Structures of segments of α-synuclein fused to maltose-binding protein suggest intermediate states during amyloid formation. Zhao M, Cascio D, Sawaya MR, Eisenberg D. Protein Sci. 20 996-1004 (2011)
  42. An ALS-mutant TDP-43 neurotoxic peptide adopts an anti-parallel β-structure and induces TDP-43 redistribution. Zhu L, Xu M, Yang M, Yang Y, Li Y, Deng J, Ruan L, Liu J, Du S, Liu X, Feng W, Fushimi K, Bigio EH, Mesulam M, Wang C, Wu JY. Hum. Mol. Genet. 23 6863-6877 (2014)
  43. Fibril structures of diabetes-related amylin variants reveal a basis for surface-templated assembly. Gallardo R, Iadanza MG, Xu Y, Heath GR, Foster R, Radford SE, Ranson NA. Nat Struct Mol Biol 27 1048-1056 (2020)
  44. Myopathy-causing mutations in an HSP40 chaperone disrupt processing of specific client conformers. Stein KC, Bengoechea R, Harms MB, Weihl CC, True HL. J. Biol. Chem. 289 21120-21130 (2014)
  45. Peptides organized as bilayer membranes. Childers WS, Mehta AK, Ni R, Taylor JV, Lynn DG. Angew. Chem. Int. Ed. Engl. 49 4104-4107 (2010)
  46. Defining the conformational features of anchorless, poorly neuroinvasive prions. Bett C, Kurt TD, Lucero M, Trejo M, Rozemuller AJ, Kong Q, Nilsson KP, Masliah E, Oldstone MB, Sigurdson CJ. PLoS Pathog. 9 e1003280 (2013)
  47. Spontaneous variants of the [RNQ+] prion in yeast demonstrate the extensive conformational diversity possible with prion proteins. Huang VJ, Stein KC, True HL. PLoS ONE 8 e79582 (2013)
  48. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. Berhanu WM, Masunov AE. J. Biomol. Struct. Dyn. 33 1399-1411 (2015)
  49. Countering amyloid polymorphism and drug resistance with minimal drug cocktails. Duennwald ML, Shorter J. Prion 4 244-251 (2010)
  50. Identification and removal of proteins that co-purify with infectious prion protein improves the analysis of its secondary structure. Moore RA, Timmes AG, Wilmarth PA, Safronetz D, Priola SA. Proteomics 11 3853-3865 (2011)
  51. Selenomethionine incorporation into amyloid sequences regulates fibrillogenesis and toxicity. Martínez J, Lisa S, Sánchez R, Kowalczyk W, Zurita E, Teixidó M, Giralt E, Andreu D, Avila J, Gasset M. PLoS ONE 6 e27999 (2011)
  52. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Schmidt A, Annamalai K, Schmidt M, Grigorieff N, Fändrich M. Proc. Natl. Acad. Sci. U.S.A. 113 6200-6205 (2016)
  53. De novo design and experimental characterization of ultrashort self-associating peptides. Smadbeck J, Chan KH, Khoury GA, Xue B, Robinson RC, Hauser CA, Floudas CA. PLoS Comput. Biol. 10 e1003718 (2014)
  54. Hierarchical organization in the amyloid core of yeast prion protein Ure2. Ngo S, Gu L, Guo Z. J. Biol. Chem. 286 29691-29699 (2011)
  55. Minimalist design of water-soluble cross-beta architecture. Biancalana M, Makabe K, Koide S. Proc. Natl. Acad. Sci. U.S.A. 107 3469-3474 (2010)
  56. The structural intolerance of the PrP alpha-fold for polar substitution of the helix-3 methionines. Lisa S, Meli M, Cabello G, Gabizon R, Colombo G, Gasset M. Cell. Mol. Life Sci. 67 2825-2838 (2010)
  57. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Guenther EL, Ge P, Trinh H, Sawaya MR, Cascio D, Boyer DR, Gonen T, Zhou ZH, Eisenberg DS. Nat. Struct. Mol. Biol. 25 311-319 (2018)
  58. Inhibition of human amylin fibril formation by insulin-mimetic vanadium complexes. He L, Wang X, Zhao C, Zhu D, Du W. Metallomics 6 1087-1096 (2014)
  59. Ruthenium complexes as novel inhibitors of human islet amyloid polypeptide fibril formation. He L, Wang X, Zhao C, Wang H, Du W. Metallomics 5 1599-1603 (2013)
  60. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics. Berhanu WM, Masunov AE. Biopolymers 98 131-144 (2012)
  61. Amyloid assemblies: protein legos at a crossroads in bottom-up synthetic biology. Giraldo R. Chembiochem 11 2347-2357 (2010)
  62. Disulfide mapping reveals the domain swapping as the crucial process of the structural conversion of prion protein. Hafner-Bratkovič I, Jerala R. Prion 5 56-59 (2011)
  63. Inter-species cross-seeding: stability and assembly of rat-human amylin aggregates. Berhanu WM, Hansmann UH. PLoS ONE 9 e97051 (2014)
  64. Physical basis of amyloid fibril polymorphism. Close W, Neumann M, Schmidt A, Hora M, Annamalai K, Schmidt M, Reif B, Schmidt V, Grigorieff N, Fändrich M. Nat Commun 9 699 (2018)
  65. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors. Berhanu WM, Masunov AE. J. Biomol. Struct. Dyn. 32 1651-1669 (2014)
  66. Spontaneous aggregation of the insulin-derived steric zipper peptide VEALYL results in different aggregation forms with common features. Matthes D, Daebel V, Meyenberg K, Riedel D, Heim G, Diederichsen U, Lange A, de Groot BL. J. Mol. Biol. 426 362-376 (2014)
  67. Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Gallagher-Jones M, Glynn C, Boyer DR, Martynowycz MW, Hernandez E, Miao J, Zee CT, Novikova IV, Goldschmidt L, McFarlane HT, Helguera GF, Evans JE, Sawaya MR, Cascio D, Eisenberg DS, Gonen T, Rodriguez JA. Nat. Struct. Mol. Biol. 25 131-134 (2018)
  68. Molecular level studies on binding modes of labeling molecules with polyalanine peptides. Mao X, Wang C, Ma X, Zhang M, Liu L, Zhang L, Niu L, Zeng Q, Yang Y, Wang C. Nanoscale 3 1592-1599 (2011)
  69. Origin of life. Primordial genetics: Information transfer in a pre-RNA world based on self-replicating beta-sheet amyloid conformers. Maury CP. J. Theor. Biol. 382 292-297 (2015)
  70. Proteomics analysis of amyloid and nonamyloid prion disease phenotypes reveals both common and divergent mechanisms of neuropathogenesis. Moore RA, Sturdevant DE, Chesebro B, Priola SA. J. Proteome Res. 13 4620-4634 (2014)
  71. Synthetic prions with novel strain-specified properties. Moda F, Le TN, Aulić S, Bistaffa E, Campagnani I, Virgilio T, Indaco A, Palamara L, Andréoletti O, Tagliavini F, Legname G. PLoS Pathog. 11 e1005354 (2015)
  72. The effect of β2-α2 loop mutation on amyloidogenic properties of the prion protein. Dutta A, Chen S, Surewicz WK. FEBS Lett. 587 2918-2923 (2013)
  73. Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate. Rulifson IC, Cao P, Miao L, Kopecky D, Huang L, White RD, Samayoa K, Gardner J, Wu X, Chen K, Tsuruda T, Homann O, Baribault H, Yamane H, Carlson T, Wiltzius J, Li Y. PLoS ONE 11 e0147254 (2016)
  74. Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing. Zhang J. J Mol Model 17 173-179 (2011)
  75. Solvent-induced tuning of internal structure in a protein amyloid protofibril. Jha A, Narayan S, Udgaonkar JB, Krishnamoorthy G. Biophys. J. 103 797-806 (2012)
  76. Distinct position-specific sequence features of hexa-peptides that form amyloid-fibrils: application to discriminate between amyloid fibril and amorphous β-aggregate forming peptide sequences. Thangakani AM, Kumar S, Velmurugan D, Gromiha MM. BMC Bioinformatics 14 Suppl 8 S6 (2013)
  77. Extreme amyloid polymorphism in Staphylococcus aureus virulent PSMα peptides. Salinas N, Colletier JP, Moshe A, Landau M. Nat Commun 9 3512 (2018)
  78. Production of Monoclonal Antibodies to Pathologic β-sheet Oligomeric Conformers in Neurodegenerative Diseases. Goñi F, Martá-Ariza M, Peyser D, Herline K, Wisniewski T. Sci Rep 7 9881 (2017)
  79. RepA-WH1 prionoid: Clues from bacteria on factors governing phase transitions in amyloidogenesis. Giraldo R, Fernández C, Moreno-del Álamo M, Molina-García L, Revilla-García A, Sánchez-Martínez MC, Giménez-Abián JF, Moreno-Díaz de la Espina S. Prion 10 41-49 (2016)
  80. A theoretical study of polymorphism in VQIVYK fibrils. Yang J, Agnihotri MV, Huseby CJ, Kuret J, Singer SJ. Biophys J 120 1396-1416 (2021)
  81. Catechol-containing compounds are a broad class of protein aggregation inhibitors: Redox state is a key determinant of the inhibitory activities. Velander P, Wu L, Hildreth SB, Vogelaar NJ, Mukhopadhyay B, Helm RF, Zhang S, Xu B. Pharmacol Res 184 106409 (2022)
  82. Mechanistic insights into remodeled Tau-derived PHF6 peptide fibrils by Naphthoquinone-Tryptophan hybrids. KrishnaKumar VG, Paul A, Gazit E, Segal D. Sci Rep 8 71 (2018)
  83. Molecular "light switch" [Ru(phen)2dppzidzo](2+) monitoring the aggregation of tau. Gao X, Wang L, Huang HL, Wang LL, Yao JL, Shi S, Yao TM. Analyst 140 7513-7517 (2015)
  84. Amyloid Evolution: Antiparallel Replaced by Parallel. Zanjani AAH, Reynolds NP, Zhang A, Schilling T, Mezzenga R, Berryman JT. Biophys J 118 2526-2536 (2020)
  85. Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Maury CPJ. Cell. Mol. Life Sci. 75 1499-1507 (2018)
  86. Crystal structures of amyloidogenic segments of human transthyretin. Saelices L, Sievers SA, Sawaya MR, Eisenberg DS. Protein Sci. 27 1295-1303 (2018)
  87. Eco-evolutionary trade-offs in the dynamics of prion strain competition. Acevedo S, Stewart AJ. Proc Biol Sci 290 20230905 (2023)
  88. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Protein Sci 32 e4736 (2023)
  89. Optimal atomic-resolution structures of prion AGAAAAGA amyloid fibrils. Zhang J, Sun J, Wu C. J. Theor. Biol. 279 17-28 (2011)
  90. Reversing the amyloid trend: Mechanism of fibril assembly and dissolution of the repeat domain from a human functional amyloid. McGlinchey RP, Lee JC. Isr. J. Chem. 57 613-621 (2017)
  91. Towards the design of anti-amyloid short peptide helices. Roterman I, Banach M, Konieczny L. Bioinformation 14 1-7 (2018)
  92. Dependence of the Formation of Tau and Aβ Peptide Mixed Aggregates on the Secondary Structure of the N-Terminal Region of Aβ. Rojas AV, Maisuradze GG, Scheraga HA. J Phys Chem B 122 7049-7056 (2018)
  93. Disease-specific tau filaments assemble via polymorphic intermediates. Lövestam S, Li D, Wagstaff JL, Kotecha A, Kimanius D, McLaughlin SH, Murzin AG, Freund SMV, Goedert M, Scheres SHW. Nature (2023)
  94. Distal amyloid β-protein fragments template amyloid assembly. Do TD, Sangwan S, de Almeida NEC, Ilitchev AI, Giammona M, Sawaya MR, Buratto SK, Eisenberg DS, Bowers MT. Protein Sci. 27 1181-1190 (2018)
  95. Filamentous Aggregates of Tau Proteins Fulfil Standard Amyloid Criteria Provided by the Fuzzy Oil Drop (FOD) Model. Dułak D, Gadzała M, Banach M, Ptak M, Wiśniowski Z, Konieczny L, Roterman I. Int J Mol Sci 19 (2018)
  96. Glutamine and Asparagine Side Chain Hyperconjugation-Induced Structurally Sensitive Vibrations. Punihaole D, Hong Z, Jakubek RS, Dahlburg EM, Geib S, Asher SA. J Phys Chem B 119 13039-13051 (2015)
  97. Incorporating antagonistic pleiotropy into models for molecular replicators. Qu T, Calabrese P, Singhavi P, Tower J. Biosystems 201 104333 (2021)
  98. MELD-accelerated molecular dynamics help determine amyloid fibril structures. Sharma B, Dill KA. Commun Biol 4 942 (2021)
  99. Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6. Pretti E, Shell MS. Proc Natl Acad Sci U S A 120 e2309995120 (2023)
  100. Regulation of the aggregation behavior of human islet amyloid polypeptide fragment by titanocene complexes. Du W, Gong G, Wang W, Xu J. J. Biol. Inorg. Chem. 22 1065-1074 (2017)
  101. Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents. Perov S, Lidor O, Salinas N, Golan N, Tayeb-Fligelman E, Deshmukh M, Willbold D, Landau M. PLoS Pathog. 15 e1007978 (2019)
  102. Structural Polymorphs Suggest Competing Pathways for the Formation of Amyloid Fibrils That Diverge from a Common Intermediate Species. Buchanan LE, Maj M, Dunkelberger EB, Cheng PN, Nowick JS, Zanni MT. Biochemistry 57 6470-6478 (2018)
  103. Structural consequences of sequence variation in mammalian prion β2α2 loop segments. Glynn C, Hernandez E, Gallagher-Jones M, Miao J, Sigurdson CJ, Rodriguez JA. Front Neurosci 16 960322 (2022)
  104. Structure-based inhibitors halt prion-like seeding by Alzheimer's disease-and tauopathy-derived brain tissue samples. Seidler PM, Boyer DR, Murray KA, Yang TP, Bentzel M, Sawaya MR, Rosenberg G, Cascio D, Williams CK, Newell KL, Ghetti B, DeTure MA, Dickson DW, Vinters HV, Eisenberg DS. J. Biol. Chem. 294 16451-16464 (2019)
  105. The fitness cost and benefit of phase-separated protein deposits. Sanchez de Groot N, Torrent Burgas M, Ravarani CN, Trusina A, Ventura S, Babu MM. Mol. Syst. Biol. 15 e8075 (2019)
  106. Thermostability as a highly dependent prion strain feature. Marín-Moreno A, Aguilar-Calvo P, Moudjou M, Espinosa JC, Béringue V, Torres JM. Sci Rep 9 11396 (2019)
  107. Unique seeding profiles and prion-like propagation of synucleinopathies are highly dependent on the host in human α-synuclein transgenic mice. Lloyd GM, Sorrentino ZA, Quintin S, Gorion KM, Bell BM, Paterno G, Long B, Prokop S, Giasson BI. Acta Neuropathol 143 663-685 (2022)