3fp3 Citations

Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading.

J Biol Chem 284 23852-9 (2009)
Related entries: 3fp2, 3fp4

Cited: 51 times
EuropePMC logo PMID: 19581297

Abstract

The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away, and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.

Articles - 3fp3 mentioned but not cited (5)

  1. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, Kaake RM, Weckstein AR, Owens TW, Gupta M, Pourmal S, Titus EW, Cakir M, Soucheray M, McGregor M, Cakir Z, Jang G, O'Meara MJ, Tummino TA, Zhang Z, Foussard H, Rojc A, Zhou Y, Kuchenov D, Hüttenhain R, Xu J, Eckhardt M, Swaney DL, Fabius JM, Ummadi M, Tutuncuoglu B, Rathore U, Modak M, Haas P, Haas KM, Naing ZZC, Pulido EH, Shi Y, Barrio-Hernandez I, Memon D, Petsalaki E, Dunham A, Marrero MC, Burke D, Koh C, Vallet T, Silvas JA, Azumaya CM, Billesbølle C, Brilot AF, Campbell MG, Diallo A, Dickinson MS, Diwanji D, Herrera N, Hoppe N, Kratochvil HT, Liu Y, Merz GE, Moritz M, Nguyen HC, Nowotny C, Puchades C, Rizo AN, Schulze-Gahmen U, Smith AM, Sun M, Young ID, Zhao J, Asarnow D, Biel J, Bowen A, Braxton JR, Chen J, Chio CM, Chio US, Deshpande I, Doan L, Faust B, Flores S, Jin M, Kim K, Lam VL, Li F, Li J, Li YL, Li Y, Liu X, Lo M, Lopez KE, Melo AA, Moss FR, Nguyen P, Paulino J, Pawar KI, Peters JK, Pospiech TH, Safari M, Sangwan S, Schaefer K, Thomas PV, Thwin AC, Trenker R, Tse E, Tsui TKM, Wang F, Whitis N, Yu Z, Zhang K, Zhang Y, Zhou F, Saltzberg D, QCRG Structural Biology Consortium, Hodder AJ, Shun-Shion AS, Williams DM, White KM, Rosales R, Kehrer T, Miorin L, Moreno E, Patel AH, Rihn S, Khalid MM, Vallejo-Gracia A, Fozouni P, Simoneau CR, Roth TL, Wu D, Karim MA, Ghoussaini M, Dunham I, Berardi F, Weigang S, Chazal M, Park J, Logue J, McGrath M, Weston S, Haupt R, Hastie CJ, Elliott M, Brown F, Burness KA, Reid E, Dorward M, Johnson C, Wilkinson SG, Geyer A, Giesel DM, Baillie C, Raggett S, Leech H, Toth R, Goodman N, Keough KC, Lind AL, Zoonomia Consortium, Klesh RJ, Hemphill KR, Carlson-Stevermer J, Oki J, Holden K, Maures T, Pollard KS, Sali A, Agard DA, Cheng Y, Fraser JS, Frost A, Jura N, Kortemme T, Manglik A, Southworth DR, Stroud RM, Alessi DR, Davies P, Frieman MB, Ideker T, Abate C, Jouvenet N, Kochs G, Shoichet B, Ott M, Palmarini M, Shokat KM, García-Sastre A, Rassen JA, Grosse R, Rosenberg OS, Verba KA, Basler CF, Vignuzzi M, Peden AA, Beltrao P, Krogan NJ. Science 370 eabe9403 (2020)
  2. Crystal structure of SARS-CoV-2 Orf9b in complex with human TOM70 suggests unusual virus-host interactions. Gao X, Zhu K, Qin B, Olieric V, Wang M, Cui S. Nat Commun 12 2843 (2021)
  3. Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading. Li J, Qian X, Hu J, Sha B. J Biol Chem 284 23852-23859 (2009)
  4. Multiomics Identification of Potential Targets for Alzheimer Disease and Antrocin as a Therapeutic Candidate. Wu ATH, Lawal B, Wei L, Wen YT, Tzeng DTW, Lo WC. Pharmaceutics 13 1555 (2021)
  5. StaRProtein, a web server for prediction of the stability of repeat proteins. Xu Y, Zhou X, Huang M. PLoS One 10 e0119417 (2015)


Reviews citing this publication (16)

  1. Mitochondrial protein import: from proteomics to functional mechanisms. Schmidt O, Pfanner N, Meisinger C. Nat Rev Mol Cell Biol 11 655-667 (2010)
  2. Mitochondrial protein import: common principles and physiological networks. Dudek J, Rehling P, van der Laan M. Biochim Biophys Acta 1833 274-285 (2013)
  3. Transport of proteins across or into the mitochondrial outer membrane. Endo T, Yamano K. Biochim Biophys Acta 1803 706-714 (2010)
  4. Hsp70 at the membrane: driving protein translocation. Craig EA. BMC Biol 16 11 (2018)
  5. Regulation of protein turnover by heat shock proteins. Bozaykut P, Ozer NK, Karademir B. Free Radic Biol Med 77 195-209 (2014)
  6. Function of cytosolic chaperones in Tom70-mediated mitochondrial import. Fan AC, Young JC. Protein Pept Lett 18 122-131 (2011)
  7. Oxidative stress and mitochondrial protein quality control in aging. Lionaki E, Tavernarakis N. J Proteomics 92 181-194 (2013)
  8. Role of membrane contact sites in protein import into mitochondria. Horvath SE, Rampelt H, Oeljeklaus S, Warscheid B, van der Laan M, Pfanner N. Protein Sci 24 277-297 (2015)
  9. Tail-anchored membrane proteins: exploring the complex diversity of tail-anchored-protein targeting in plant cells. Abell BM, Mullen RT. Plant Cell Rep 30 137-151 (2011)
  10. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Kreimendahl S, Rassow J. Int J Mol Sci 21 E7262 (2020)
  11. Regulation of mitochondrial structure and function by protein import: A current review. Prasai K. Pathophysiology 24 107-122 (2017)
  12. A Biochemical and Structural Understanding of TOM Complex Interactions and Implications for Human Health and Disease. Pitt AS, Buchanan SK. Cells 10 1164 (2021)
  13. From inventory to functional mechanisms: regulation of the mitochondrial protein import machinery by phosphorylation. Gerbeth C, Mikropoulou D, Meisinger C. FEBS J 280 4933-4942 (2013)
  14. Role of the Mitochondrial Protein Import Machinery and Protein Processing in Heart Disease. Zhao F, Zou MH. Front Cardiovasc Med 8 749756 (2021)
  15. Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. Sayyed UMH, Mahalakshmi R. J Biol Chem 298 101870 (2022)
  16. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Shan SO. Int J Mol Sci 24 1170 (2023)

Articles citing this publication (30)

  1. Regulation of mitochondrial protein import by cytosolic kinases. Schmidt O, Harbauer AB, Rao S, Eyrich B, Zahedi RP, Stojanovski D, Schönfisch B, Guiard B, Sickmann A, Pfanner N, Meisinger C. Cell 144 227-239 (2011)
  2. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA, Nunnari J. J Cell Biol 209 539-548 (2015)
  3. HIF-1α protects against oxidative stress by directly targeting mitochondria. Li HS, Zhou YN, Li L, Li SF, Long D, Chen XL, Zhang JB, Feng L, Li YP. Redox Biol 25 101109 (2019)
  4. Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. Backes S, Hess S, Boos F, Woellhaf MW, Gödel S, Jung M, Mühlhaus T, Herrmann JM. J Cell Biol 217 1369-1382 (2018)
  5. Roles of Tom70 in import of presequence-containing mitochondrial proteins. Yamamoto H, Fukui K, Takahashi H, Kitamura S, Shiota T, Terao K, Uchida M, Esaki M, Nishikawa S, Yoshihisa T, Yamano K, Endo T. J Biol Chem 284 31635-31646 (2009)
  6. Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Rao S, Schmidt O, Harbauer AB, Schönfisch B, Guiard B, Pfanner N, Meisinger C. Mol Biol Cell 23 1618-1627 (2012)
  7. Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift. Di Bartolomeo F, Malina C, Campbell K, Mormino M, Fuchs J, Vorontsov E, Gustafsson CM, Nielsen J. Proc Natl Acad Sci U S A 117 7524-7535 (2020)
  8. Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples. Miller B, Silverstein A, Flores M, Cao K, Kumagai H, Mehta HH, Yen K, Kim SJ, Cohen P. Sci Rep 11 3 (2021)
  9. Interaction between the human mitochondrial import receptors Tom20 and Tom70 in vitro suggests a chaperone displacement mechanism. Fan AC, Kozlov G, Hoegl A, Marcellus RC, Wong MJ, Gehring K, Young JC. J Biol Chem 286 32208-32219 (2011)
  10. Structure of minimal tetratricopeptide repeat domain protein Tah1 reveals mechanism of its interaction with Pih1 and Hsp90. Jiménez B, Ugwu F, Zhao R, Ortí L, Makhnevych T, Pineda-Lucena A, Houry WA. J Biol Chem 287 5698-5709 (2012)
  11. The chaperone-binding activity of the mitochondrial surface receptor Tom70 protects the cytosol against mitoprotein-induced stress. Backes S, Bykov YS, Flohr T, Räschle M, Zhou J, Lenhard S, Krämer L, Mühlhaus T, Bibi C, Jann C, Smith JD, Steinmetz LM, Rapaport D, Storchová Z, Schuldiner M, Boos F, Herrmann JM. Cell Rep 35 108936 (2021)
  12. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. Tripathi A, Mandon EC, Gilmore R, Rapoport TA. J Biol Chem 292 8007-8018 (2017)
  13. Influence of specific HSP70 domains on fibril formation of the yeast prion protein Ure2. Xu LQ, Wu S, Buell AK, Cohen SI, Chen LJ, Hu WH, Cusack SA, Itzhaki LS, Zhang H, Knowles TP, Dobson CM, Welland ME, Jones GW, Perrett S. Philos Trans R Soc Lond B Biol Sci 368 20110410 (2013)
  14. Inhibition of a basal transcription factor 3-like gene Osj10gBTF3 in rice results in significant plant miniaturization and typical pollen abortion. Wang Y, Zhang X, Lu S, Wang M, Wang L, Wang W, Cao F, Chen H, Wang J, Zhang J, Tu J. Plant Cell Physiol 53 2073-2089 (2012)
  15. Crystal structure of P58(IPK) TPR fragment reveals the mechanism for its molecular chaperone activity in UPR. Tao J, Petrova K, Ron D, Sha B. J Mol Biol 397 1307-1315 (2010)
  16. Heat Shock Protein 90 kDa (Hsp90) Has a Second Functional Interaction Site with the Mitochondrial Import Receptor Tom70. Zanphorlin LM, Lima TB, Wong MJ, Balbuena TS, Minetti CA, Remeta DP, Young JC, Barbosa LR, Barbosa LR, Gozzo FC, Ramos CH. J Biol Chem 291 18620-18631 (2016)
  17. Morphine Reduces Myocardial Infarct Size via Heat Shock Protein 90 in Rodents. Small BA, Lu Y, Hsu AK, Gross GJ, Gross ER. Biomed Res Int 2015 129612 (2015)
  18. The selectivity filter of the mitochondrial protein import machinery. Kreimendahl S, Schwichtenberg J, Günnewig K, Brandherm L, Rassow J. BMC Biol 18 156 (2020)
  19. Human mitochondrial import receptor Tom70 functions as a monomer. Fan AC, Gava LM, Ramos CH, Young JC. Biochem J 429 553-563 (2010)
  20. Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress. Mulaudzi-Masuku T, Mutepe RD, Mukhoro OC, Faro A, Ndimba B. Cell Stress Chaperones 20 793-804 (2015)
  21. Phosphorylation of SARS-CoV-2 Orf9b Regulates Its Targeting to Two Binding Sites in TOM70 and Recruitment of Hsp90. Brandherm L, Kobaš AM, Klöhn M, Brüggemann Y, Pfaender S, Rassow J, Kreimendahl S. Int J Mol Sci 22 9233 (2021)
  22. Stoichiometry and thermodynamics of the interaction between the C-terminus of human 90kDa heat shock protein Hsp90 and the mitochondrial translocase of outer membrane Tom70. Gava LM, Gonçalves DC, Borges JC, Ramos CH. Arch Biochem Biophys 513 119-125 (2011)
  23. Chloroplast envelope protein targeting fidelity is independent of cytosolic components in dual organelle assays. Kriechbaumer V, Abell BM. Front Plant Sci 3 148 (2012)
  24. The structure of Tim50(164-361) suggests the mechanism by which Tim50 receives mitochondrial presequences. Li J, Sha B. Acta Crystallogr F Struct Biol Commun 71 1146-1151 (2015)
  25. The structural plasticity of Tom71 for mitochondrial precursor translocations. Li J, Cui W, Sha B. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 985-989 (2010)
  26. Development of GMP-1 a molecular chaperone network modulator protecting mitochondrial function and its assessment in fly and mice models of Alzheimer's disease. Pavlov PF, Hutter-Paier B, Havas D, Windisch M, Winblad B. J Cell Mol Med 22 3464-3474 (2018)
  27. General Structural and Functional Features of Molecular Chaperones. Edkins AL, Boshoff A. Adv Exp Med Biol 1340 11-73 (2021)
  28. Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70 prevents its interaction with chaperone HSP90. Ayinde KS, Pinheiro GMS, Ramos CHI. Biochimie 200 99-106 (2022)
  29. Mitochondrial Targeting of the Ammonia-Sensitive Uncoupler SLC4A11 by the Chaperone-Mediated Carrier Pathway in Corneal Endothelium. Choi M, Bonanno JA. Invest Ophthalmol Vis Sci 62 4 (2021)
  30. The Orf9b protein of SARS-CoV-2 modulates mitochondrial protein biogenesis. Lenhard S, Gerlich S, Khan A, Rödl S, Bökenkamp JE, Peker E, Zarges C, Faust J, Storchova Z, Räschle M, Riemer J, Herrmann JM. J Cell Biol 222 e202303002 (2023)