3evg Citations

Analysis of flavivirus NS5 methyltransferase cap binding.

J Mol Biol 385 1643-54 (2009)
Related entries: 3eva, 3evb, 3evc, 3evd, 3eve, 3evf

Cited: 65 times
EuropePMC logo PMID: 19101564

Abstract

The flavivirus 2'-O-nucleoside N-terminal RNA methyltransferase (MTase) enzyme is responsible for methylating the viral RNA cap structure. To increase our understanding of the mechanism of viral RNA cap binding we performed a detailed structural and biochemical characterization of the guanosine cap-binding pocket of the dengue (DEN) and yellow fever (YF) virus MTase enzymes. We solved an improved 2.1 A resolution crystal structure of DEN2 Mtase, new 1.5 A resolution crystal structures of the YF virus MTase domain in apo form, and a new 1.45 A structure in complex with guanosine triphosphate and RNA cap analog. Our structures clarify the previously reported DEN MTase structure, suggest novel protein-cap interactions, and provide a detailed view of guanine specificity. Furthermore, the structures of the DEN and YF proteins are essentially identical, indicating a large degree of structural conservation amongst the flavivirus MTases. Guanosine triphosphate analog competition assays and mutagenesis analysis, performed to analyze the biochemical characteristics of cap binding, determined that the major interaction points are (i) guanine ring via pi-pi stacking with Phe24, N1 hydrogen interaction with the Leu19 backbone carbonyl via a water bridge, and C2 amine interaction with Leu16 and Leu19 backbone carbonyls; (ii) ribose 2' hydroxyl interaction with Lys13 and Asn17; and (iii) alpha-phosphate interactions with Lys28 and Ser215. Based on our mutational and analog studies, the guanine ring and alpha-phosphate interactions provide most of the energy for cap binding, while the combination of the water bridge between the guanine N1 and Leu19 carbonyl and the hydrogen bonds between the C2 amine and Leu16/Leu19 carbonyl groups provide for specific guanine recognition. A detailed model of how the flavivirus MTase protein binds RNA cap structures is presented.

Reviews - 3evg mentioned but not cited (3)

  1. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould EA, Grard G, Grimes JM, Hilgenfeld R, Jansson AM, Malet H, Mancini EJ, Mastrangelo E, Mattevi A, Milani M, Moureau G, Neyts J, Owens RJ, Ren J, Selisko B, Speroni S, Steuber H, Stuart DI, Unge T, Bolognesi M. Antiviral Res 87 125-148 (2010)
  2. Focus on flaviviruses: current and future drug targets. Geiss BJ, Stahla H, Hannah AM, Gari AM, Keenan SM. Future Med Chem 1 327-344 (2009)
  3. Regulation of flavivirus RNA synthesis and capping. Saeedi BJ, Geiss BJ. Wiley Interdiscip Rev RNA 4 723-735 (2013)

Articles - 3evg mentioned but not cited (5)

  1. Analysis of flavivirus NS5 methyltransferase cap binding. Geiss BJ, Thompson AA, Andrews AJ, Sons RL, Gari HH, Keenan SM, Peersen OB. J Mol Biol 385 1643-1654 (2009)
  2. Identification of a novel antiviral inhibitor of the flavivirus guanylyltransferase enzyme. Stahla-Beek HJ, April DG, Saeedi BJ, Hannah AM, Keenan SM, Geiss BJ. J Virol 86 8730-8739 (2012)
  3. NS5 from Dengue Virus Serotype 2 Can Adopt a Conformation Analogous to That of Its Zika Virus and Japanese Encephalitis Virus Homologues. El Sahili A, Soh TS, Schiltz J, Gharbi-Ayachi A, Seh CC, Shi PY, Lim SP, Lescar J. J Virol 94 e01294-19 (2019)
  4. GeneSV - an Approach to Help Characterize Possible Variations in Genomic and Protein Sequences. Zemla A, Kostova T, Gorchakov R, Volkova E, Beasley DW, Cardosa J, Weaver SC, Vasilakis N, Naraghi-Arani P. Bioinform Biol Insights 8 1-16 (2014)
  5. Quercetin attenuates viral infections by interacting with target proteins and linked genes in chemicobiological models. Rahman MA, Shorobi FM, Uddin MN, Saha S, Hossain MA. In Silico Pharmacol 10 17 (2022)


Reviews citing this publication (9)

  1. The dengue virus NS5 protein as a target for drug discovery. Lim SP, Noble CG, Shi PY. Antiviral Res 119 57-67 (2015)
  2. Flaviviruses, an expanding threat in public health: focus on dengue, West Nile, and Japanese encephalitis virus. Daep CA, Muñoz-Jordán JL, Eugenin EA. J Neurovirol 20 539-560 (2014)
  3. Flavivirus RNA methylation. Dong H, Fink K, Züst R, Lim SP, Qin CF, Shi PY. J Gen Virol 95 763-778 (2014)
  4. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family. Wu J, Liu W, Gong P. Int J Mol Sci 16 12943-12957 (2015)
  5. Structural biology of dengue virus enzymes: towards rational design of therapeutics. Noble CG, Shi PY. Antiviral Res 96 115-126 (2012)
  6. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Beasley DW, McAuley AJ, Bente DA. Antiviral Res 115 48-70 (2015)
  7. Organization of the Flavivirus RNA replicase complex. Brand C, Bisaillon M, Geiss BJ. Wiley Interdiscip Rev RNA 8 (2017)
  8. Flavivirus: From Structure to Therapeutics Development. Zhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, Cao J. Life (Basel) 11 615 (2021)
  9. Enzymatic Assays to Explore Viral mRNA Capping Machinery. Kasprzyk R, Jemielity J. Chembiochem 22 3236-3253 (2021)

Articles citing this publication (48)

  1. The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. Issur M, Geiss BJ, Bougie I, Picard-Jean F, Despins S, Mayette J, Hobdey SE, Bisaillon M. RNA 15 2340-2350 (2009)
  2. Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. Lu G, Gong P. PLoS Pathog 9 e1003549 (2013)
  3. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Bullard-Feibelman KM, Govero J, Zhu Z, Salazar V, Veselinovic M, Diamond MS, Geiss BJ. Antiviral Res 137 134-140 (2017)
  4. Small molecule inhibitors that selectively block dengue virus methyltransferase. Lim SP, Sonntag LS, Noble C, Nilar SH, Ng RH, Zou G, Monaghan P, Chung KY, Dong H, Liu B, Bodenreider C, Lee G, Ding M, Chan WL, Wang G, Jian YL, Chao AT, Lescar J, Yin Z, Vedananda TR, Keller TH, Shi PY. J Biol Chem 286 6233-6240 (2011)
  5. SARS-CoV-2 infection, neuropathogenesis and transmission among deer mice: Implications for spillback to New World rodents. Fagre A, Lewis J, Eckley M, Zhan S, Rocha SM, Sexton NR, Burke B, Geiss B, Peersen O, Bass T, Kading R, Rovnak J, Ebel GD, Tjalkens RB, Aboellail T, Schountz T. PLoS Pathog 17 e1009585 (2021)
  6. Biochemical and genetic characterization of dengue virus methyltransferase. Dong H, Chang DC, Xie X, Toh YX, Chung KY, Zou G, Lescar J, Lim SP, Shi PY. Virology 405 568-578 (2010)
  7. Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. Liu ZY, Li XF, Jiang T, Deng YQ, Zhao H, Wang HJ, Ye Q, Zhu SY, Qiu Y, Zhou X, Qin ED, Qin CF. J Virol 87 6804-6818 (2013)
  8. The crystal structure of Zika virus NS5 reveals conserved drug targets. Duan W, Song H, Wang H, Chai Y, Su C, Qi J, Shi Y, Gao GF. EMBO J 36 919-933 (2017)
  9. Oxidative stress influences positive strand RNA virus genome synthesis and capping. Gullberg RC, Jordan Steel J, Moon SL, Soltani E, Geiss BJ. Virology 475 219-229 (2015)
  10. Flavivirus RNA cap methyltransferase: structure, function, and inhibition. Liu L, Dong H, Chen H, Zhang J, Ling H, Li Z, Shi PY, Li H. Front Biol (Beijing) 5 286-303 (2010)
  11. Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2'-O methyltransferase activity in dengue virus. Chung KY, Dong H, Chao AT, Shi PY, Lescar J, Lim SP. Virology 402 52-60 (2010)
  12. Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). Selisko B, Peyrane FF, Canard B, Alvarez K, Decroly E. J Gen Virol 91 112-121 (2010)
  13. Assessment of Dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Coutard B, Decroly E, Li C, Sharff A, Lescar J, Bricogne G, Barral K. Antiviral Res 106 61-70 (2014)
  14. Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Chen H, Liu L, Jones SA, Banavali N, Kass J, Li Z, Zhang J, Kramer LD, Ghosh AK, Li H. Antiviral Res 97 232-239 (2013)
  15. Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. Dong H, Liu L, Zou G, Zhao Y, Li Z, Lim SP, Shi PY, Li H. J Biol Chem 285 32586-32595 (2010)
  16. Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. Lim SV, Rahman MB, Tejo BA. BMC Bioinformatics 12 Suppl 13 S24 (2011)
  17. In-silico screening for anti-Zika virus phytochemicals. Byler KG, Ogungbe IV, Setzer WN. J Mol Graph Model 69 78-91 (2016)
  18. Perturbation in the conserved methyltransferase-polymerase interface of flavivirus NS5 differentially affects polymerase initiation and elongation. Wu J, Lu G, Zhang B, Gong P. J Virol 89 249-261 (2015)
  19. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme. Feibelman KM, Fuller BP, Li L, LaBarbera DV, Geiss BJ. Antiviral Res 154 124-131 (2018)
  20. A high-throughput screening assay for the identification of flavivirus NS5 capping enzyme GTP-binding inhibitors: implications for antiviral drug development. Geiss BJ, Stahla-Beek HJ, Hannah AM, Gari HH, Henderson BR, Saeedi BJ, Keenan SM. J Biomol Screen 16 852-861 (2011)
  21. Detection and sequencing of defective viral genomes in C6/36 cells persistently infected with dengue virus 2. Juárez-Martínez AB, Vega-Almeida TO, Salas-Benito M, García-Espitia M, De Nova-Ocampo M, Del Ángel RM, Salas-Benito JS. Arch Virol 158 583-599 (2013)
  22. Illustrating and homology modeling the proteins of the Zika virus. Ekins S, Liebler J, Neves BJ, Lewis WG, Coffee M, Bienstock R, Southan C, Andrade CH. F1000Res 5 275 (2016)
  23. Analysis of RNA binding by the dengue virus NS5 RNA capping enzyme. Henderson BR, Saeedi BJ, Campagnola G, Geiss BJ. PLoS One 6 e25795 (2011)
  24. A conformation-based intra-molecular initiation factor identified in the flavivirus RNA-dependent RNA polymerase. Wu J, Ye HQ, Zhang QY, Lu G, Zhang B, Gong P. PLoS Pathog 16 e1008484 (2020)
  25. Crystal structure of the dengue virus methyltransferase bound to a 5'-capped octameric RNA. Yap LJ, Luo D, Chung KY, Lim SP, Bodenreider C, Noble C, Shi PY, Lescar J. PLoS One 5 e12836 (2010)
  26. Maturation of dengue virus nonstructural protein 4B in monocytes enhances production of dengue hemorrhagic fever-associated chemokines and cytokines. Kelley JF, Kaufusi PH, Volper EM, Nerurkar VR. Virology 418 27-39 (2011)
  27. Strobe sequence design for haplotype assembly. Lo C, Bashir A, Bansal V, Bafna V. BMC Bioinformatics 12 Suppl 1 S24 (2011)
  28. Development of a SARS-CoV-2 nucleocapsid specific monoclonal antibody. Terry JS, Anderson LB, Scherman MS, McAlister CE, Perera R, Schountz T, Geiss BJ. Virology 558 28-37 (2021)
  29. Structural models for the design of novel antiviral agents against Greek Goat Encephalitis. Papageorgiou L, Loukatou S, Koumandou VL, Makałowski W, Megalooikonomou V, Vlachakis D, Kossida S. PeerJ 2 e664 (2014)
  30. Interaction of tyrosine 151 in norepinephrine transporter with the 2β group of cocaine analog RTI-113. Hill ER, Huang X, Zhan CG, Ivy Carroll F, Gu HH. Neuropharmacology 61 112-120 (2011)
  31. Rational discovery of dengue type 2 non-competitive inhibitors. Heh CH, Othman R, Buckle MJ, Sharifuddin Y, Yusof R, Rahman NA. Chem Biol Drug Des 82 1-11 (2013)
  32. Crystal structure of a methyltransferase from a no-known-vector Flavivirus. Bollati M, Milani M, Mastrangelo E, de Lamballerie X, Canard B, Bolognesi M. Biochem Biophys Res Commun 382 200-204 (2009)
  33. A Sensitive and Robust High-Throughput Screening Assay for Inhibitors of the Chikungunya Virus nsP1 Capping Enzyme. Bullard-Feibelman KM, Fuller BP, Geiss BJ. PLoS One 11 e0158923 (2016)
  34. S-adenosyl-homocysteine is a weakly bound inhibitor for a flaviviral methyltransferase. Chen H, Zhou B, Brecher M, Banavali N, Jones SA, Li Z, Zhang J, Nag D, Kramer LD, Ghosh AK, Li H. PLoS One 8 e76900 (2013)
  35. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine. Noble CG, Li SH, Dong H, Chew SH, Shi PY. Antiviral Res 111 78-81 (2014)
  36. Murine Efficacy and Pharmacokinetic Evaluation of the Flaviviral NS5 Capping Enzyme 2-Thioxothiazolidin-4-One Inhibitor BG-323. Bullard KM, Gullberg RC, Soltani E, Steel JJ, Geiss BJ, Keenan SM. PLoS One 10 e0130083 (2015)
  37. The conformational changes of Zika virus methyltransferase upon converting SAM to SAH. Zhou H, Wang F, Wang H, Chen C, Zhang T, Han X, Wang D, Chen C, Wu C, Xie W, Wang Z, Zhang L, Wang L, Yang H. Oncotarget 8 14830-14834 (2017)
  38. Adaptive Diversification Between Yellow Fever Virus West African and South American Lineages: A Genome-Wide Study. Li Y, Yang Z. Am J Trop Med Hyg 96 727-734 (2017)
  39. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase. Brecher MB, Li Z, Zhang J, Chen H, Lin Q, Liu B, Li H. Protein Sci 24 117-128 (2015)
  40. Synthesis and biological evaluation of novel flexible nucleoside analogues that inhibit flavivirus replication in vitro. Thames JE, Waters CD, Valle C, Bassetto M, Aouadi W, Martin B, Selisko B, Falat A, Coutard B, Brancale A, Canard B, Decroly E, Seley-Radtke KL. Bioorg Med Chem 28 115713 (2020)
  41. Biological Characterization of Yellow Fever Viruses Isolated From Non-human Primates in Brazil With Distinct Genomic Landscapes. Furtado ND, Raphael LM, Ribeiro IP, de Mello IS, Fernandes DR, Gómez MM, Dos Santos AAC, Nogueira MDS, de Castro MG, de Abreu FVS, Martins LC, Vasconcelos PFDC, Lourenço-de-Oliveira R, Bonaldo MC. Front Microbiol 13 757084 (2022)
  42. Chemical biology and medicinal chemistry of RNA methyltransferases. Fischer TR, Meidner L, Schwickert M, Weber M, Zimmermann RA, Kersten C, Schirmeister T, Helm M. Nucleic Acids Res 50 4216-4245 (2022)
  43. Docking Studies of Adenosine Analogues with NS5 Methyltransferase of Yellow Fever Virus. Dhanachandra Singh Kh, Kirubakaran P, Manikandaprabhu S, Nagamani S, Srinivasan P, Karthikeyan M. Indian J Microbiol 52 28-34 (2012)
  44. The RNA polymerase of cytoplasmically replicating Zika virus binds with chromatin DNA in nuclei and regulates host gene transcription. Li P, Wu J, Liu S, Lu R, Jiang H, Wang N, Luo M, Guo L, Xiao J, Bu L, Liu L, Xing F, Peng H, Li C, Ma L, Zhao B, Zhou Z, Guo D. Proc Natl Acad Sci U S A 119 e2205013119 (2022)
  45. Amino Acid Polymorphisms on the Brazilian Strain of Yellow Fever Virus Methyltransferase Are Related to the Host's Immune Evasion Mediated by Type I Interferon. Furtado ND, de Mello IS, de Godoy AS, Noske GD, Oliva G, Canard B, Decroly E, Bonaldo MC. Viruses 15 191 (2023)
  46. Crystal Structures of Flavivirus NS5 Guanylyltransferase Reveal a GMP-Arginine Adduct. Jia H, Zhong Y, Peng C, Gong P. J Virol 96 e0041822 (2022)
  47. Structural and functional basis of low-affinity SAM/SAH-binding in the conserved MTase of the multi-segmented Alongshan virus distantly related to canonical unsegmented flaviviruses. Chen H, Lin S, Yang F, Chen Z, Guo L, Yang J, Lin X, Wang L, Duan Y, Wen A, Zhang X, Dai Y, Yin K, Yuan X, Yu C, He Y, He B, Cao Y, Dong H, Li J, Zhao Q, Liu Q, Lu G. PLoS Pathog 19 e1011694 (2023)
  48. Virtual Screening of Drug-Like Compounds as Potential Inhibitors of the Dengue Virus NS5 Protein. García-Ariza LL, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Front Chem 10 637266 (2022)