3d9k Citations

Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II.

J Biol Chem 283 22659-69 (2008)
Related entries: 3d9i, 3d9j, 3d9l, 3d9m, 3d9n, 3d9o, 3d9p

Cited: 42 times
EuropePMC logo PMID: 18550522

Abstract

Concomitant with RNA polymerase II (Pol II) transcription, RNA maturation factors are recruited to the carboxyl-terminal domain (CTD) of Pol II, whose phosphorylation state changes during a transcription cycle. CTD phosphorylation triggers recruitment of functionally different factors involved in RNA processing and transcription termination; most of these factors harbor a conserved CTD interacting domain (CID). Orchestration of factor recruitment is believed to be conducted by CID recognition of distinct phosphorylated forms of the CTD. We show that the human RNA processing factor SCAF8 interacts weakly with the unphosphorylated CTD of Pol II. Upon phosphorylation, affinity for the CTD is increased; however, SCAF8 is promiscuous to the phosphorylation pattern on the CTD. Employing a combined structural and biophysical approach, we were able to distinguish motifs within CIDs that are involved in a generic CTD sequence recognition from items that confer phospho-specificity.

Reviews - 3d9k mentioned but not cited (1)

  1. What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain via mass spectrometry. LeBlanc BM, Moreno RY, Escobar EE, Venkat Ramani MK, Brodbelt JS, Zhang Y. RSC Chem Biol 2 1084-1095 (2021)

Articles - 3d9k mentioned but not cited (1)

  1. Crosstalk between RNA Pol II C-Terminal Domain Acetylation and Phosphorylation via RPRD Proteins. Ali I, Ruiz DG, Ni Z, Johnson JR, Zhang H, Li PC, Khalid MM, Conrad RJ, Guo X, Min J, Greenblatt J, Jacobson M, Krogan NJ, Ott M. Mol Cell 74 1164-1174.e4 (2019)


Reviews citing this publication (12)

  1. The RNA polymerase II CTD coordinates transcription and RNA processing. Hsin JP, Manley JL. Genes Dev 26 2119-2137 (2012)
  2. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Corden JL. Chem Rev 113 8423-8455 (2013)
  3. The CTD code of RNA polymerase II: a structural view. Jasnovidova O, Stefl R. Wiley Interdiscip Rev RNA 4 1-16 (2013)
  4. The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. Hanes SD. Biochim Biophys Acta 1839 316-333 (2014)
  5. Targeting transcription cycles in cancer. Vervoort SJ, Devlin JR, Kwiatkowski N, Teng M, Gray NS, Johnstone RW. Nat Rev Cancer 22 5-24 (2022)
  6. Polyadenylation site selection: linking transcription and RNA processing via a conserved carboxy-terminal domain (CTD)-interacting protein. Larochelle M, Hunyadkürti J, Bachand F. Curr Genet 63 195-199 (2017)
  7. Simplicity is the Ultimate Sophistication-Crosstalk of Post-translational Modifications on the RNA Polymerase II. Venkat Ramani MK, Yang W, Irani S, Zhang Y. J Mol Biol 433 166912 (2021)
  8. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1 in Gene Expression. Hu X, Chen LF. Front Cell Dev Biol 8 179 (2020)
  9. Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA Polymerase II. Yogesha SD, Mayfield JE, Zhang Y. Molecules 19 1481-1511 (2014)
  10. The Novel Protease Activities of JMJD5-JMJD6-JMJD7 and Arginine Methylation Activities of Arginine Methyltransferases Are Likely Coupled. Liu H, Wei P, Zhang Q, Chen Z, Liu J, Zhang G. Biomolecules 12 347 (2022)
  11. Growing and making nano- and microcrystals. Shoeman RL, Hartmann E, Schlichting I. Nat Protoc 18 854-882 (2023)
  12. The Nrd1-Nab3-Sen1 transcription termination complex from a structural perspective. Chaves-Arquero B, Pérez-Cañadillas JM. Biochem Soc Trans 51 1257-1269 (2023)

Articles citing this publication (28)

  1. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Czudnochowski N, Bösken CA, Geyer M. Nat Commun 3 842 (2012)
  2. Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II. Robinson PJ, Bushnell DA, Trnka MJ, Burlingame AL, Kornberg RD. Proc Natl Acad Sci U S A 109 17931-17935 (2012)
  3. Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1. Kubicek K, Cerna H, Holub P, Pasulka J, Hrossova D, Loehr F, Hofr C, Vanacova S, Stefl R. Genes Dev 26 1891-1896 (2012)
  4. Genome-Wide Association and Trans-ethnic Meta-Analysis for Advanced Diabetic Kidney Disease: Family Investigation of Nephropathy and Diabetes (FIND). Iyengar SK, Sedor JR, Freedman BI, Kao WH, Kretzler M, Keller BJ, Abboud HE, Adler SG, Best LG, Bowden DW, Burlock A, Chen YD, Cole SA, Comeau ME, Curtis JM, Divers J, Drechsler C, Duggirala R, Elston RC, Guo X, Huang H, Hoffmann MM, Howard BV, Ipp E, Kimmel PL, Klag MJ, Knowler WC, Kohn OF, Leak TS, Leehey DJ, Li M, Malhotra A, März W, Nair V, Nelson RG, Nicholas SB, O'Brien SJ, Pahl MV, Parekh RS, Pezzolesi MG, Rasooly RS, Rotimi CN, Rotter JI, Schelling JR, Seldin MF, Shah VO, Smiles AM, Smith MW, Taylor KD, Thameem F, Thornley-Brown DP, Truitt BJ, Wanner C, Weil EJ, Winkler CA, Zager PG, Igo RP, Hanson RL, Langefeld CD, Family Investigation of Nephropathy and Diabetes (FIND). PLoS Genet 11 e1005352 (2015)
  5. Structural insights to how mammalian capping enzyme reads the CTD code. Ghosh A, Shuman S, Lima CD. Mol Cell 43 299-310 (2011)
  6. Molecular basis for coordinating transcription termination with noncoding RNA degradation. Tudek A, Porrua O, Kabzinski T, Lidschreiber M, Kubicek K, Fortova A, Lacroute F, Vanacova S, Cramer P, Stefl R, Libri D. Mol Cell 55 467-481 (2014)
  7. Structural basis for Spt5-mediated recruitment of the Paf1 complex to chromatin. Wier AD, Mayekar MK, Héroux A, Arndt KM, VanDemark AP. Proc Natl Acad Sci U S A 110 17290-17295 (2013)
  8. SCAF4 and SCAF8, mRNA Anti-Terminator Proteins. Gregersen LH, Mitter R, Ugalde AP, Nojima T, Proudfoot NJ, Agami R, Stewart A, Svejstrup JQ. Cell 177 1797-1813.e18 (2019)
  9. Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding. McDonald SM, Close D, Xin H, Formosa T, Hill CP. Mol Cell 40 725-735 (2010)
  10. RNA surveillance by the nuclear RNA exosome: mechanisms and significance. Ogami K, Chen Y, Manley JL. Noncoding RNA 4 8 (2018)
  11. The conserved protein Seb1 drives transcription termination by binding RNA polymerase II and nascent RNA. Wittmann S, Renner M, Watts BR, Adams O, Huseyin M, Baejen C, El Omari K, Kilchert C, Heo DH, Kecman T, Cramer P, Grimes JM, Vasiljeva L. Nat Commun 8 14861 (2017)
  12. novel modifications on C-terminal domain of RNA polymerase II can fine-tune the phosphatase activity of Ssu72. Luo Y, Yogesha SD, Cannon JR, Yan W, Ellington AD, Brodbelt JS, Zhang Y. ACS Chem Biol 8 2042-2052 (2013)
  13. Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner. Nemec CM, Yang F, Gilmore JM, Hintermair C, Ho YH, Tseng SC, Heidemann M, Zhang Y, Florens L, Gasch AP, Eick D, Washburn MP, Varani G, Ansari AZ. Proc Natl Acad Sci U S A 114 E3944-E3953 (2017)
  14. Nuclear ALG-2 protein interacts with Ca2+ homeostasis endoplasmic reticulum protein (CHERP) Ca2+-dependently and participates in regulation of alternative splicing of inositol trisphosphate receptor type 1 (IP3R1) pre-mRNA. Sasaki-Osugi K, Imoto C, Takahara T, Shibata H, Maki M. J Biol Chem 288 33361-33375 (2013)
  15. Structural insight into recognition of phosphorylated threonine-4 of RNA polymerase II C-terminal domain by Rtt103p. Jasnovidova O, Krejcikova M, Kubicek K, Stefl R. EMBO Rep 18 906-913 (2017)
  16. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. Heo DH, Yoo I, Kong J, Lidschreiber M, Mayer A, Choi BY, Hahn Y, Cramer P, Buratowski S, Kim M. J Biol Chem 288 36676-36690 (2013)
  17. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. Giritharan G, Ilic D, Gormley M, Krtolica A. PLoS One 6 e26570 (2011)
  18. Structural basis for the recognition of RNA polymerase II C-terminal domain by CREPT and p15RS. Mei K, Jin Z, Ren F, Wang Y, Chang Z, Wang X. Sci China Life Sci 57 97-106 (2014)
  19. Termination of non-coding transcription in yeast relies on both an RNA Pol II CTD interaction domain and a CTD-mimicking region in Sen1. Han Z, Jasnovidova O, Haidara N, Tudek A, Kubicek K, Libri D, Stefl R, Porrua O. EMBO J 39 e101548 (2020)
  20. Structure and dynamics of the RNAPII CTDsome with Rtt103. Jasnovidova O, Klumpler T, Kubicek K, Kalynych S, Plevka P, Stefl R. Proc Natl Acad Sci U S A 114 11133-11138 (2017)
  21. The mRNA capping enzyme of Saccharomyces cerevisiae has dual specificity to interact with CTD of RNA Polymerase II. Bharati AP, Singh N, Kumar V, Kashif M, Singh AK, Singh P, Singh SK, Siddiqi MI, Tripathi T, Akhtar MS. Sci Rep 6 31294 (2016)
  22. Proteomics studies of the interactome of RNA polymerase II C-terminal repeated domain. Pineda G, Shen Z, de Albuquerque CP, Reynoso E, Chen J, Tu CC, Tang W, Briggs S, Zhou H, Wang JY. BMC Res Notes 8 616 (2015)
  23. CREPT and p15RS regulate cell proliferation and cycling in chicken DF-1 cells through the Wnt/β-catenin pathway. Jin K, Chen H, Zuo Q, Huang C, Zhao R, Yu X, Wang Y, Zhang Y, Chang Z, Li B, Li B. J Cell Biochem 119 1083-1092 (2018)
  24. JMJD5 couples with CDK9 to release the paused RNA polymerase II. Liu H, Ramachandran S, Fong N, Phang T, Lee S, Parsa P, Liu X, Harmacek L, Danhorn T, Song T, Oh S, Zhang Q, Chen Z, Zhang Q, Tu TH, Happoldt C, O'Conner B, Janknecht R, Li CY, Marrack P, Kappler J, Leach S, Zhang G. Proc Natl Acad Sci U S A 117 19888-19895 (2020)
  25. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC. Appel LM, Franke V, Bruno M, Grishkovskaya I, Kasiliauskaite A, Kaufmann T, Schoeberl UE, Puchinger MG, Kostrhon S, Ebenwaldner C, Sebesta M, Beltzung E, Mechtler K, Lin G, Vlasova A, Leeb M, Pavri R, Stark A, Akalin A, Stefl R, Bernecky C, Djinovic-Carugo K, Slade D. Nat Commun 12 6078 (2021)
  26. In silico analysis and in vivo tests of the tuna dark muscle hydrolysate anti-oxidation effect. Han J, Tang S, Li Y, Bao W, Wan H, Lu C, Zhou J, Li Y, Cheong L, Su X. RSC Adv 8 14109-14119 (2018)
  27. Bio-molecular architects: a scaffold provided by the C-terminal domain of eukaryotic RNA polymerase II. Zhang M, Gill GN, Zhang Y. Nano Rev 1 (2010)
  28. CircRNA-SCAF8 promotes vascular endothelial cell pyroptosis by regulating the miR-93-5p/TXNIP axis. Wang B, Yu X, Chen T, Qiu C, Lu W, Zheng X, Wu Z. Zhejiang Da Xue Xue Bao Yi Xue Ban 52 473-484 (2023)