3cu8 Citations

Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling.

Mol Cell Biol 30 4698-711 (2010)
Related entries: 3iqj, 3iqu, 3iqv, 3nkx, 3o8i

Cited: 77 times
EuropePMC logo PMID: 20679480

Abstract

The Ras-RAF-mitogen-activated protein kinase (Ras-RAF-MAPK) pathway is overactive in many cancers and in some developmental disorders. In one of those disorders, namely, Noonan syndrome, nine activating C-RAF mutations cluster around Ser(259), a regulatory site for inhibition by 14-3-3 proteins. We show that these mutations impair binding of 14-3-3 proteins to C-RAF and alter its subcellular localization by promoting Ras-mediated plasma membrane recruitment of C-RAF. By presenting biophysical binding data, the 14-3-3/C-RAFpS(259) crystal structure, and cellular analyses, we indicate a mechanistic link between a well-described human developmental disorder and the impairment of a 14-3-3/target protein interaction. As a broader implication of these findings, modulating the C-RAFSer(259)/14-3-3 protein-protein interaction with a stabilizing small molecule may yield a novel potential approach for treatment of diseases resulting from an overactive Ras-RAF-MAPK pathway.

Articles - 3cu8 mentioned but not cited (3)

  1. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. Zhao J, Du Y, Horton JR, Upadhyay AK, Lou B, Bai Y, Zhang X, Du L, Li M, Wang B, Zhang L, Barbieri JT, Khuri FR, Cheng X, Fu H. Proc. Natl. Acad. Sci. U.S.A. 108 16212-16216 (2011)
  2. Structural Analysis of the 14-3-3ζ/Chibby Interaction Involved in Wnt/β-Catenin Signaling. Killoran RC, Fan J, Yang D, Shilton BH, Choy WY. PLoS ONE 10 e0123934 (2015)
  3. An integrated global chemomics and system biology approach to analyze the mechanisms of the traditional Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills for pulmonary diseases. Tao J, Hou Y, Ma X, Liu D, Tong Y, Zhou H, Gao J, Bai G. BMC Complement Altern Med 16 4 (2016)


Reviews citing this publication (16)

  1. Regulation of RAF protein kinases in ERK signalling. Lavoie H, Therrien M. Nat. Rev. Mol. Cell Biol. 16 281-298 (2015)
  2. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Thiel P, Kaiser M, Ottmann C. Angew. Chem. Int. Ed. Engl. 51 2012-2018 (2012)
  3. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Kubota R, Hamachi I. Chem Soc Rev 44 4454-4471 (2015)
  4. Modulators of 14-3-3 Protein-Protein Interactions. Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J, Davis J, Hann M, O'Mahony G, Doveston RG, Brunsveld L, Ottmann C. J. Med. Chem. 61 3755-3778 (2018)
  5. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Annenkov A. Mol. Neurobiol. 49 440-471 (2014)
  6. The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. Obsilova V, Obsil T. Int J Mol Sci 21 E8824 (2020)
  7. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Degirmenci U, Wang M, Hu J. Cells 9 (2020)
  8. Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Bartel M, Schäfer A, Stevers LM, Ottmann C. Future Med Chem 6 903-921 (2014)
  9. Molecular insight into specific 14-3-3 modulators: Inhibitors and stabilisers of protein-protein interactions of 14-3-3. Hartman AM, Hirsch AKH. Eur J Med Chem 136 573-584 (2017)
  10. The impact of plant-pathogen studies on medicinal drug discovery. Ottmann C, van der Hoorn RA, Kaiser M. Chem Soc Rev 41 3168-3178 (2012)
  11. Atomic Details of Carbon-Based Nanomolecules Interacting with Proteins. Di Costanzo L, Geremia S. Molecules 25 (2020)
  12. RASopathies: The musculoskeletal consequences and their etiology and pathogenesis. Fowlkes JL, Thrailkill KM, Bunn RC. Bone 152 116060 (2021)
  13. The RASopathies: from pathogenetics to therapeutics. Hebron KE, Hernandez ER, Yohe ME. Dis Model Mech 15 dmm049107 (2022)
  14. 14-3-3: A Case Study in PPI Modulation. Ballone A, Centorrino F, Ottmann C. Molecules 23 (2018)
  15. MRAS: A Close but Understudied Member of the RAS Family. Young LC, Rodriguez-Viciana P. Cold Spring Harb Perspect Med 8 (2018)
  16. The role of CRAF in cancer progression: from molecular mechanisms to precision therapies. Riaud M, Maxwell J, Soria-Bretones I, Dankner M, Li M, Rose AAN. Nat Rev Cancer (2024)

Articles citing this publication (58)

  1. Molecular tweezers modulate 14-3-3 protein-protein interactions. Bier D, Rose R, Bravo-Rodriguez K, Bartel M, Ramirez-Anguita JM, Dutt S, Wilch C, Klärner FG, Sanchez-Garcia E, Schrader T, Ottmann C. Nat Chem 5 234-239 (2013)
  2. FAM83B mediates EGFR- and RAS-driven oncogenic transformation. Cipriano R, Graham J, Miskimen KL, Bryson BL, Bruntz RC, Scott SA, Brown HA, Stark GR, Jackson MW. J. Clin. Invest. 122 3197-3210 (2012)
  3. A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface. Anders C, Higuchi Y, Koschinsky K, Bartel M, Schumacher B, Thiel P, Nitta H, Preisig-Müller R, Schlichthörl G, Renigunta V, Ohkanda J, Daut J, Kato N, Ottmann C. Chem. Biol. 20 583-593 (2013)
  4. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Li D, March ME, Gutierrez-Uzquiza A, Kao C, Seiler C, Pinto E, Matsuoka LS, Battig MR, Bhoj EJ, Wenger TL, Tian L, Robinson N, Wang T, Liu Y, Weinstein BM, Swift M, Jung HM, Kaminski CN, Chiavacci R, Perkins JA, Levine MA, Sleiman PMA, Hicks PJ, Strausbaugh JT, Belasco JB, Dori Y, Hakonarson H. Nat Med 25 1116-1122 (2019)
  5. Phosphorylation-dependent 14-3-3 protein interactions regulate CFTR biogenesis. Liang X, Da Paula AC, Bozóky Z, Zhang H, Bertrand CA, Peters KW, Forman-Kay JD, Frizzell RA. Mol. Biol. Cell 23 996-1009 (2012)
  6. Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Kiel C, Serrano L. Mol. Syst. Biol. 10 727 (2014)
  7. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates. Tinti M, Johnson C, Toth R, Ferrier DE, Mackintosh C. Open Biol 2 120103 (2012)
  8. RASSF1A: Not a prototypical Ras effector. Gordon M, Baksh S. Small GTPases 2 148-157 (2011)
  9. Activation of NF-κB signalling by fusicoccin-induced dimerization. Skwarczynska M, Molzan M, Ottmann C. Proc. Natl. Acad. Sci. U.S.A. 110 E377-86 (2013)
  10. C-RAF mutations confer resistance to RAF inhibitors. Antony R, Emery CM, Sawyer AM, Garraway LA. Cancer Res. 73 4840-4851 (2013)
  11. Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock. Xu C, Jin J, Bian C, Lam R, Tian R, Weist R, You L, Nie J, Bochkarev A, Tempel W, Tan CS, Wasney GA, Vedadi M, Gish GD, Arrowsmith CH, Pawson T, Yang XJ, Min J. Sci Signal 5 ra39 (2012)
  12. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer. Molzan M, Ottmann C. J. Mol. Biol. 423 486-495 (2012)
  13. Increased BRAF heterodimerization is the common pathogenic mechanism for noonan syndrome-associated RAF1 mutants. Wu X, Yin J, Simpson J, Kim KH, Gu S, Hong JH, Bayliss P, Backx PH, Neel BG, Araki T. Mol. Cell. Biol. 32 3872-3890 (2012)
  14. Small-molecule modulators of 14-3-3 protein-protein interactions. Ottmann C. Bioorg. Med. Chem. 21 4058-4062 (2013)
  15. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome. Tinti M, Madeira F, Murugesan G, Hoxhaj G, Toth R, Mackintosh C. Database (Oxford) 2014 bat085 (2014)
  16. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, Sharif H, Marto JA, Jeon H, Eck MJ. Nature 575 545-550 (2019)
  17. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. Joo Y, Schumacher B, Landrieu I, Bartel M, Smet-Nocca C, Jang A, Choi HS, Jeon NL, Chang KA, Kim HS, Ottmann C, Suh YH. FASEB J. 29 4133-4144 (2015)
  18. Small-Molecule Stabilization of the 14-3-3/Gab2 Protein-Protein Interaction (PPI) Interface. Bier D, Bartel M, Sies K, Halbach S, Higuchi Y, Haranosono Y, Brummer T, Kato N, Ottmann C. ChemMedChem 11 911-918 (2016)
  19. An optimised small-molecule stabiliser of the 14-3-3-PMA2 protein-protein interaction. Richter A, Rose R, Hedberg C, Waldmann H, Ottmann C. Chemistry 18 6520-6527 (2012)
  20. B-Raf autoinhibition in the presence and absence of 14-3-3. Zhang M, Jang H, Li Z, Sacks DB, Nussinov R. Structure 29 768-777.e2 (2021)
  21. Structural insights of the MLF1/14-3-3 interaction. Molzan M, Weyand M, Rose R, Ottmann C. FEBS J. 279 563-571 (2012)
  22. AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. Saline M, Badertscher L, Wolter M, Lau R, Gunnarsson A, Jacso T, Norris T, Ottmann C, Snijder A. J Biol Chem 294 13106-13116 (2019)
  23. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI. Rose R, Rose M, Ottmann C. J. Struct. Biol. 180 65-72 (2012)
  24. Allosteric inhibition of Taspase1's pathobiological activity by enforced dimerization in vivo. Bier C, Knauer SK, Wünsch D, Kunst L, Scheiding S, Kaiser M, Ottmann C, Krämer OH, Stauber RH. FASEB J. 26 3421-3429 (2012)
  25. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Alblova M, Smidova A, Docekal V, Vesely J, Herman P, Obsilova V, Obsil T. Proc. Natl. Acad. Sci. U.S.A. 114 E9811-E9820 (2017)
  26. C-Raf deficiency leads to hearing loss and increased noise susceptibility. de Iriarte Rodríguez R, Magariños M, Pfeiffer V, Rapp UR, Varela-Nieto I. Cell. Mol. Life Sci. 72 3983-3998 (2015)
  27. Discovery of Small-Molecule Stabilizers of 14-3-3 Protein-Protein Interactions via Dynamic Combinatorial Chemistry. Hartman AM, Elgaher WAM, Hertrich N, Andrei SA, Ottmann C, Hirsch AKH. ACS Med Chem Lett 11 1041-1046 (2020)
  28. Identification of a novel de novo deletion in RAF1 associated with biventricular hypertrophy in Noonan syndrome. Sana ME, Spitaleri A, Spiliotopoulos D, Pezzoli L, Preda L, Musco G, Ferrazzi P, Iascone M. Am. J. Med. Genet. A 164A 2069-2073 (2014)
  29. The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets. Paiardini A, Aducci P, Cervoni L, Cutruzzolà F, Di Lucente C, Janson G, Pascarella S, Rinaldo S, Visconti S, Camoni L. IUBMB Life 66 52-62 (2014)
  30. Advancing RAS/RASopathy therapies: An NCI-sponsored intramural and extramural collaboration for the study of RASopathies. Gross AM, Frone M, Gripp KW, Gelb BD, Schoyer L, Schill L, Stronach B, Biesecker LG, Esposito D, Hernandez ER, Legius E, Loh ML, Martin S, Morrison DK, Rauen KA, Wolters PL, Zand D, McCormick F, Savage SA, Stewart DR, Widemann BC, Yohe ME. Am J Med Genet A 182 866-876 (2020)
  31. SHOC2-MRAS-PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis. Young LC, Hartig N, Boned Del Río I, Sari S, Ringham-Terry B, Wainwright JR, Jones GG, McCormick F, Rodriguez-Viciana P. Proc. Natl. Acad. Sci. U.S.A. 115 E10576-E10585 (2018)
  32. Targeting the Surface of the Protein 14-3-3 by Ultrasmall (1.5 nm) Gold Nanoparticles Carrying the Specific Peptide CRaf. Ruks T, Loza K, Heggen M, Ottmann C, Bayer P, Beuck C, Epple M. Chembiochem 22 1456-1463 (2021)
  33. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Horvath M, Petrvalska O, Herman P, Obsilova V, Obsil T. Commun Biol 4 986 (2021)
  34. A Supramolecular Stabilizer of the 14-3-3ζ/ERα Protein-Protein Interaction with a Synergistic Mode of Action. Gigante A, Sijbesma E, Sánchez-Murcia PA, Hu X, Bier D, Bäcker S, Knauer S, Gago F, Ottmann C, Schmuck C. Angew Chem Int Ed Engl 59 5284-5287 (2020)
  35. 15N detection harnesses the slow relaxation property of nitrogen: Delivering enhanced resolution for intrinsically disordered proteins. Chhabra S, Fischer P, Takeuchi K, Dubey A, Ziarek JJ, Boeszoermenyi A, Mathieu D, Bermel W, Davey NE, Wagner G, Arthanari H. Proc. Natl. Acad. Sci. U.S.A. 115 E1710-E1719 (2018)
  36. Biophysical Characterization of Essential Phosphorylation at the Flexible C-Terminal Region of C-Raf with 14-3-3ζ Protein. Ghosh A, Ratha BN, Gayen N, Mroue KH, Kar RK, Mandal AK, Bhunia A. PLoS ONE 10 e0135976 (2015)
  37. Letter Biophysical and structural insight into the USP8/14-3-3 interaction. Centorrino F, Ballone A, Wolter M, Ottmann C. FEBS Lett. 592 1211-1220 (2018)
  38. Human vtRNA1-1 Levels Modulate Signaling Pathways and Regulate Apoptosis in Human Cancer Cells. Bracher L, Ferro I, Pulido-Quetglas C, Ruepp MD, Johnson R, Polacek N. Biomolecules 10 (2020)
  39. Inhibition of 14-3-3/Tau by Hybrid Small-Molecule Peptides Operating via Two Different Binding Modes. Andrei SA, Meijer FA, Neves JF, Brunsveld L, Landrieu I, Ottmann C, Milroy LG. ACS Chem Neurosci 9 2639-2654 (2018)
  40. Integrating Functional Analysis in the Next-Generation Sequencing Diagnostic Pipeline of RASopathies. Leung GKC, Luk HM, Tang VHM, Gao WW, Mak CCY, Yu MHC, Wong WL, Chu YWY, Yang WL, Wong WHS, Ma ACH, Leung AYH, Jin DY, Chan KYK, Allanson J, Lo IFM, Chung BHY. Sci Rep 8 2421 (2018)
  41. Reproducible Analysis of Post-Translational Modifications in Proteomes--Application to Human Mutations. Holehouse AS, Naegle KM. PLoS ONE 10 e0144692 (2015)
  42. Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, McCormick F, Esposito D, Rodriguez-Viciana P, Stephen AG, Simanshu DK. Nat Struct Mol Biol 29 966-977 (2022)
  43. Subcellular localization of full-length human myeloid leukemia factor 1 (MLF1) is independent of 14-3-3 proteins. Molzan M, Ottmann C. Cell. Mol. Biol. Lett. 18 137-148 (2013)
  44. A Systematic Approach to the Discovery of Protein-Protein Interaction Stabilizers. Kenanova DN, Visser EJ, Virta JM, Sijbesma E, Centorrino F, Vickery HR, Zhong M, Neitz RJ, Brunsveld L, Ottmann C, Arkin MR. ACS Cent Sci 9 937-946 (2023)
  45. A dominant negative 14-3-3 mutant in Schizosaccharomyces pombe distinguishes the binding proteins involved in sexual differentiation and check point. Ohshima T, Jiajun Z, Fukamachi T, Ohno Y, Senoo H, Matsuo Y, Kawamukai M. PLoS One 18 e0291524 (2023)
  46. A novel phosphorylation site involved in dissociating RAF kinase from the scaffolding protein 14-3-3 and disrupting RAF dimerization. Yu A, Nguyen DH, Nguyen TJ, Wang Z. J Biol Chem 299 105188 (2023)
  47. Affinity Purification of NF1 Protein-Protein Interactors Identifies Keratins and Neurofibromin Itself as Binding Partners. Carnes RM, Kesterson RA, Korf BR, Mobley JA, Wallis D. Genes (Basel) 10 (2019)
  48. CRAF mutations in lung cancer can be oncogenic and predict sensitivity to combined type II RAF and MEK inhibition. Noeparast A, Giron P, Noor A, Bahadur Shahi R, De Brakeleer S, Eggermont C, Vandenplas H, Boeckx B, Lambrechts D, De Grève J, Teugels E. Oncogene 38 5933-5941 (2019)
  49. De novo and inherited variants in coding and regulatory regions in genetic cardiomyopathies. Vadgama N, Ameen M, Sundaram L, Gaddam S, Genomics England Research Consortium, Gifford C, Nasir J, Karakikes I. Hum Genomics 16 55 (2022)
  50. Exceptional Response to MEK Inhibition in a Patient With RAF1-Mutant Myxofibrosarcoma: Case Report and Mechanistic Overview. Özgü E, Aydin E, Adibi A, Tokat ÜM, Tutar O, Hu J, Demiray I, Kurzrock R, Demiray M. JCO Precis Oncol 7 e2300299 (2023)
  51. Exploring the Binding Mechanism of a Supramolecular Tweezer CLR01 to 14-3-3σ Protein via Well-Tempered Metadynamics. Zhou X, Shi M, Wang X, Xu D. Front Chem 10 921695 (2022)
  52. MMP activation-associated aminopeptidase N reveals a bivalent 14-3-3 binding motif. Kiehstaller S, Ottmann C, Hennig S. J Biol Chem 295 18266-18275 (2020)
  53. Molecular Dynamics Investigations Suggest a Non-specific Recognition Strategy of 14-3-3σ Protein by Tweezer: Implication for the Inhibition Mechanism. Shi M, Xu D. Front Chem 7 237 (2019)
  54. Mono- and Bivalent 14-3-3 Inhibitors for Characterizing Supramolecular "Lysine Wrapping" of Oligoethylene Glycol (OEG) Moieties in Proteins. Yilmaz E, Bier D, Guillory X, Briels J, Ruiz-Blanco YB, Sanchez-Garcia E, Ottmann C, Kaiser M. Chemistry 24 13807-13814 (2018)
  55. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Boned Del Río I, Young LC, Sari S, Jones GG, Ringham-Terry B, Hartig N, Rejnowicz E, Lei W, Bhamra A, Surinova S, Rodriguez-Viciana P. Proc. Natl. Acad. Sci. U.S.A. 116 13330-13339 (2019)
  56. SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Jones GG, Del Río IB, Sari S, Sekerim A, Young LC, Hartig N, Areso Zubiaur I, El-Bahrawy MA, Hynds RE, Lei W, Molina-Arcas M, Downward J, Rodriguez-Viciana P. Nat Commun 10 2532 (2019)
  57. Similarity of the non-amyloid-β component and C-terminal tail of monomeric and tetrameric alpha-synuclein with 14-3-3 sigma. Evans SR, West C, Klein-Seetharaman J. Comput Struct Biotechnol J 19 5348-5359 (2021)
  58. Unraveling the structural and chemical features of biological short hydrogen bonds. Zhou S, Wang L. Chem Sci 10 7734-7745 (2019)