3c4x Citations

Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation.

J Biol Chem 283 14053-62 (2008)
Related entries: 3c4w, 3c4y, 3c4z, 3c50, 3c51

Cited: 71 times
EuropePMC logo PMID: 18339619

Abstract

G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1.(Mg2+)2.ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

Reviews - 3c4x mentioned but not cited (1)

  1. Discovery of new GPCR biology: one receptor structure at a time. Hanson MA, Stevens RC. Structure 17 8-14 (2009)

Articles - 3c4x mentioned but not cited (3)

  1. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. Singh P, Wang B, Maeda T, Palczewski K, Tesmer JJ. J Biol Chem 283 14053-14062 (2008)
  2. Modeling Membrane Protein-Ligand Binding Interactions: The Human Purinergic Platelet Receptor. Greene D, Botello-Smith WM, Follmer A, Xiao L, Lambros E, Luo R. J Phys Chem B 120 12293-12304 (2016)
  3. Structure of a monomeric variant of rhodopsin kinase at 2.5 Å resolution. Tesmer JJ, Nance MR, Singh P, Lee H. Acta Crystallogr Sect F Struct Biol Cryst Commun 68 622-625 (2012)


Reviews citing this publication (17)

  1. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV. Pharmacol Ther 133 40-69 (2012)
  2. Chemistry and biology of vision. Palczewski K. J Biol Chem 287 1612-1619 (2012)
  3. The functional cycle of visual arrestins in photoreceptor cells. Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. Prog Retin Eye Res 30 405-430 (2011)
  4. Protein and Signaling Networks in Vertebrate Photoreceptor Cells. Koch KW, Dell'Orco D. Front Mol Neurosci 8 67 (2015)
  5. G protein-coupled receptors--recent advances. Latek D, Modzelewska A, Trzaskowski B, Palczewski K, Filipek S. Acta Biochim Pol 59 515-529 (2012)
  6. G Protein-Coupled Receptor Kinase 2 (GRK2) as a Potential Therapeutic Target in Cardiovascular and Metabolic Diseases. Murga C, Arcones AC, Cruces-Sande M, Briones AM, Salaices M, Mayor F. Front Pharmacol 10 112 (2019)
  7. Structural insights into G protein-coupled receptor kinase function. Homan KT, Tesmer JJ. Curr Opin Cell Biol 27 25-31 (2014)
  8. Recognition in the face of diversity: interactions of heterotrimeric G proteins and G protein-coupled receptor (GPCR) kinases with activated GPCRs. Huang CC, Tesmer JJG. J Biol Chem 286 7715-7721 (2011)
  9. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Penela P, Ribas C, Sánchez-Madrid F, Mayor F. Cell Mol Life Sci 76 4423-4446 (2019)
  10. G protein-coupled receptor-effector macromolecular membrane assemblies (GEMMAs). Ferré S, Ciruela F, Dessauer CW, González-Maeso J, Hébert TE, Jockers R, Logothetis DE, Pardo L. Pharmacol Ther 231 107977 (2022)
  11. Historical Perspective of the G Protein-Coupled Receptor Kinase Family. Benovic JL. Cells 10 555 (2021)
  12. G protein-coupled receptor signaling: transducers and effectors. Jiang H, Galtes D, Wang J, Rockman HA. Am J Physiol Cell Physiol 323 C731-C748 (2022)
  13. Role of protein kinase C in functional selectivity for desensitization at the mu-opioid receptor: from pharmacological curiosity to therapeutic potential. Ingram SL, Traynor JR. Br J Pharmacol 158 154-156 (2009)
  14. Structural approaches to understanding retinal proteins needed for vision. Orban T, Jastrzebska B, Palczewski K. Curr Opin Cell Biol 27 32-43 (2014)
  15. G protein-coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias. Chen Q, Tesmer JJG. J Biol Chem 298 102279 (2022)
  16. The cytoplasmic rhodopsin-protein interface: potential for drug discovery. Yanamala N, Gardner E, Riciutti A, Klein-Seetharaman J. Curr Drug Targets 13 3-14 (2012)
  17. [G protein-coupled receptor kinase (GRK)]. Haga T. Nihon Yakurigaku Zasshi 136 215-218 (2010)

Articles citing this publication (50)

  1. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV. J Biol Chem 286 1420-1428 (2011)
  2. G protein-coupled receptor kinases: Past, present and future. Komolov KE, Benovic JL. Cell Signal 41 17-24 (2018)
  3. Molecular mechanism of selectivity among G protein-coupled receptor kinase 2 inhibitors. Thal DM, Yeow RY, Schoenau C, Huber J, Tesmer JJ. Mol Pharmacol 80 294-303 (2011)
  4. Molecular basis for activation of G protein-coupled receptor kinases. Boguth CA, Singh P, Huang CC, Tesmer JJ. EMBO J 29 3249-3259 (2010)
  5. Asymmetry of the rhodopsin dimer in complex with transducin. Jastrzebska B, Orban T, Golczak M, Engel A, Palczewski K. FASEB J 27 1572-1584 (2013)
  6. A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases. Huang CC, Yoshino-Koh K, Tesmer JJG. J Biol Chem 284 17206-17215 (2009)
  7. Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Pao CS, Barker BL, Benovic JL. Biochemistry 48 7325-7333 (2009)
  8. Role for the regulator of G-protein signaling homology domain of G protein-coupled receptor kinases 5 and 6 in beta 2-adrenergic receptor and rhodopsin phosphorylation. Baameur F, Morgan DH, Yao H, Tran TM, Hammitt RA, Sabui S, McMurray JS, Lichtarge O, Clark RB. Mol Pharmacol 77 405-415 (2010)
  9. The origin and evolution of G protein-coupled receptor kinases. Mushegian A, Gurevich VV, Gurevich EV. PLoS One 7 e33806 (2012)
  10. Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system. Anantharaman V, Abhiman S, de Souza RF, Aravind L. Gene 475 63-78 (2011)
  11. Structure of human G protein-coupled receptor kinase 2 in complex with the kinase inhibitor balanol. Tesmer JJ, Tesmer VM, Lodowski DT, Steinhagen H, Huber J. J Med Chem 53 1867-1870 (2010)
  12. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain. Huang CC, Orban T, Jastrzebska B, Palczewski K, Tesmer JJ. Biochemistry 50 1940-1949 (2011)
  13. Molecular mechanism for inhibition of g protein-coupled receptor kinase 2 by a selective RNA aptamer. Tesmer VM, Lennarz S, Mayer G, Tesmer JJ. Structure 20 1300-1309 (2012)
  14. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors. Homan KT, Larimore KM, Elkins JM, Szklarz M, Knapp S, Tesmer JJ. ACS Chem Biol 10 310-319 (2015)
  15. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). Li L, Homan KT, Vishnivetskiy SA, Manglik A, Tesmer JJ, Gurevich VV, Gurevich EV. J Biol Chem 290 10775-10790 (2015)
  16. Mechanism of rhodopsin kinase regulation by recoverin. Komolov KE, Senin II, Kovaleva NA, Christoph MP, Churumova VA, Grigoriev II, Akhtar M, Philippov PP, Koch KW. J Neurochem 110 72-79 (2009)
  17. Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. Homan KT, Waldschmidt HV, Glukhova A, Cannavo A, Song J, Cheung JY, Koch WJ, Larsen SD, Tesmer JJG. J Biol Chem 290 20649-20659 (2015)
  18. Structure-Based Design, Synthesis, and Biological Evaluation of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors. Waldschmidt HV, Homan KT, Cruz-Rodríguez O, Cato MC, Waninger-Saroni J, Larimore KM, Cannavo A, Song J, Cheung JY, Kirchhoff PD, Koch WJ, Tesmer JJ, Larsen SD. J Med Chem 59 3793-3807 (2016)
  19. Structural and functional analysis of g protein-coupled receptor kinase inhibition by paroxetine and a rationally designed analog. Homan KT, Wu E, Wilson MW, Singh P, Larsen SD, Tesmer JJ. Mol Pharmacol 85 237-248 (2014)
  20. Lecture Chemistry and biology of the initial steps in vision: the Friedenwald lecture. Palczewski K. Invest Ophthalmol Vis Sci 55 6651-6672 (2014)
  21. Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis. Chakrabarti KS, Agafonov RV, Pontiggia F, Otten R, Higgins MK, Schertler GFX, Oprian DD, Kern D. Cell Rep 14 32-42 (2016)
  22. GRK2 activation by receptors: role of the kinase large lobe and carboxyl-terminal tail. Sterne-Marr R, Leahey PA, Bresee JE, Dickson HM, Ho W, Ragusa MJ, Donnelly RM, Amie SM, Krywy JA, Brookins-Danz ED, Orakwue SC, Carr MJ, Yoshino-Koh K, Li Q, Tesmer JJ. Biochemistry 48 4285-4293 (2009)
  23. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened. Zhao Z, Lee RT, Pusapati GV, Iyu A, Rohatgi R, Ingham PW. EMBO Rep 17 739-752 (2016)
  24. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: insights from intact cell phosphorylation and recruitment assays. Beautrait A, Michalski KR, Lopez TS, Mannix KM, McDonald DJ, Cutter AR, Medina CB, Hebert AM, Francis CJ, Bouvier M, Tesmer JJ, Sterne-Marr R. J Biol Chem 289 25262-25275 (2014)
  25. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase. Sakurai K, Chen J, Khani SC, Kefalov VJ. J Biol Chem 290 9239-9250 (2015)
  26. Structure-Based Design of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors Based on Paroxetine. Waldschmidt HV, Homan KT, Cato MC, Cruz-Rodríguez O, Cannavo A, Wilson MW, Song J, Cheung JY, Koch WJ, Tesmer JJ, Larsen SD. J Med Chem 60 3052-3069 (2017)
  27. Structures of rhodopsin in complex with G-protein-coupled receptor kinase 1. Chen Q, Plasencia M, Li Z, Mukherjee S, Patra D, Chen CL, Klose T, Yao XQ, Kossiakoff AA, Chang L, Andrews PC, Tesmer JJG. Nature 595 600-605 (2021)
  28. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases. Komolov KE, Bhardwaj A, Benovic JL. J Biol Chem 290 20629-20647 (2015)
  29. G Protein-Coupled Receptor Kinase 2 (GRK2) and 5 (GRK5) Exhibit Selective Phosphorylation of the Neurotensin Receptor in Vitro. Inagaki S, Ghirlando R, Vishnivetskiy SA, Homan KT, White JF, Tesmer JJ, Gurevich VV, Grisshammer R. Biochemistry 54 4320-4329 (2015)
  30. Role of helix 8 of the thyrotropin-releasing hormone receptor in phosphorylation by G protein-coupled receptor kinase. Gehret AU, Jones BW, Tran PN, Cook LB, Greuber EK, Hinkle PM. Mol Pharmacol 77 288-297 (2010)
  31. C-terminal threonines and serines play distinct roles in the desensitization of rhodopsin, a G protein-coupled receptor. Azevedo AW, Doan T, Moaven H, Sokal I, Baameur F, Vishnivetskiy SA, Homan KT, Tesmer JJ, Gurevich VV, Chen J, Rieke F. Elife 4 (2015)
  32. A functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1. Bereta G, Wang B, Kiser PD, Baehr W, Jang GF, Palczewski K. J Biol Chem 285 1899-1908 (2010)
  33. Molecular features of product release for the PKA catalytic cycle. Bastidas AC, Wu J, Taylor SS. Biochemistry 54 2-10 (2015)
  34. Membrane orientation and binding determinants of G protein-coupled receptor kinase 5 as assessed by combined vibrational spectroscopic studies. Yang P, Glukhova A, Tesmer JJ, Chen Z. PLoS One 8 e82072 (2013)
  35. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin. Ranaghan MJ, Kumar RP, Chakrabarti KS, Buosi V, Kern D, Oprian DD. J Biol Chem 288 36160-36167 (2013)
  36. Structural Determinants Influencing the Potency and Selectivity of Indazole-Paroxetine Hybrid G Protein-Coupled Receptor Kinase 2 Inhibitors. Bouley R, Waldschmidt HV, Cato MC, Cannavo A, Song J, Cheung JY, Yao XQ, Koch WJ, Larsen SD, Tesmer JJG. Mol Pharmacol 92 707-717 (2017)
  37. Phosphorylation of G protein-coupled receptor kinase 1 (GRK1) is regulated by light but independent of phototransduction in rod photoreceptors. Osawa S, Jo R, Xiong Y, Reidel B, Tserentsoodol N, Arshavsky VY, Iuvone PM, Weiss ER. J Biol Chem 286 20923-20929 (2011)
  38. Importance of regions outside the cytoplasmic tail of G-protein-coupled receptors for phosphorylation and dephosphorylation. Gehret AU, Hinkle PM. Biochem J 428 235-245 (2010)
  39. Substrate-induced changes in the dynamics of rhodopsin kinase (G protein-coupled receptor kinase 1). Orban T, Huang CC, Homan KT, Jastrzebska B, Tesmer JJ, Palczewski K. Biochemistry 51 3404-3411 (2012)
  40. The regulator of G protein signaling (RGS) domain of G protein-coupled receptor kinase 5 (GRK5) regulates plasma membrane localization and function. Xu H, Jiang X, Shen K, Fischer CC, Wedegaertner PB. Mol Biol Cell 25 2105-2115 (2014)
  41. Design and synthesis of novel 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine derivatives as selective G-protein-coupled receptor kinase-2 and -5 inhibitors. Cho SY, Lee BH, Jung H, Yun CS, Ha JD, Kim HR, Chae CH, Lee JH, Seo HW, Oh KS. Bioorg Med Chem Lett 23 6711-6716 (2013)
  42. Biochemical and Cellular Specificity of Peptide Inhibitors of G Protein-Coupled Receptor Kinases. Baameur F, Hammitt RA, Friedman J, McMurray JS, Clark RB. Int J Pept Res Ther 20 1-12 (2014)
  43. The Open Question of How GPCRs Interact with GPCR Kinases (GRKs). Cato MC, Yen YC, Francis CJ, Elkins KE, Shareef A, Sterne-Marr R, Tesmer JJG. Biomolecules 11 447 (2021)
  44. The influence of two functional genetic variants of GRK5 on tau phosphorylation and their association with Alzheimer's disease risk. Zhang Y, Zhao J, Yin M, Cai Y, Liu S, Wang Y, Zhang X, Cao H, Chen T, Huang P, Mai H, Liu Z, Tao H, Zhao B, Cui L. Oncotarget 8 72714-72726 (2017)
  45. A New Paroxetine-Based GRK2 Inhibitor Reduces Internalization of the μ-Opioid Receptor. Bouley RA, Weinberg ZY, Waldschmidt HV, Yen YC, Larsen SD, Puthenveedu MA, Tesmer JJG. Mol Pharmacol 97 392-401 (2020)
  46. Expression, purification, and analysis of G-protein-coupled receptor kinases. Sterne-Marr R, Baillargeon AI, Michalski KR, Tesmer JJ. Methods Enzymol 521 347-366 (2013)
  47. Phosphorylation at Serine 21 in G protein-coupled receptor kinase 1 (GRK1) is required for normal kinetics of dark adaption in rod but not cone photoreceptors. Kolesnikov AV, Chrispell JD, Osawa S, Kefalov VJ, Weiss ER. FASEB J 34 2677-2690 (2020)
  48. Structure and Function of the Hypertension Variant A486V of G Protein-coupled Receptor Kinase 4. Allen SJ, Parthasarathy G, Darke PL, Diehl RE, Ford RE, Hall DL, Johnson SA, Reid JC, Rickert KW, Shipman JM, Soisson SM, Zuck P, Munshi SK, Lumb KJ. J Biol Chem 290 20360-20373 (2015)
  49. The rhodopsin-arrestin-1 interaction in bicelles. Chen Q, Vishnivetskiy SA, Zhuang T, Cho MK, Thaker TM, Sanders CR, Gurevich VV, Iverson TM. Methods Mol Biol 1271 77-95 (2015)
  50. Genetic analysis and clinical features of three Chinese patients with Oguchi disease. Wei X, Li H, Wu S, Zhu T, Sui R. Doc Ophthalmol 146 17-32 (2023)