3c0r Citations

Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein.

Abstract

Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of approximately 130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys(48) linkages, having little or no activity on Lys(63)- and Lys(29)-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.

Reviews - 3c0r mentioned but not cited (1)

Articles - 3c0r mentioned but not cited (7)

  1. Structural basis for ubiquitin recognition by the Otu1 ovarian tumor domain protein. Messick TE, Russell NS, Iwata AJ, Sarachan KL, Shiekhattar R, Shanks JR, Reyes-Turcu FE, Wilkinson KD, Marmorstein R. J. Biol. Chem. 283 11038-11049 (2008)
  2. Structure of ubiquitin-fold modifier 1-specific protease UfSP2. Ha BH, Jeon YJ, Shin SC, Tatsumi K, Komatsu M, Tanaka K, Watson CM, Wallis G, Chung CH, Kim EE. J. Biol. Chem. 286 10248-10257 (2011)
  3. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Biochemistry 52 3564-3578 (2013)
  4. The bacterial deubiquitinase Ceg23 regulates the association of Lys-63-linked polyubiquitin molecules on the Legionella phagosome. Ma K, Zhen X, Zhou B, Gan N, Cao Y, Fan C, Ouyang S, Luo ZQ, Qiu J. J Biol Chem 295 1646-1657 (2020)
  5. Identification and characterization of diverse OTU deubiquitinases in bacteria. Schubert AF, Nguyen JV, Franklin TG, Geurink PP, Roberts CG, Sanderson DJ, Miller LN, Ovaa H, Hofmann K, Pruneda JN, Komander D. EMBO J 39 e105127 (2020)
  6. Synthesis, docking studies, in vitro cytotoxicity evaluation and DNA damage mechanism of new tyrosine-based tripeptides. Çalışkan E, Kaplan A, Şekerci G, Çapan İ, Tekin S, Erkan S, Koran K, Sandal S, Görgülü AO. J Biochem Mol Toxicol e23388 (2023)
  7. The endopeptidase of the maize-affecting Marafivirus type member maize rayado fino virus doubles as a deubiquitinase. Patel A, McBride JAM, Mark BL. J Biol Chem 297 100957 (2021)


Reviews citing this publication (17)

  1. The ubiquitin code. Komander D, Rape M. Annu. Rev. Biochem. 81 203-229 (2012)
  2. Breaking the chains: structure and function of the deubiquitinases. Komander D, Clague MJ, Urbé S. Nat. Rev. Mol. Cell Biol. 10 550-563 (2009)
  3. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Annu. Rev. Biochem. 78 363-397 (2009)
  4. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Spratt DE, Walden H, Shaw GS. Biochem. J. 458 421-437 (2014)
  5. Polyubiquitin binding and disassembly by deubiquitinating enzymes. Reyes-Turcu FE, Wilkinson KD. Chem. Rev. 109 1495-1508 (2009)
  6. Regulation of proteolysis by human deubiquitinating enzymes. Eletr ZM, Wilkinson KD. Biochim. Biophys. Acta 1843 114-128 (2014)
  7. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Preston GM, Brodsky JL. Biochem. J. 474 445-469 (2017)
  8. Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum. Liu Y, Ye Y. Curr. Protein Pept. Sci. 13 436-446 (2012)
  9. Substrate specificity of the ubiquitin and Ubl proteases. Ronau JA, Beckmann JF, Hochstrasser M. Cell Res. 26 441-456 (2016)
  10. The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Herhaus L, Sapkota GP. Cell. Signal. 26 2186-2192 (2014)
  11. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Magraoui FE, Reidick C, Meyer HE, Platta HW. Cells 4 596-621 (2015)
  12. Structures of proteases for ubiqutin and ubiquitin-like modifiers. Ha BH, Kim EE. BMB Rep 41 435-443 (2008)
  13. Chemical and semisynthetic approaches to study and target deubiquitinases. Gopinath P, Ohayon S, Nawatha M, Brik A. Chem Soc Rev 45 4171-4198 (2016)
  14. Viral OTU deubiquitinases: a structural and functional comparison. Bailey-Elkin BA, van Kasteren PB, Snijder EJ, Kikkert M, Mark BL. PLoS Pathog. 10 e1003894 (2014)
  15. Structure and Function of Viral Deubiquitinating Enzymes. Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. J. Mol. Biol. 429 3441-3470 (2017)
  16. The structure and function of deubiquitinases: lessons from budding yeast. Suresh HG, Pascoe N, Andrews B. Open Biol 10 200279 (2020)
  17. The emerging role of Deubiquitinases (DUBs) in parasites: A foresight review. Kumar P, Kumar P, Mandal D, Velayutham R. Front Cell Infect Microbiol 12 985178 (2022)

Articles citing this publication (54)

  1. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Shin JH, Ko HS, Kang H, Lee Y, Lee YI, Pletinkova O, Troconso JC, Dawson VL, Dawson TM. Cell 144 689-702 (2011)
  2. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, Ookata K, Nureki O, Iwai K, Komada M, Fukai S. Nature 455 358-362 (2008)
  3. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SM, Ovaa H, Komander D. Cell 154 169-184 (2013)
  4. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases. Riley BE, Lougheed JC, Callaway K, Velasquez M, Brecht E, Nguyen L, Shaler T, Walker D, Yang Y, Regnstrom K, Diep L, Zhang Z, Chiou S, Bova M, Artis DR, Yao N, Baker J, Yednock T, Johnston JA. Nat Commun 4 1982 (2013)
  5. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. EMBO J. 28 621-631 (2009)
  6. The mechanism of OTUB1-mediated inhibition of ubiquitination. Wiener R, Zhang X, Wang T, Wolberger C. Nature 483 618-622 (2012)
  7. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Ernst R, Mueller B, Ploegh HL, Schlieker C. Mol. Cell 36 28-38 (2009)
  8. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, Wightman M, Kelly SM, Wood NT, Virdee S, Gray NS, Morrice NA, Alessi DR, Trost M. Nat Commun 5 4763 (2014)
  9. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Juang YC, Landry MC, Sanches M, Vittal V, Leung CC, Ceccarelli DF, Mateo AR, Pruneda JN, Mao DY, Szilard RK, Orlicky S, Munro M, Brzovic PS, Klevit RE, Sicheri F, Durocher D. Mol. Cell 45 384-397 (2012)
  10. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. Wang T, Yin L, Cooper EM, Lai MY, Dickey S, Pickart CM, Fushman D, Wilkinson KD, Cohen RE, Wolberger C. J. Mol. Biol. 386 1011-1023 (2009)
  11. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Akutsu M, Ye Y, Virdee S, Chin JW, Komander D. Proc. Natl. Acad. Sci. U.S.A. 108 2228-2233 (2011)
  12. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Kulathu Y, Garcia FJ, Mevissen TE, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D. Nat Commun 4 1569 (2013)
  13. Assembly, analysis and architecture of atypical ubiquitin chains. Hospenthal MK, Freund SM, Komander D. Nat. Struct. Mol. Biol. 20 555-565 (2013)
  14. Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. Nagai H, Noguchi T, Homma K, Katagiri K, Takeda K, Matsuzawa A, Ichijo H. Mol. Cell 36 805-818 (2009)
  15. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells. van Kasteren PB, Bailey-Elkin BA, James TW, Ninaber DK, Beugeling C, Khajehpour M, Snijder EJ, Mark BL, Kikkert M. Proc. Natl. Acad. Sci. U.S.A. 110 E838-47 (2013)
  16. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Licchesi JD, Mieszczanek J, Mevissen TE, Rutherford TJ, Akutsu M, Virdee S, El Oualid F, Chin JW, Ovaa H, Bienz M, Komander D. Nat. Struct. Mol. Biol. 19 62-71 (2011)
  17. Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domain-containing protease. James TW, Frias-Staheli N, Bacik JP, Levingston Macleod JM, Khajehpour M, García-Sastre A, Mark BL. Proc. Natl. Acad. Sci. U.S.A. 108 2222-2227 (2011)
  18. OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Herhaus L, Al-Salihi M, Macartney T, Weidlich S, Sapkota GP. Nat Commun 4 2519 (2013)
  19. The porcine reproductive and respiratory syndrome virus nsp2 cysteine protease domain possesses both trans- and cis-cleavage activities. Han J, Rutherford MS, Faaberg KS. J. Virol. 83 9449-9463 (2009)
  20. Regulation of the RSP5 ubiquitin ligase by an intrinsic ubiquitin-binding site. French ME, Kretzmann BR, Hicke L. J. Biol. Chem. 284 12071-12079 (2009)
  21. Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery. Debelyy MO, Platta HW, Saffian D, Hensel A, Thoms S, Meyer HE, Warscheid B, Girzalsky W, Erdmann R. J. Biol. Chem. 286 28223-28234 (2011)
  22. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle JS, Pegan SD. J. Virol. 85 3621-3630 (2011)
  23. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM. PLoS ONE 6 e27966 (2011)
  24. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. Bailey-Elkin BA, Knaap RC, Johnson GG, Dalebout TJ, Ninaber DK, van Kasteren PB, Bredenbeek PJ, Snijder EJ, Kikkert M, Mark BL. J. Biol. Chem. 289 34667-34682 (2014)
  25. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity. Chenon M, Camborde L, Cheminant S, Jupin I. EMBO J. 31 741-753 (2012)
  26. Structure and recognition of polyubiquitin chains of different lengths and linkage. Fushman D, Wilkinson KD. F1000 Biol Rep 3 26 (2011)
  27. Ginger DNA transposons in eukaryotes and their evolutionary relationships with long terminal repeat retrotransposons. Bao W, Kapitonov VV, Jurka J. Mob DNA 1 3 (2010)
  28. Ubiquitin C-terminal hydrolase l1 in tumorigenesis. Hurst-Kennedy J, Chin LS, Li L. Biochem Res Int 2012 123706 (2012)
  29. Diversity of ubiquitin and ISG15 specificity among nairoviruses' viral ovarian tumor domain proteases. Capodagli GC, Deaton MK, Baker EA, Lumpkin RJ, Pegan SD. J. Virol. 87 3815-3827 (2013)
  30. Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Mevissen TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL, Gersch M, Elliott PR, Burke JE, van Tol BDM, Akutsu M, Oualid FE, Kawasaki M, Freund SMV, Ovaa H, Komander D. Nature 538 402-405 (2016)
  31. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Liu C, Liu W, Ye Y, Li W. Nat Commun 8 14274 (2017)
  32. A compact viral processing proteinase/ubiquitin hydrolase from the OTU family. Lombardi C, Ayach M, Beaurepaire L, Chenon M, Andreani J, Guerois R, Jupin I, Bressanelli S. PLoS Pathog. 9 e1003560 (2013)
  33. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, Campbell DG, Pinna LA, Sapkota GP. Sci Signal 8 ra35 (2015)
  34. Biochemical and Structural Insights into the Preference of Nairoviral DeISGylases for Interferon-Stimulated Gene Product 15 Originating from Certain Species. Deaton MK, Dzimianski JV, Daczkowski CM, Whitney GK, Mank NJ, Parham MM, Bergeron E, Pegan SD. J. Virol. 90 8314-8327 (2016)
  35. Structural basis for ovarian tumor domain-containing protein 1 (OTU1) binding to p97/valosin-containing protein (VCP). Kim SJ, Cho J, Song EJ, Kim SJ, Kim HM, Lee KE, Suh SW, Kim EE. J. Biol. Chem. 289 12264-12274 (2014)
  36. Distinct phylogenetic relationships and biochemical properties of Arabidopsis ovarian tumor-related deubiquitinases support their functional differentiation. Radjacommare R, Usharani R, Kuo CH, Fu H. Front Plant Sci 5 84 (2014)
  37. The human otubain2-ubiquitin structure provides insights into the cleavage specificity of poly-ubiquitin-linkages. Altun M, Walter TS, Kramer HB, Herr P, Iphöfer A, Boström J, David Y, Komsany A, Ternette N, Navon A, Stuart DI, Ren J, Kessler BM. PLoS ONE 10 e0115344 (2015)
  38. Tau interactome mapping based identification of Otub1 as Tau deubiquitinase involved in accumulation of pathological Tau forms in vitro and in vivo. Wang P, Joberty G, Buist A, Vanoosthuyse A, Stancu IC, Vasconcelos B, Pierrot N, Faelth-Savitski M, Kienlen-Campard P, Octave JN, Bantscheff M, Drewes G, Moechars D, Dewachter I. Acta Neuropathol. 133 731-749 (2017)
  39. A Cell Cycle-Regulated Toxoplasma Deubiquitinase, TgOTUD3A, Targets Polyubiquitins with Specific Lysine Linkages. Dhara A, Sinai AP. mSphere 1 (2016)
  40. OTUB1 overexpression in mesangial cells is a novel regulator in the pathogenesis of glomerulonephritis through the decrease of DCN level. Zhang Y, Hu R, Wu H, Jiang W, Sun Y, Wang Y, Song Y, Jin T, Zhang H, Mao X, Zhao Z, Zhang Z. PLoS ONE 7 e29654 (2012)
  41. Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells. Miotto B, Marchal C, Adelmant G, Guinot N, Xie P, Marto JA, Zhang L, Defossez PA. Nucleic Acids Res. 46 4392-4404 (2018)
  42. Plasmodium falciparum OTU-like cysteine protease (PfOTU) is essential for apicoplast homeostasis and associates with noncanonical role of Atg8. Datta G, Hossain ME, Asad M, Rathore S, Mohmmed A. Cell. Microbiol. 19 (2017)
  43. Allosteric activation of SENP1 by SUMO1 β-grasp domain involves a dock-and-coalesce mechanism. Guo J, Zhou HX. Elife 5 (2016)
  44. Characterization of a novel otubain-like protease with deubiquitination activity from Nosema bombycis (Microsporidia). Wang Y, Dang X, Luo B, Li C, Long M, Li T, Li Z, Pan G, Zhou Z. Parasitol. Res. 114 3759-3766 (2015)
  45. Divergence in Ubiquitin Interaction and Catalysis among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes. Tencer AH, Liang Q, Zhuang Z. Biochemistry 55 4708-4719 (2016)
  46. MJD and OTU deubiquitinating enzymes in Schistosoma mansoni. Pereira RV, Gomes Mde S, Costa MP, Passos LK, Borges Wde C, Guerra-Sá R. Parasitol. Res. 114 2835-2843 (2015)
  47. OTUB1 stabilizes mismatch repair protein MSH2 by blocking ubiquitination. Wu Q, Huang Y, Gu L, Chang Z, Li GM. J Biol Chem 296 100466 (2021)
  48. Ubiquitin fragments: their known biological activities and putative roles. Pasikowski P, Cydzik M, Kluczyk A, Stefanowicz P, Szewczuk Z. Biomol Concepts 1 67-83 (2010)
  49. Characterisation of the OTU domain deubiquitinase complement of Toxoplasma gondii. Wilde ML, Ruparel U, Klemm T, Lee VV, Calleja DJ, Komander D, Tonkin CJ. Life Sci Alliance 6 e202201710 (2023)
  50. Identification and characterization of two closely related virga-like viruses latently infecting rubber trees (Hevea brasiliensis). Zhao R, Su X, Yu F, Liu Z, Huang X. Front Microbiol 14 1286369 (2023)
  51. Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR. Surana P, Das R. Protein Sci. 25 1438-1450 (2016)
  52. Papain-like cysteine proteinase zone (PCP-zone) and PCP structural catalytic core (PCP-SCC) of enzymes with cysteine proteinase fold. Denessiouk K, Uversky VN, Permyakov SE, Permyakov EA, Johnson MS, Denesyuk AI. Int J Biol Macromol 165 1438-1446 (2020)
  53. Turnip yellow mosaic virus protease binds ubiquitin suboptimally to fine-tune its deubiquitinase activity. Fieulaine S, Witte MD, Theile CS, Ayach M, Ploegh HL, Jupin I, Bressanelli S. J Biol Chem 295 13769-13783 (2020)
  54. Ubiquitin-proteasome pathway annotation in Diaphorina citri can reveal potential targets for RNAi-based pest management. Tank W, Shippy T, Thate A, Massimino C, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D'Elia T, Saha S. GigaByte 2022 gigabyte43 (2022)