3b5l Citations

De novo computational design of retro-aldol enzymes.

Abstract

The creation of enzymes capable of catalyzing any desired chemical reaction is a grand challenge for computational protein design. Using new algorithms that rely on hashing techniques to construct active sites for multistep reactions, we designed retro-aldolases that use four different catalytic motifs to catalyze the breaking of a carbon-carbon bond in a nonnatural substrate. Of the 72 designs that were experimentally characterized, 32, spanning a range of protein folds, had detectable retro-aldolase activity. Designs that used an explicit water molecule to mediate proton shuffling were significantly more successful, with rate accelerations of up to four orders of magnitude and multiple turnovers, than those involving charged side-chain networks. The atomic accuracy of the design process was confirmed by the x-ray crystal structure of active designs embedded in two protein scaffolds, both of which were nearly superimposable on the design model.

Articles - 3b5l mentioned but not cited (2)

  1. De novo computational design of retro-aldol enzymes. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlisberger D, Zanghellini A, Gallaher JL, Betker JL, Tanaka F, Barbas CF, Hilvert D, Houk KN, Stoddard BL, Baker D. Science 319 1387-1391 (2008)
  2. A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness. Martínez-Castilla LP, Rodríguez-Sotres R. PLoS One 5 e12483 (2010)


Reviews citing this publication (179)

  1. The role of dynamic conformational ensembles in biomolecular recognition. Boehr DD, Nussinov R, Wright PE. Nat Chem Biol 5 789-796 (2009)
  2. Engineering the third wave of biocatalysis. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Nature 485 185-194 (2012)
  3. Enzyme promiscuity: a mechanistic and evolutionary perspective. Khersonsky O, Tawfik DS. Annu Rev Biochem 79 471-505 (2010)
  4. Macromolecular modeling with rosetta. Das R, Baker D. Annu Rev Biochem 77 363-382 (2008)
  5. Exploring protein fitness landscapes by directed evolution. Romero PA, Arnold FH. Nat Rev Mol Cell Biol 10 866-876 (2009)
  6. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY. Nat Chem Biol 8 536-546 (2012)
  7. Methods for the directed evolution of proteins. Packer MS, Liu DR. Nat Rev Genet 16 379-394 (2015)
  8. Directed evolution drives the next generation of biocatalysts. Turner NJ. Nat Chem Biol 5 567-573 (2009)
  9. Supramolecular catalysis. Part 2: artificial enzyme mimics. Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. Chem Soc Rev 43 1734-1787 (2014)
  10. Practically useful: what the Rosetta protein modeling suite can do for you. Kaufmann KW, Lemmon GH, Deluca SL, Sheehan JH, Meiler J. Biochemistry 49 2987-2998 (2010)
  11. Protein design: toward functional metalloenzymes. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Chem Rev 114 3495-3578 (2014)
  12. Beyond directed evolution--semi-rational protein engineering and design. Lutz S. Curr Opin Biotechnol 21 734-743 (2010)
  13. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Renata H, Wang ZJ, Arnold FH. Angew Chem Int Ed Engl 54 3351-3367 (2015)
  14. Computational enzyme design. Kiss G, Çelebi-Ölçüm N, Moretti R, Baker D, Houk KN. Angew Chem Int Ed Engl 52 5700-5725 (2013)
  15. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Tracewell CA, Arnold FH. Curr Opin Chem Biol 13 3-9 (2009)
  16. Hydrogen tunneling links protein dynamics to enzyme catalysis. Klinman JP, Kohen A. Annu Rev Biochem 82 471-496 (2013)
  17. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Currin A, Swainston N, Day PJ, Kell DB. Chem Soc Rev 44 1172-1239 (2015)
  18. Biologically inspired synthetic enzymes made from DNA. Schlosser K, Li Y. Chem Biol 16 311-322 (2009)
  19. Foundations for the design and implementation of synthetic genetic circuits. Slusarczyk AL, Lin A, Weiss R. Nat Rev Genet 13 406-420 (2012)
  20. Genome engineering. Carr PA, Church GM. Nat Biotechnol 27 1151-1162 (2009)
  21. Metabolic engineering: past and future. Woolston BM, Edgar S, Stephanopoulos G. Annu Rev Chem Biomol Eng 4 259-288 (2013)
  22. Designing artificial enzymes by intuition and computation. Nanda V, Koder RL. Nat Chem 2 15-24 (2010)
  23. Optimizing non-natural protein function with directed evolution. Brustad EM, Arnold FH. Curr Opin Chem Biol 15 201-210 (2011)
  24. Computer-aided design of functional protein interactions. Mandell DJ, Kortemme T. Nat Chem Biol 5 797-807 (2009)
  25. From the first protein structures to our current knowledge of protein folding: delights and scepticisms. Fersht AR. Nat Rev Mol Cell Biol 9 650-654 (2008)
  26. De novo enzymes by computational design. Kries H, Blomberg R, Hilvert D. Curr Opin Chem Biol 17 221-228 (2013)
  27. Gates of enzymes. Gora A, Brezovsky J, Damborsky J. Chem Rev 113 5871-5923 (2013)
  28. The enabled state of DNA nanotechnology. Linko V, Dietz H. Curr Opin Biotechnol 24 555-561 (2013)
  29. Directed Evolution of Protein Catalysts. Zeymer C, Hilvert D. Annu Rev Biochem 87 131-157 (2018)
  30. Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification. Schrewe M, Julsing MK, Bühler B, Schmid A. Chem Soc Rev 42 6346-6377 (2013)
  31. Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Curran KA, Alper HS. Metab Eng 14 289-297 (2012)
  32. New generation of biocatalysts for organic synthesis. Nestl BM, Hammer SC, Nebel BA, Hauer B. Angew Chem Int Ed Engl 53 3070-3095 (2014)
  33. De novo biosynthetic pathways: rational design of microbial chemical factories. Prather KL, Martin CH. Curr Opin Biotechnol 19 468-474 (2008)
  34. Design of protein catalysts. Hilvert D. Annu Rev Biochem 82 447-470 (2013)
  35. Glycosyltransferases: mechanisms and applications in natural product development. Liang DM, Liu JH, Wu H, Wang BB, Zhu HJ, Qiao JJ. Chem Soc Rev 44 8350-8374 (2015)
  36. Theoretical and computational protein design. Samish I, MacDermaid CM, Perez-Aguilar JM, Saven JG. Annu Rev Phys Chem 62 129-149 (2011)
  37. Gene synthesis demystified. Czar MJ, Anderson JC, Bader JS, Peccoud J. Trends Biotechnol 27 63-72 (2009)
  38. Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. Mo Y, Bao P, Gao J. Phys Chem Chem Phys 13 6760-6775 (2011)
  39. Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects. Silverman SK. Chem Commun (Camb) 3467-3485 (2008)
  40. Enzyme (re)design: lessons from natural evolution and computation. Gerlt JA, Babbitt PC. Curr Opin Chem Biol 13 10-18 (2009)
  41. Backbone flexibility in computational protein design. Mandell DJ, Kortemme T. Curr Opin Biotechnol 20 420-428 (2009)
  42. Nature versus nurture: developing enzymes that function under extreme conditions. Liszka MJ, Clark ME, Schneider E, Clark DS. Annu Rev Chem Biomol Eng 3 77-102 (2012)
  43. Protein stability: computation, sequence statistics, and new experimental methods. Magliery TJ. Curr Opin Struct Biol 33 161-168 (2015)
  44. Synthetic fusion protein design and applications. Yu K, Liu C, Kim BG, Lee DY. Biotechnol Adv 33 155-164 (2015)
  45. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Yang G, Withers SG. Chembiochem 10 2704-2715 (2009)
  46. Structure-switching biosensors: inspired by Nature. Vallée-Bélisle A, Plaxco KW. Curr Opin Struct Biol 20 518-526 (2010)
  47. Engineering signal transduction pathways. Kiel C, Yus E, Serrano L. Cell 140 33-47 (2010)
  48. Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology. Agostini F, Völler JS, Koksch B, Acevedo-Rocha CG, Kubyshkin V, Budisa N. Angew Chem Int Ed Engl 56 9680-9703 (2017)
  49. Consensus protein design. Porebski BT, Buckle AM. Protein Eng Des Sel 29 245-251 (2016)
  50. Enzyme architecture: on the importance of being in a protein cage. Richard JP, Amyes TL, Goryanova B, Zhai X. Curr Opin Chem Biol 21 1-10 (2014)
  51. Recent progress in industrial biocatalysis. Nestl BM, Nebel BA, Hauer B. Curr Opin Chem Biol 15 187-193 (2011)
  52. Conformational dynamics and enzyme evolution. Petrović D, Risso VA, Kamerlin SCL, Sanchez-Ruiz JM. J R Soc Interface 15 20180330 (2018)
  53. Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. Jarboe LR, Zhang X, Wang X, Moore JC, Shanmugam KT, Ingram LO. J Biomed Biotechnol 2010 761042 (2010)
  54. Protein folding and de novo protein design for biotechnological applications. Khoury GA, Smadbeck J, Kieslich CA, Floudas CA. Trends Biotechnol 32 99-109 (2014)
  55. Biocatalysts by evolution. Jäckel C, Hilvert D. Curr Opin Biotechnol 21 753-759 (2010)
  56. Choreographing an enzyme's dance. Villali J, Kern D. Curr Opin Chem Biol 14 636-643 (2010)
  57. Computational tools for designing and engineering biocatalysts. Damborsky J, Brezovsky J. Curr Opin Chem Biol 13 26-34 (2009)
  58. Chemical synthesis using synthetic biology. Carothers JM, Goler JA, Keasling JD. Curr Opin Biotechnol 20 498-503 (2009)
  59. Designer protein delivery: From natural to engineered affinity-controlled release systems. Pakulska MM, Miersch S, Shoichet MS. Science 351 aac4750 (2016)
  60. Biocatalyst development by directed evolution. Wang M, Si T, Zhao H. Bioresour Technol 115 117-125 (2012)
  61. Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Otten LG, Hollmann F, Arends IW. Trends Biotechnol 28 46-54 (2010)
  62. Protein conformational switches: from nature to design. Ha JH, Loh SN. Chemistry 18 7984-7999 (2012)
  63. Biomolecularmodeling and simulation: a field coming of age. Schlick T, Collepardo-Guevara R, Halvorsen LA, Jung S, Xiao X. Q Rev Biophys 44 191-228 (2011)
  64. Catalytic peptide assemblies. Zozulia O, Dolan MA, Korendovych IV. Chem Soc Rev 47 3621-3639 (2018)
  65. Metalloenzyme design and engineering through strategic modifications of native protein scaffolds. Petrik ID, Liu J, Lu Y. Curr Opin Chem Biol 19 67-75 (2014)
  66. DNA synthesis, assembly and applications in synthetic biology. Ma S, Tang N, Tian J. Curr Opin Chem Biol 16 260-267 (2012)
  67. Synthetic metabolism: engineering biology at the protein and pathway scales. Martin CH, Nielsen DR, Solomon KV, Prather KL. Chem Biol 16 277-286 (2009)
  68. Role of conformational dynamics in the evolution of novel enzyme function. Maria-Solano MA, Serrano-Hervás E, Romero-Rivera A, Iglesias-Fernández J, Osuna S. Chem Commun (Camb) 54 6622-6634 (2018)
  69. Strategies for protein synthetic biology. Grünberg R, Serrano L. Nucleic Acids Res 38 2663-2675 (2010)
  70. Engineering aldolases as biocatalysts. Windle CL, Müller M, Nelson A, Berry A. Curr Opin Chem Biol 19 25-33 (2014)
  71. Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Bhabha G, Biel JT, Fraser JS. Acc Chem Res 48 423-430 (2015)
  72. Protein structure prediction and model quality assessment. Kryshtafovych A, Fidelis K. Drug Discov Today 14 386-393 (2009)
  73. Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers. Brudno Y, Liu DR. Chem Biol 16 265-276 (2009)
  74. Bringing molecules back into molecular evolution. Wilke CO. PLoS Comput Biol 8 e1002572 (2012)
  75. Recent advances in engineering proteins for biocatalysis. Li Y, Cirino PC. Biotechnol Bioeng 111 1273-1287 (2014)
  76. Developments in the tools and methodologies of synthetic biology. Kelwick R, MacDonald JT, Webb AJ, Freemont P. Front Bioeng Biotechnol 2 60 (2014)
  77. Recent advances in rational approaches for enzyme engineering. Steiner K, Schwab H. Comput Struct Biotechnol J 2 e201209010 (2012)
  78. Recent advances in de novo protein design: Principles, methods, and applications. Pan X, Kortemme T. J Biol Chem 296 100558 (2021)
  79. Secondary Forces in Protein Folding. Newberry RW, Raines RT. ACS Chem Biol 14 1677-1686 (2019)
  80. A new paradigm of DNA synthesis: three-metal-ion catalysis. Yang W, Weng PJ, Gao Y. Cell Biosci 6 51 (2016)
  81. Energy functions in de novo protein design: current challenges and future prospects. Li Z, Yang Y, Zhan J, Dai L, Zhou Y. Annu Rev Biophys 42 315-335 (2013)
  82. Fundamental challenges in mechanistic enzymology: progress toward understanding the rate enhancements of enzymes. Herschlag D, Natarajan A. Biochemistry 52 2050-2067 (2013)
  83. Emerging strategies for expanding the toolbox of enzymes in biocatalysis. Sandoval BA, Hyster TK. Curr Opin Chem Biol 55 45-51 (2020)
  84. Engineering synthetic recursive pathways to generate non-natural small molecules. Felnagle EA, Chaubey A, Noey EL, Houk KN, Liao JC. Nat Chem Biol 8 518-526 (2012)
  85. Challenges in the computational design of proteins. Suárez M, Jaramillo A. J R Soc Interface 6 Suppl 4 S477-91 (2009)
  86. Computational design approaches and tools for synthetic biology. MacDonald JT, Barnes C, Kitney RI, Freemont PS, Stan GB. Integr Biol (Camb) 3 97-108 (2011)
  87. Multistate approaches in computational protein design. Davey JA, Chica RA. Protein Sci 21 1241-1252 (2012)
  88. Computational enzyme design: transitioning from catalytic proteins to enzymes. Mak WS, Siegel JB. Curr Opin Struct Biol 27 87-94 (2014)
  89. Computational tools for the evaluation of laboratory-engineered biocatalysts. Romero-Rivera A, Garcia-Borràs M, Osuna S. Chem Commun (Camb) 53 284-297 (2016)
  90. Importance of protein dynamics during enzymatic C-H bond cleavage catalysis. Klinman JP. Biochemistry 52 2068-2077 (2013)
  91. Computational design of protein-protein interactions. Schreiber G, Fleishman SJ. Curr Opin Struct Biol 23 903-910 (2013)
  92. Emerging themes in the computational design of novel enzymes and protein-protein interfaces. Khare SD, Fleishman SJ. FEBS Lett 587 1147-1154 (2013)
  93. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity. Mack KL, Shorter J. Front Mol Biosci 3 8 (2016)
  94. Engineering oxidoreductases: maquette proteins designed from scratch. Lichtenstein BR, Farid TA, Kodali G, Solomon LA, Anderson JL, Sheehan MM, Ennist NM, Fry BA, Chobot SE, Bialas C, Mancini JA, Armstrong CT, Zhao Z, Esipova TV, Snell D, Vinogradov SA, Discher BM, Moser CC, Dutton PL. Biochem Soc Trans 40 561-566 (2012)
  95. Engineering protein switches: sensors, regulators, and spare parts for biology and biotechnology. Golynskiy MV, Koay MS, Vinkenborg JL, Merkx M. Chembiochem 12 353-361 (2011)
  96. Synthetic biology: tools to design, build, and optimize cellular processes. Young E, Alper H. J Biomed Biotechnol 2010 130781 (2010)
  97. Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Behrendorff JB, Huang W, Gillam EM. Biochem J 467 1-15 (2015)
  98. Conformational diversity and computational enzyme design. Lassila JK. Curr Opin Chem Biol 14 676-682 (2010)
  99. Harnessing Conformational Plasticity to Generate Designer Enzymes. Crean RM, Gardner JM, Kamerlin SCL. J Am Chem Soc 142 11324-11342 (2020)
  100. Computational protein design of ligand binding and catalysis. Feldmeier K, Höcker B. Curr Opin Chem Biol 17 929-933 (2013)
  101. Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Chen Z, Wilmanns M, Zeng AP. Trends Biotechnol 28 534-542 (2010)
  102. Protein engineering for metabolic engineering: current and next-generation tools. Marcheschi RJ, Gronenberg LS, Liao JC. Biotechnol J 8 545-555 (2013)
  103. Computational design gains momentum in enzyme catalysis engineering. Wijma HJ, Janssen DB. FEBS J 280 2948-2960 (2013)
  104. Computational design of ligand-binding proteins. Yang W, Lai L. Curr Opin Struct Biol 45 67-73 (2017)
  105. Protein design in systems metabolic engineering for industrial strain development. Chen Z, Zeng AP. Biotechnol J 8 523-533 (2013)
  106. The Need for Integrated Approaches in Metabolic Engineering. Lechner A, Brunk E, Keasling JD. Cold Spring Harb Perspect Biol 8 a023903 (2016)
  107. de novo computational enzyme design. Zanghellini A. Curr Opin Biotechnol 29 132-138 (2014)
  108. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Phys Chem Chem Phys 19 19847-19868 (2017)
  109. Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. Cao Y, Cao Y, Lin X. J Ind Microbiol Biotechnol 38 649-656 (2011)
  110. The oxygen-binding vs. oxygen-consuming paradigm in biocatalysis: structural biology and biomolecular simulation. Baron R, McCammon JA, Mattevi A. Curr Opin Struct Biol 19 672-679 (2009)
  111. Computational design of biological catalysts. Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J. Chem Soc Rev 37 2634-2643 (2008)
  112. Protein design: Past, present, and future. Regan L, Caballero D, Hinrichsen MR, Virrueta A, Williams DM, O'Hern CS. Biopolymers 104 334-350 (2015)
  113. The transaldolase family: new synthetic opportunities from an ancient enzyme scaffold. Samland AK, Rale M, Sprenger GA, Fessner WD. Chembiochem 12 1454-1474 (2011)
  114. Biosynthetic engineering of nonribosomal peptide synthetases. Kries H. J Pept Sci 22 564-570 (2016)
  115. Outsmarting metallo-beta-lactamases by mimicking their natural evolution. Oelschlaeger P. J Inorg Biochem 102 2043-2051 (2008)
  116. When proteostasis goes bad: Protein aggregation in the cell. Radwan M, Wood RJ, Sui X, Hatters DM. IUBMB Life 69 49-54 (2017)
  117. Computational approaches for rational design of proteins with novel functionalities. Tiwari MK, Singh R, Singh RK, Kim IW, Lee JK. Comput Struct Biotechnol J 2 e201209002 (2012)
  118. Beyond the outer limits of nature by directed evolution. Molina-Espeja P, Viña-Gonzalez J, Gomez-Fernandez BJ, Martin-Diaz J, Garcia-Ruiz E, Alcalde M. Biotechnol Adv 34 754-767 (2016)
  119. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Joh NH, Grigoryan G, Wu Y, DeGrado WF. Philos Trans R Soc Lond B Biol Sci 372 20160214 (2017)
  120. Protein design in biological networks: from manipulating the input to modifying the output. Van der Sloot AM, Kiel C, Serrano L, Stricher F. Protein Eng Des Sel 22 537-542 (2009)
  121. Rational and Semirational Protein Design. Korendovych IV. Methods Mol Biol 1685 15-23 (2018)
  122. The road to fully programmable protein catalysis. Lovelock SL, Crawshaw R, Basler S, Levy C, Baker D, Hilvert D, Green AP. Nature 606 49-58 (2022)
  123. Towards the automated engineering of a synthetic genome. Carrera J, Rodrigo G, Jaramillo A. Mol Biosyst 5 733-743 (2009)
  124. Computational design of structured loops for new protein functions. Kundert K, Kortemme T. Biol Chem 400 275-288 (2019)
  125. Computational protein engineering: bridging the gap between rational design and laboratory evolution. Barrozo A, Borstnar R, Marloie G, Kamerlin SC. Int J Mol Sci 13 12428-12460 (2012)
  126. Computational strategies for the design of new enzymatic functions. Świderek K, Tuñón I, Moliner V, Bertran J. Arch Biochem Biophys 582 68-79 (2015)
  127. Computer-aided design of amino acid-based therapeutics: a review. Farhadi T, Hashemian SM. Drug Des Devel Ther 12 1239-1254 (2018)
  128. Mining electron density for functionally relevant protein polysterism in crystal structures. Fraser JS, Jackson CJ. Cell Mol Life Sci 68 1829-1841 (2011)
  129. Practical application of synthetic biology principles. Marner WD. Biotechnol J 4 1406-1419 (2009)
  130. Computational design of protein-ligand interfaces: potential in therapeutic development. Morin A, Meiler J, Mizoue LS. Trends Biotechnol 29 159-166 (2011)
  131. The analysis of enzymic free energy relationships using kinetic and computational models. Greig IR. Chem Soc Rev 39 2272-2301 (2010)
  132. The role of reorganization energy in rational enzyme design. Fuxreiter M, Mones L. Curr Opin Chem Biol 21 34-41 (2014)
  133. Computational protein design: a review. Coluzza I. J Phys Condens Matter 29 143001 (2017)
  134. Creating protein biocatalysts as tools for future industrial applications. Chaput JC, Woodbury NW, Stearns LA, Williams BA. Expert Opin Biol Ther 8 1087-1098 (2008)
  135. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07. Labas A, Szabo E, Mones L, Fuxreiter M. Biochim Biophys Acta 1834 908-917 (2013)
  136. Recent advances in automated protein design and its future challenges. Setiawan D, Brender J, Zhang Y. Expert Opin Drug Discov 13 587-604 (2018)
  137. Recent advances in biocatalyst discovery, development and applications. Yang G, Ding Y. Bioorg Med Chem 22 5604-5612 (2014)
  138. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind. London N, Ambroggio X. J Struct Biol 185 136-146 (2014)
  139. Computational protein design with backbone plasticity. MacDonald JT, Freemont PS. Biochem Soc Trans 44 1523-1529 (2016)
  140. Computational protein design, from single domain soluble proteins to membrane proteins. Tian P. Chem Soc Rev 39 2071-2082 (2010)
  141. Hierarchical design of artificial proteins and complexes toward synthetic structural biology. Arai R. Biophys Rev 10 391-410 (2018)
  142. Shedding light on protein folding, structural and functional dynamics by single molecule studies. Bavishi K, Hatzakis NS. Molecules 19 19407-19434 (2014)
  143. Programmable bacterial catalysis - designing cells for biosynthesis of value-added compounds. Lam CM, Suárez Diez M, Godinho M, Martins dos Santos VA. FEBS Lett 586 2184-2190 (2012)
  144. Protein design via deep learning. Ding W, Nakai K, Gong H. Brief Bioinform 23 bbac102 (2022)
  145. Back to the future: Why we need enzymology to build a synthetic metabolism of the future. Erb TJ. Beilstein J Org Chem 15 551-557 (2019)
  146. Probabilistic models and machine learning in structural bioinformatics. Hamelryck T. Stat Methods Med Res 18 505-526 (2009)
  147. Accelerated protein engineering for chemical biotechnology via homologous recombination. Nordwald EM, Garst A, Gill RT, Kaar JL. Curr Opin Biotechnol 24 1017-1022 (2013)
  148. Computational enzyme design approaches with significant biological outcomes: progress and challenges. Li X, Zhang Z, Song J. Comput Struct Biotechnol J 2 e201209007 (2012)
  149. De novo proteins from random sequences through in vitro evolution. Tong CL, Lee KH, Seelig B. Curr Opin Struct Biol 68 129-134 (2021)
  150. Enzyme informatics. Alderson RG, De Ferrari L, Mavridis L, McDonagh JL, Mitchell JB, Nath N. Curr Top Med Chem 12 1911-1923 (2012)
  151. Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions. Ferrando J, Solomon LA. Life (Basel) 11 225 (2021)
  152. Unlocking New Reactivities in Enzymes by Iminium Catalysis. Xu G, Poelarends GJ. Angew Chem Int Ed Engl 61 e202203613 (2022)
  153. Computational tools for rational protein engineering of aldolases. Widmann M, Pleiss J, Samland AK. Comput Struct Biotechnol J 2 e201209016 (2012)
  154. Rational protein design: developing next-generation biological therapeutics and nanobiotechnological tools. Wilson CJ. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7 330-341 (2015)
  155. Acceleration of Mechanistic Investigation of Plant Secondary Metabolism Based on Computational Chemistry. Sato H, Saito K, Yamazaki M. Front Plant Sci 10 802 (2019)
  156. Computational Enzyme Design: Advances, hurdles and possible ways forward. Linder M. Comput Struct Biotechnol J 2 e201209009 (2012)
  157. Enabling protein-hosted organocatalytic transformations. Nödling AR, Santi N, Williams TL, Tsai YH, Luk LYP. RSC Adv 10 16147-16161 (2020)
  158. Rational approaches for engineering novel functionalities in carbon-carbon bond forming enzymes. Baker P, Seah SY. Comput Struct Biotechnol J 2 e201209003 (2012)
  159. Residue-based pharmacophore approaches to study protein-protein interactions. Shrestha R, Fajardo JE, Fiser A. Curr Opin Struct Biol 67 205-211 (2021)
  160. Current state of and need for enzyme engineering of 2-deoxy-D-ribose 5-phosphate aldolases and its impact. Rouvinen J, Andberg M, Pääkkönen J, Hakulinen N, Koivula A. Appl Microbiol Biotechnol 105 6215-6228 (2021)
  161. Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing. Shi Z, Liu P, Liao X, Mao Z, Zhang J, Wang Q, Sun J, Ma H, Ma Y. Biodes Res 2022 9898461 (2022)
  162. Derivatives of Natural Organocatalytic Cofactors and Artificial Organocatalytic Cofactors as Catalysts in Enzymes. Lechner H, Oberdorfer G. Chembiochem 23 e202100599 (2022)
  163. Evolution-aided engineering of plant specialized metabolism. Irfan M, Chavez B, Rizzo P, D'Auria JC, Moghe GD. aBIOTECH 2 240-263 (2021)
  164. Modern Approaches to Discovering New Hydroxynitrile Lyases for Biocatalysis. Padhi SK. Chembiochem 18 152-160 (2017)
  165. Searching for the Pareto frontier in multi-objective protein design. Nanda V, Belure SV, Shir OM. Biophys Rev 9 339-344 (2017)
  166. Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design. Markus B, C GC, Andreas K, Arkadij K, Stefan L, Gustav O, Elina S, Radka S. ACS Catal 13 14454-14469 (2023)
  167. Acid-resistant enzymes: the acquisition strategies and applications. Zhang Z, Zhao Z, Huang K, Liang Z. Appl Microbiol Biotechnol 107 6163-6178 (2023)
  168. Applied evolutionary theories for engineering of secondary metabolic pathways. Bachmann BO. Curr Opin Chem Biol 35 133-141 (2016)
  169. Bioprospecting of microbial enzymes: current trends in industry and healthcare. Tatta ER, Imchen M, Moopantakath J, Kumavath R. Appl Microbiol Biotechnol 106 1813-1835 (2022)
  170. Design of catalytic polypeptides and proteins. Gutte B, Klauser S. Protein Eng Des Sel 31 457-470 (2018)
  171. Engineering of enzymes using non-natural amino acids. Li Y, Dalby PA. Biosci Rep 42 BSR20220168 (2022)
  172. Fungal cellulases: protein engineering and post-translational modifications. Zhang R, Cao C, Bi J, Li Y. Appl Microbiol Biotechnol 106 1-24 (2022)
  173. Intelligent Protein Design and Molecular Characterization Techniques: A Comprehensive Review. Wang J, Chen C, Yao G, Ding J, Wang L, Jiang H. Molecules 28 7865 (2023)
  174. Loop dynamics and the evolution of enzyme activity. Corbella M, Pinto GP, Kamerlin SCL. Nat Rev Chem 7 536-547 (2023)
  175. Next generation of multispecific antibody engineering. Keri D, Walker M, Singh I, Nishikawa K, Garces F. Antib Ther 7 37-52 (2024)
  176. Perspective: Path Sampling Methods Applied to Enzymatic Catalysis. Schwartz SD. J Chem Theory Comput 18 6397-6406 (2022)
  177. Protein-protein interaction prediction with deep learning: A comprehensive review. Soleymani F, Paquet E, Viktor H, Michalowski W, Spinello D. Comput Struct Biotechnol J 20 5316-5341 (2022)
  178. Supramolecular enzyme-mimicking catalysts self-assembled from peptides. Liu Q, Kuzuya A, Wang ZG. iScience 26 105831 (2023)
  179. [Prediction of the spatial structure of proteins: emphasis on membrane targets]. Chugunov AO, Efremov RG. Bioorg Khim 35 744-760 (2009)

Articles citing this publication (378)

  1. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popović Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P. Methods Enzymol 487 545-574 (2011)
  2. Kemp elimination catalysts by computational enzyme design. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Gallaher JL, Althoff EA, Zanghellini A, Dym O, Albeck S, Houk KN, Tawfik DS, Baker D. Nature 453 190-195 (2008)
  3. Quantitative reactivity profiling predicts functional cysteines in proteomes. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF. Nature 468 790-795 (2010)
  4. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, St Clair JL, Gallaher JL, Hilvert D, Gelb MH, Stoddard BL, Houk KN, Michael FE, Baker D. Science 329 309-313 (2010)
  5. Principles for designing ideal protein structures. Koga N, Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB, Montelione GT, Baker D. Nature 491 222-227 (2012)
  6. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM, Khare SD, Koga N, Ashworth J, Murphy P, Richter F, Lemmon G, Meiler J, Baker D. PLoS One 6 e20161 (2011)
  7. A general strategy for the evolution of bond-forming enzymes using yeast display. Chen I, Dorr BM, Liu DR. Proc Natl Acad Sci U S A 108 11399-11404 (2011)
  8. RosettaLigand docking with full ligand and receptor flexibility. Davis IW, Baker D. J Mol Biol 385 381-392 (2009)
  9. Computational design of ligand-binding proteins with high affinity and selectivity. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson JW, Schena A, Jankowski W, Kalodimos CG, Johnsson K, Stoddard BL, Baker D. Nature 501 212-216 (2013)
  10. RosettaRemodel: a generalized framework for flexible backbone protein design. Huang PS, Ban YE, Richter F, Andre I, Vernon R, Schief WR, Baker D. PLoS One 6 e24109 (2011)
  11. Alternate states of proteins revealed by detailed energy landscape mapping. Tyka MD, Keedy DA, André I, Dimaio F, Song Y, Richardson DC, Richardson JS, Baker D. J Mol Biol 405 607-618 (2011)
  12. Iterative approach to computational enzyme design. Privett HK, Kiss G, Lee TM, Blomberg R, Chica RA, Thomas LM, Hilvert D, Houk KN, Mayo SL. Proc Natl Acad Sci U S A 109 3790-3795 (2012)
  13. De novo enzyme design using Rosetta3. Richter F, Leaver-Fay A, Khare SD, Bjelic S, Baker D. PLoS One 6 e19230 (2011)
  14. Design and engineering of an O(2) transport protein. Koder RL, Anderson JL, Solomon LA, Reddy KS, Moser CC, Dutton PL. Nature 458 305-309 (2009)
  15. Rational design of a structural and functional nitric oxide reductase. Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, Lei L, Miner KD, Robinson H, Lu Y. Nature 462 1079-1082 (2009)
  16. Engineering an allosteric transcription factor to respond to new ligands. Taylor ND, Garruss AS, Moretti R, Chan S, Arbing MA, Cascio D, Rogers JK, Isaacs FJ, Kosuri S, Baker D, Fields S, Church GM, Raman S. Nat Methods 13 177-183 (2016)
  17. A Pareto-optimal refinement method for protein design scaffolds. Nivón LG, Moretti R, Baker D. PLoS One 8 e59004 (2013)
  18. Computational structure-based redesign of enzyme activity. Chen CY, Georgiev I, Anderson AC, Donald BR. Proc Natl Acad Sci U S A 106 3764-3769 (2009)
  19. Evolution of a designed retro-aldolase leads to complete active site remodeling. Giger L, Caner S, Obexer R, Kast P, Baker D, Ban N, Hilvert D. Nat Chem Biol 9 494-498 (2013)
  20. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, Shen BW, Players F, Stoddard BL, Popovic Z, Baker D. Nat Biotechnol 30 190-192 (2012)
  21. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Khare SD, Kipnis Y, Greisen P, Takeuchi R, Ashani Y, Goldsmith M, Song Y, Gallaher JL, Silman I, Leader H, Sussman JL, Stoddard BL, Tawfik DS, Baker D. Nat Chem Biol 8 294-300 (2012)
  22. Computational design of virus-like protein assemblies on carbon nanotube surfaces. Grigoryan G, Kim YH, Acharya R, Axelrod K, Jain RM, Willis L, Drndic M, Kikkawa JM, DeGrado WF. Science 332 1071-1076 (2011)
  23. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Khersonsky O, Kiss G, Röthlisberger D, Dym O, Albeck S, Houk KN, Baker D, Tawfik DS. Proc Natl Acad Sci U S A 109 10358-10363 (2012)
  24. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Obexer R, Godina A, Garrabou X, Mittl PR, Baker D, Griffiths AD, Hilvert D. Nat Chem 9 50-56 (2017)
  25. An artificial di-iron oxo-protein with phenol oxidase activity. Faiella M, Andreozzi C, de Rosales RT, Pavone V, Maglio O, Nastri F, DeGrado WF, Lombardi A. Nat Chem Biol 5 882-884 (2009)
  26. An exciting but challenging road ahead for computational enzyme design. Baker D. Protein Sci 19 1817-1819 (2010)
  27. Protein thermostability calculations using alchemical free energy simulations. Seeliger D, de Groot BL. Biophys J 98 2309-2316 (2010)
  28. Capture of a third Mg²⁺ is essential for catalyzing DNA synthesis. Gao Y, Yang W. Science 352 1334-1337 (2016)
  29. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. Khersonsky O, Röthlisberger D, Dym O, Albeck S, Jackson CJ, Baker D, Tawfik DS. J Mol Biol 396 1025-1042 (2010)
  30. Navigating the protein fitness landscape with Gaussian processes. Romero PA, Krause A, Arnold FH. Proc Natl Acad Sci U S A 110 E193-201 (2013)
  31. Computational prediction of small-molecule catalysts. Houk KN, Cheong PH. Nature 455 309-313 (2008)
  32. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution. Khersonsky O, Röthlisberger D, Wollacott AM, Murphy P, Dym O, Albeck S, Kiss G, Houk KN, Baker D, Tawfik DS. J Mol Biol 407 391-412 (2011)
  33. Role of the biomolecular energy gap in protein design, structure, and evolution. Fleishman SJ, Baker D. Cell 149 262-273 (2012)
  34. Alteration of enzyme specificity by computational loop remodeling and design. Murphy PM, Bolduc JM, Gallaher JL, Stoddard BL, Baker D. Proc Natl Acad Sci U S A 106 9215-9220 (2009)
  35. Robust design and optimization of retroaldol enzymes. Althoff EA, Wang L, Jiang L, Giger L, Lassila JK, Wang Z, Smith M, Hari S, Kast P, Herschlag D, Hilvert D, Baker D. Protein Sci 21 717-726 (2012)
  36. Rosetta Ligand docking with flexible XML protocols. Lemmon G, Meiler J. Methods Mol Biol 819 143-155 (2012)
  37. Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ, Zalucki M, Heino M, Ford Denison R. Evol Appl 4 200-215 (2011)
  38. Predicting resistance mutations using protein design algorithms. Frey KM, Georgiev I, Donald BR, Anderson AC. Proc Natl Acad Sci U S A 107 13707-13712 (2010)
  39. Rational engineering of L-asparaginase reveals importance of dual activity for cancer cell toxicity. Offman MN, Krol M, Patel N, Krishnan S, Liu J, Saha V, Bates PA. Blood 117 1614-1621 (2011)
  40. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Lin YW, Yeung N, Gao YG, Miner KD, Tian S, Robinson H, Lu Y. Proc Natl Acad Sci U S A 107 8581-8586 (2010)
  41. RosettaBackrub--a web server for flexible backbone protein structure modeling and design. Lauck F, Smith CA, Friedland GF, Humphris EL, Kortemme T. Nucleic Acids Res 38 W569-75 (2010)
  42. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. Richter F, Blomberg R, Khare SD, Kiss G, Kuzin AP, Smith AJ, Gallaher J, Pianowski Z, Helgeson RC, Grjasnow A, Xiao R, Seetharaman J, Su M, Vorobiev S, Lew S, Forouhar F, Kornhaber GJ, Hunt JF, Montelione GT, Tong L, Houk KN, Hilvert D, Baker D. J Am Chem Soc 134 16197-16206 (2012)
  43. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Der BS, Edwards DR, Kuhlman B. Biochemistry 51 3933-3940 (2012)
  44. De novo design and molecular assembly of a transmembrane diporphyrin-binding protein complex. Korendovych IV, Senes A, Kim YH, Lear JD, Fry HC, Therien MJ, Blasie JK, Walker FA, Degrado WF. J Am Chem Soc 132 15516-15518 (2010)
  45. The pK(a) values of acidic and basic residues buried at the same internal location in a protein are governed by different factors. Harms MJ, Castañeda CA, Schlessman JL, Sue GR, Isom DG, Cannon BR, García-Moreno E B. J Mol Biol 389 34-47 (2009)
  46. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. Azoitei ML, Ban YE, Julien JP, Bryson S, Schroeter A, Kalyuzhniy O, Porter JR, Adachi Y, Baker D, Pai EF, Schief WR. J Mol Biol 415 175-192 (2012)
  47. Computational design of ligand binding is not a solved problem. Schreier B, Stumpp C, Wiesner S, Höcker B. Proc Natl Acad Sci U S A 106 18491-18496 (2009)
  48. Evaluation and ranking of enzyme designs. Kiss G, Röthlisberger D, Baker D, Houk KN. Protein Sci 19 1760-1773 (2010)
  49. Insights from molecular dynamics simulations for computational protein design. Childers MC, Daggett V. Mol Syst Des Eng 2 9-33 (2017)
  50. Installing hydrolytic activity into a completely de novo protein framework. Burton AJ, Thomson AR, Dawson WM, Dawson WM, Brady RL, Woolfson DN. Nat Chem 8 837-844 (2016)
  51. Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole. Sigala PA, Kraut DA, Caaveiro JM, Pybus B, Ruben EA, Ringe D, Petsko GA, Herschlag D. J Am Chem Soc 130 13696-13708 (2008)
  52. Origins of catalysis by computationally designed retroaldolase enzymes. Lassila JK, Baker D, Herschlag D. Proc Natl Acad Sci U S A 107 4937-4942 (2010)
  53. Proline editing: a general and practical approach to the synthesis of functionally and structurally diverse peptides. Analysis of steric versus stereoelectronic effects of 4-substituted prolines on conformation within peptides. Pandey AK, Naduthambi D, Thomas KM, Zondlo NJ. J Am Chem Soc 135 4333-4363 (2013)
  54. Principles for designing proteins with cavities formed by curved β sheets. Marcos E, Basanta B, Chidyausiku TM, Tang Y, Oberdorfer G, Liu G, Swapna GV, Guan R, Silva DA, Dou J, Pereira JH, Xiao R, Sankaran B, Zwart PH, Montelione GT, Baker D. Science 355 201-206 (2017)
  55. RosettaAntibodyDesign (RAbD): A general framework for computational antibody design. Adolf-Bryfogle J, Kalyuzhniy O, Kubitz M, Weitzner BD, Hu X, Adachi Y, Schief WR, Dunbrack RL. PLoS Comput Biol 14 e1006112 (2018)
  56. In vivo continuous evolution of genes and pathways in yeast. Crook N, Abatemarco J, Sun J, Wagner JM, Schmitz A, Alper HS. Nat Commun 7 13051 (2016)
  57. Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle. Smith AJ, Müller R, Toscano MD, Kast P, Hellinga HW, Hilvert D, Houk KN. J Am Chem Soc 130 15361-15373 (2008)
  58. Bioinspired catalyst design and artificial metalloenzymes. Deuss PJ, den Heeten R, Laan W, Kamer PC. Chemistry 17 4680-4698 (2011)
  59. CCBuilder 2.0: Powerful and accessible coiled-coil modeling. Wood CW, Woolfson DN. Protein Sci 27 103-111 (2018)
  60. Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination. Alexandrova AN, Röthlisberger D, Baker D, Jorgensen WL. J Am Chem Soc 130 15907-15915 (2008)
  61. Consequences of folding a water-soluble polymer around an organocatalyst. Huerta E, Stals PJ, Meijer EW, Palmans AR. Angew Chem Int Ed Engl 52 2906-2910 (2013)
  62. Rational design of topographical helix mimics as potent inhibitors of protein-protein interactions. Lao BB, Drew K, Guarracino DA, Brewer TF, Heindel DW, Bonneau R, Arora PS. J Am Chem Soc 136 7877-7888 (2014)
  63. A generic program for multistate protein design. Leaver-Fay A, Jacak R, Stranges PB, Kuhlman B. PLoS One 6 e20937 (2011)
  64. A rationally designed aldolase foldamer. Müller MM, Windsor MA, Pomerantz WC, Gellman SH, Hilvert D. Angew Chem Int Ed Engl 48 922-925 (2009)
  65. Algorithm for backrub motions in protein design. Georgiev I, Keedy D, Richardson JS, Richardson DC, Donald BR. Bioinformatics 24 i196-204 (2008)
  66. Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Partch CL, Gardner KH. Proc Natl Acad Sci U S A 108 7739-7744 (2011)
  67. Directed evolution as a powerful synthetic biology tool. Cobb RE, Sun N, Zhao H. Methods 60 81-90 (2013)
  68. The importance of additive and non-additive mutational effects in protein engineering. Reetz MT. Angew Chem Int Ed Engl 52 2658-2666 (2013)
  69. Computational design of Candida boidinii xylose reductase for altered cofactor specificity. Khoury GA, Fazelinia H, Chin JW, Pantazes RJ, Cirino PC, Maranas CD. Protein Sci 18 2125-2138 (2009)
  70. Remeasuring HEWL pK(a) values by NMR spectroscopy: methods, analysis, accuracy, and implications for theoretical pK(a) calculations. Webb H, Tynan-Connolly BM, Lee GM, Farrell D, O'Meara F, Søndergaard CR, Teilum K, Hewage C, McIntosh LP, Nielsen JE. Proteins 79 685-702 (2011)
  71. Establishing wild-type levels of catalytic activity on natural and artificial (beta alpha)8-barrel protein scaffolds. Claren J, Malisi C, Höcker B, Sterner R. Proc Natl Acad Sci U S A 106 3704-3709 (2009)
  72. Catalytic reaction mechanism of acetylcholinesterase determined by Born-Oppenheimer ab initio QM/MM molecular dynamics simulations. Zhou Y, Wang S, Zhang Y. J Phys Chem B 114 8817-8825 (2010)
  73. Computational protein design using flexible backbone remodeling and resurfacing: case studies in structure-based antigen design. Correia BE, Ban YE, Friend DJ, Ellingson K, Xu H, Boni E, Bradley-Hewitt T, Bruhn-Johannsen JF, Stamatatos L, Strong RK, Schief WR. J Mol Biol 405 284-297 (2011)
  74. Interplay of hydrogen bonds and n→π* interactions in proteins. Bartlett GJ, Newberry RW, VanVeller B, Raines RT, Woolfson DN. J Am Chem Soc 135 18682-18688 (2013)
  75. Rapid calculation of protein pKa values using Rosetta. Kilambi KP, Gray JJ. Biophys J 103 587-595 (2012)
  76. A designed functional metalloenzyme that reduces O2 to H2O with over one thousand turnovers. Miner KD, Mukherjee A, Gao YG, Null EL, Petrik ID, Zhao X, Yeung N, Robinson H, Lu Y. Angew Chem Int Ed Engl 51 5589-5592 (2012)
  77. Role of Conformational Dynamics in the Evolution of Retro-Aldolase Activity. Romero-Rivera A, Garcia-Borràs M, Osuna S. ACS Catal 7 8524-8532 (2017)
  78. Fast determination of the optimal rotational matrix for macromolecular superpositions. Liu P, Agrafiotis DK, Theobald DL. J Comput Chem 31 1561-1563 (2010)
  79. KineticDB: a database of protein folding kinetics. Bogatyreva NS, Osypov AA, Ivankov DN. Nucleic Acids Res 37 D342-6 (2009)
  80. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. Hou G, Cui Q. J Am Chem Soc 134 229-246 (2012)
  81. Rational design of proteins that exchange on functional timescales. Davey JA, Damry AM, Goto NK, Chica RA. Nat Chem Biol 13 1280-1285 (2017)
  82. Dissecting the paradoxical effects of hydrogen bond mutations in the ketosteroid isomerase oxyanion hole. Kraut DA, Sigala PA, Fenn TD, Herschlag D. Proc Natl Acad Sci U S A 107 1960-1965 (2010)
  83. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. Ringenberg MR, Ward TR. Chem Commun (Camb) 47 8470-8476 (2011)
  84. The EVB as a quantitative tool for formulating simulations and analyzing biological and chemical reactions. Kamerlin SC, Warshel A. Faraday Discuss 145 71-106 (2010)
  85. The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Marliere P. Syst Synth Biol 3 77-84 (2009)
  86. Accurate Estimation of Ligand Binding Affinity Changes upon Protein Mutation. Aldeghi M, Gapsys V, de Groot BL. ACS Cent Sci 4 1708-1718 (2018)
  87. Computational design of a modular protein sense-response system. Glasgow AA, Huang YM, Mandell DJ, Thompson M, Ritterson R, Loshbaugh AL, Pellegrino J, Krivacic C, Pache RA, Barlow KA, Ollikainen N, Jeon D, Kelly MJS, Fraser JS, Kortemme T. Science 366 1024-1028 (2019)
  88. Enantioselective enzymes by computational design and in silico screening. Wijma HJ, Floor RJ, Bjelic S, Marrink SJ, Baker D, Janssen DB. Angew Chem Int Ed Engl 54 3726-3730 (2015)
  89. Structural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design. Wang L, Althoff EA, Bolduc J, Jiang L, Moody J, Lassila JK, Giger L, Hilvert D, Stoddard B, Baker D. J Mol Biol 415 615-625 (2012)
  90. Computational Protein Design with Deep Learning Neural Networks. Wang J, Cao H, Zhang JZH, Qi Y. Sci Rep 8 6349 (2018)
  91. A highly efficient cocaine-detoxifying enzyme obtained by computational design. Zheng F, Xue L, Hou S, Liu J, Zhan M, Yang W, Zhan CG. Nat Commun 5 3457 (2014)
  92. Direct observation of an enamine intermediate in amine catalysis. Zhu X, Tanaka F, Lerner RA, Barbas CF, Wilson IA. J Am Chem Soc 131 18206-18207 (2009)
  93. Evolutionary relationship of two ancient protein superfolds. Farías-Rico JA, Schmidt S, Höcker B. Nat Chem Biol 10 710-715 (2014)
  94. Four small puzzles that Rosetta doesn't solve. Das R. PLoS One 6 e20044 (2011)
  95. Engineering a protein-protein interface using a computationally designed library. Guntas G, Purbeck C, Kuhlman B. Proc Natl Acad Sci U S A 107 19296-19301 (2010)
  96. The influence of protein dynamics on the success of computational enzyme design. Ruscio JZ, Kohn JE, Ball KA, Head-Gordon T. J Am Chem Soc 131 14111-14115 (2009)
  97. Toward accurate screening in computer-aided enzyme design. Roca M, Vardi-Kilshtain A, Warshel A. Biochemistry 48 3046-3056 (2009)
  98. Design of activated serine-containing catalytic triads with atomic-level accuracy. Rajagopalan S, Wang C, Yu K, Kuzin AP, Richter F, Lew S, Miklos AE, Matthews ML, Seetharaman J, Su M, Hunt JF, Cravatt BF, Baker D. Nat Chem Biol 10 386-391 (2014)
  99. Forcefield_NCAA: ab initio charge parameters to aid in the discovery and design of therapeutic proteins and peptides with unnatural amino acids and their application to complement inhibitors of the compstatin family. Khoury GA, Smadbeck J, Tamamis P, Vandris AC, Kieslich CA, Floudas CA. ACS Synth Biol 3 855-869 (2014)
  100. Restricted sidechain plasticity in the structures of native proteins and complexes. Fleishman SJ, Khare SD, Koga N, Baker D. Protein Sci 20 753-757 (2011)
  101. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico. Broom A, Rakotoharisoa RV, Thompson MC, Zarifi N, Nguyen E, Mukhametzhanov N, Liu L, Fraser JS, Chica RA. Nat Commun 11 4808 (2020)
  102. Hydrogen-Deuterium Exchange of Lipoxygenase Uncovers a Relationship between Distal, Solvent Exposed Protein Motions and the Thermal Activation Barrier for Catalytic Proton-Coupled Electron Tunneling. Offenbacher AR, Hu S, Poss EM, Carr CAM, Scouras AD, Prigozhin DM, Iavarone AT, Palla A, Alber T, Fraser JS, Klinman JP. ACS Cent Sci 3 570-579 (2017)
  103. Computational design of enone-binding proteins with catalytic activity for the Morita-Baylis-Hillman reaction. Bjelic S, Nivón LG, Çelebi-Ölçüm N, Kiss G, Rosewall CF, Lovick HM, Ingalls EL, Gallaher JL, Seetharaman J, Lew S, Montelione GT, Hunt JF, Michael FE, Houk KN, Baker D. ACS Chem Biol 8 749-757 (2013)
  104. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Roelfes G. Acc Chem Res 52 545-556 (2019)
  105. An efficient algorithm for multistate protein design based on FASTER. Allen BD, Mayo SL. J Comput Chem 31 904-916 (2010)
  106. Engineering of biocatalysts - from evolution to creation. Quin MB, Schmidt-Dannert C. ACS Catal 1 1017-1021 (2011)
  107. Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations. Liang S, Li L, Hsu WL, Pilcher MN, Uversky V, Zhou Y, Dunker AK, Meroueh SO. Biochemistry 48 399-414 (2009)
  108. RASMOT-3D PRO: a 3D motif search webserver. Debret G, Martel A, Cuniasse P. Nucleic Acids Res 37 W459-64 (2009)
  109. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif. Ahmed MH, Spyrakis F, Cozzini P, Tripathi PK, Mozzarelli A, Scarsdale JN, Safo MA, Kellogg GE. PLoS One 6 e24712 (2011)
  110. Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution. Huang J, Makabe K, Biancalana M, Koide A, Koide S. J Mol Biol 392 1221-1231 (2009)
  111. Experimental library screening demonstrates the successful application of computational protein design to large structural ensembles. Allen BD, Nisthal A, Mayo SL. Proc Natl Acad Sci U S A 107 19838-19843 (2010)
  112. Residue-centric modeling and design of saccharide and glycoconjugate structures. Labonte JW, Adolf-Bryfogle J, Schief WR, Gray JJ. J Comput Chem 38 276-287 (2017)
  113. X-ray vs. NMR structures as templates for computational protein design. Schneider M, Fu X, Keating AE. Proteins 77 97-110 (2009)
  114. Synonymous genes explore different evolutionary landscapes. Cambray G, Mazel D. PLoS Genet 4 e1000256 (2008)
  115. Binding pocket optimization by computational protein design. Malisi C, Schumann M, Toussaint NC, Kageyama J, Kohlbacher O, Höcker B. PLoS One 7 e52505 (2012)
  116. Computational enzymology. Lonsdale R, Ranaghan KE, Mulholland AJ. Chem Commun (Camb) 46 2354-2372 (2010)
  117. Production of bulk chemicals via novel metabolic pathways in microorganisms. Shin JH, Kim HU, Kim DI, Lee SY. Biotechnol Adv 31 925-935 (2013)
  118. Understanding the signatures of secondary-structure elements in proteins with Raman optical activity spectroscopy. Jacob CR, Luber S, Reiher M. Chemistry 15 13491-13508 (2009)
  119. Accurate reaction enthalpies and sources of error in DFT thermochemistry for aldol, Mannich, and alpha-aminoxylation reactions. Wheeler SE, Moran A, Pieniazek SN, Houk KN. J Phys Chem A 113 10376-10384 (2009)
  120. Computational Redesign of Acyl-ACP Thioesterase with Improved Selectivity toward Medium-Chain-Length Fatty Acids. Grisewood MJ, Hernandez Lozada NJ, Thoden JB, Gifford NP, Mendez-Perez D, Schoenberger HA, Allan MF, Floy ME, Lai RY, Holden HM, Pfleger BF, Maranas CD. ACS Catal 7 3837-3849 (2017)
  121. Converting an esterase into an epoxide hydrolase. Jochens H, Stiba K, Savile C, Fujii R, Yu JG, Gerassenkov T, Kazlauskas RJ, Bornscheuer UT. Angew Chem Int Ed Engl 48 3532-3535 (2009)
  122. Effective inter-residue contact definitions for accurate protein fold recognition. Yuan C, Chen H, Kihara D. BMC Bioinformatics 13 292 (2012)
  123. Engineering enzyme specificity using computational design of a defined-sequence library. Lippow SM, Moon TS, Basu S, Yoon SH, Li X, Chapman BA, Robison K, Lipovšek D, Prather KL. Chem Biol 17 1306-1315 (2010)
  124. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations. Steinkellner G, Gruber CC, Pavkov-Keller T, Binter A, Steiner K, Winkler C, Lyskowski A, Schwamberger O, Oberer M, Schwab H, Faber K, Macheroux P, Gruber K. Nat Commun 5 4150 (2014)
  125. Scaffolding protein functional sites using deep learning. Wang J, Lisanza S, Juergens D, Tischer D, Watson JL, Castro KM, Ragotte R, Saragovi A, Milles LF, Baek M, Anishchenko I, Yang W, Hicks DR, Expòsit M, Schlichthaerle T, Chun JH, Dauparas J, Bennett N, Wicky BIM, Muenks A, DiMaio F, Correia B, Ovchinnikov S, Baker D. Science 377 387-394 (2022)
  126. Web-accessible molecular modeling with Rosetta: The Rosetta Online Server that Includes Everyone (ROSIE). Moretti R, Lyskov S, Das R, Meiler J, Gray JJ. Protein Sci 27 259-268 (2018)
  127. A heme-peptide metalloenzyme mimetic with natural peroxidase-like activity. Nastri F, Lista L, Ringhieri P, Vitale R, Faiella M, Andreozzi C, Travascio P, Maglio O, Lombardi A, Pavone V. Chemistry 17 4444-4453 (2011)
  128. Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis. Nannemann DP, Birmingham WR, Scism RA, Bachmann BO. Future Med Chem 3 809-819 (2011)
  129. Quantitative comparison of catalytic mechanisms and overall reactions in convergently evolved enzymes: implications for classification of enzyme function. Almonacid DE, Yera ER, Mitchell JB, Babbitt PC. PLoS Comput Biol 6 e1000700 (2010)
  130. Computational design of a self-assembling β-peptide oligomer. Korendovych IV, Kim YH, Ryan AH, Lear JD, Degrado WF, Shandler SJ. Org Lett 12 5142-5145 (2010)
  131. De novo backbone scaffolds for protein design. MacDonald JT, Maksimiak K, Sadowski MI, Taylor WR. Proteins 78 1311-1325 (2010)
  132. Design of an enantioselective artificial metallo-hydratase enzyme containing an unnatural metal-binding amino acid. Drienovská I, Alonso-Cotchico L, Vidossich P, Lledós A, Maréchal JD, Roelfes G. Chem Sci 8 7228-7235 (2017)
  133. Development of a rotamer library for use in beta-peptide foldamer computational design. Shandler SJ, Shapovalov MV, Dunbrack RL, DeGrado WF. J Am Chem Soc 132 7312-7320 (2010)
  134. Extensive site-directed mutagenesis reveals interconnected functional units in the alkaline phosphatase active site. Sunden F, Peck A, Salzman J, Ressl S, Herschlag D. Elife 4 (2015)
  135. Motif-directed flexible backbone design of functional interactions. Havranek JJ, Baker D. Protein Sci 18 1293-1305 (2009)
  136. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. Horitani M, Offenbacher AR, Carr CA, Yu T, Hoeke V, Cutsail GE, Hammes-Schiffer S, Klinman JP, Hoffman BM. J Am Chem Soc 139 1984-1997 (2017)
  137. Automated scaffold selection for enzyme design. Malisi C, Kohlbacher O, Höcker B. Proteins 77 74-83 (2009)
  138. EvoDesign: De novo protein design based on structural and evolutionary profiles. Mitra P, Shultis D, Zhang Y. Nucleic Acids Res 41 W273-80 (2013)
  139. High-precision, in vitro validation of the sequestration mechanism for generating ultrasensitive dose-response curves in regulatory networks. Ricci F, Vallée-Bélisle A, Plaxco KW. PLoS Comput Biol 7 e1002171 (2011)
  140. On catalytic preorganization in oxyanion holes: highlighting the problems with the gas-phase modeling of oxyanion holes and illustrating the need for complete enzyme models. Kamerlin SC, Chu ZT, Warshel A. J Org Chem 75 6391-6401 (2010)
  141. Switching from an esterase to a hydroxynitrile lyase mechanism requires only two amino acid substitutions. Padhi SK, Fujii R, Legatt GA, Fossum SL, Berchtold R, Kazlauskas RJ. Chem Biol 17 863-871 (2010)
  142. Understanding thermal adaptation of enzymes through the multistate rational design and stability prediction of 100 adenylate kinases. Howell SC, Inampudi KK, Bean DP, Wilson CJ. Structure 22 218-229 (2014)
  143. Water in asymmetric organocatalytic systems: a global perspective. Jimeno C. Org Biomol Chem 14 6147-6164 (2016)
  144. A Promiscuous De Novo Retro-Aldolase Catalyzes Asymmetric Michael Additions via Schiff Base Intermediates. Garrabou X, Beck T, Hilvert D. Angew Chem Int Ed Engl 54 5609-5612 (2015)
  145. Collective dynamics differentiates functional divergence in protein evolution. Glembo TJ, Farrell DW, Gerek ZN, Thorpe MF, Ozkan SB. PLoS Comput Biol 8 e1002428 (2012)
  146. Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions. Loshbaugh AL, Kortemme T. Proteins 88 206-226 (2020)
  147. Dynamics and hydration explain failed functional transformation in dehalogenase design. Sykora J, Brezovsky J, Koudelakova T, Lahoda M, Fortova A, Chernovets T, Chaloupkova R, Stepankova V, Prokop Z, Smatanova IK, Hof M, Damborsky J. Nat Chem Biol 10 428-430 (2014)
  148. Efficient laboratory evolution of computationally designed enzymes with low starting activities using fluorescence-activated droplet sorting. Obexer R, Pott M, Zeymer C, Griffiths AD, Hilvert D. Protein Eng Des Sel 29 355-366 (2016)
  149. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design. Bjelic S, Kipnis Y, Wang L, Pianowski Z, Vorobiev S, Su M, Seetharaman J, Xiao R, Kornhaber G, Hunt JF, Tong L, Hilvert D, Baker D. J Mol Biol 426 256-271 (2014)
  150. Rosetta FunFolDes - A general framework for the computational design of functional proteins. Bonet J, Wehrle S, Schriever K, Yang C, Billet A, Sesterhenn F, Scheck A, Sverrisson F, Veselkova B, Vollers S, Lourman R, Villard M, Rosset S, Krey T, Correia BE. PLoS Comput Biol 14 e1006623 (2018)
  151. Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor. Jha RK, Chakraborti S, Kern TL, Fox DT, Strauss CE. Proteins 83 1327-1340 (2015)
  152. Rosetta:MSF: a modular framework for multi-state computational protein design. Löffler P, Schmitz S, Hupfeld E, Sterner R, Merkl R. PLoS Comput Biol 13 e1005600 (2017)
  153. "η6"-Type anion-π in biomolecular recognition. Chakravarty S, Sheng ZZ, Iverson B, Moore B. FEBS Lett 586 4180-4185 (2012)
  154. Computational design and experimental verification of a symmetric protein homodimer. Mou Y, Huang PS, Hsu FC, Huang SJ, Mayo SL. Proc Natl Acad Sci U S A 112 10714-10719 (2015)
  155. Computational protein design: the Proteus software and selected applications. Simonson T, Gaillard T, Mignon D, Schmidt am Busch M, Lopes A, Amara N, Polydorides S, Sedano A, Druart K, Archontis G. J Comput Chem 34 2472-2484 (2013)
  156. Highly active enzymes by automated combinatorial backbone assembly and sequence design. Lapidoth G, Khersonsky O, Lipsh R, Dym O, Albeck S, Rogotner S, Fleishman SJ. Nat Commun 9 2780 (2018)
  157. Minimal Heterochiral de Novo Designed 4Fe-4S Binding Peptide Capable of Robust Electron Transfer. Kim JD, Pike DH, Tyryshkin AM, Swapna GVT, Raanan H, Montelione GT, Nanda V, Falkowski PG. J Am Chem Soc 140 11210-11213 (2018)
  158. Molecular dynamics simulations of the Bcl-2 protein to predict the structure of its unordered flexible loop domain. Raghav PK, Verma YK, Verma YK, Gangenahalli GU. J Mol Model 18 1885-1906 (2012)
  159. OptGraft: A computational procedure for transferring a binding site onto an existing protein scaffold. Fazelinia H, Cirino PC, Maranas CD. Protein Sci 18 180-195 (2009)
  160. Preparation and characterization of a bifunctional aldolase/kinase enzyme: a more efficient biocatalyst for C-C bond formation. Iturrate L, Sánchez-Moreno I, Oroz-Guinea I, Pérez-Gil J, García-Junceda E. Chemistry 16 4018-4030 (2010)
  161. Single-sequence protein structure prediction using a language model and deep learning. Chowdhury R, Bouatta N, Biswas S, Floristean C, Kharkar A, Roy K, Rochereau C, Ahdritz G, Zhang J, Church GM, Sorger PK, AlQuraishi M. Nat Biotechnol 40 1617-1623 (2022)
  162. The Iterative Protein Redesign and Optimization (IPRO) suite of programs. Pantazes RJ, Grisewood MJ, Li T, Gifford NP, Maranas CD. J Comput Chem 36 251-263 (2015)
  163. The Tumbleweed: towards a synthetic proteinmotor. Bromley EH, Kuwada NJ, Zuckermann MJ, Donadini R, Samii L, Blab GA, Gemmen GJ, Lopez BJ, Curmi PM, Forde NR, Woolfson DN, Linke H. HFSP J 3 204-212 (2009)
  164. Uranium extraction: Coordination chemistry in the ocean. Lu Y. Nat Chem 6 175-177 (2014)
  165. Sequence and structure continuity of evolutionary importance improves protein functional site discovery and annotation. Wilkins AD, Lua R, Erdin S, Ward RM, Lichtarge O. Protein Sci 19 1296-1311 (2010)
  166. Structural insights into the recovery of aldolase activity in N-acetylneuraminic acid lyase by replacement of the catalytically active lysine with γ-thialysine by using a chemical mutagenesis strategy. Timms N, Windle CL, Polyakova A, Ault JR, Trinh CH, Pearson AR, Nelson A, Berry A. Chembiochem 14 474-481 (2013)
  167. Systematic optimization model and algorithm for binding sequence selection in computational enzyme design. Huang X, Han K, Zhu Y. Protein Sci 22 929-941 (2013)
  168. A matching algorithm for catalytic residue site selection in computational enzyme design. Lei Y, Luo W, Zhu Y. Protein Sci 20 1566-1575 (2011)
  169. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket. Debler EW, Müller R, Hilvert D, Wilson IA. Proc Natl Acad Sci U S A 106 18539-18544 (2009)
  170. Creating novel proteins by combining design and selection. Grove TZ, Hands M, Regan L. Protein Eng Des Sel 23 449-455 (2010)
  171. Fluorescence Turn-On Folding Sensor To Monitor Proteome Stress in Live Cells. Liu Y, Zhang X, Chen W, Tan YL, Kelly JW. J Am Chem Soc 137 11303-11311 (2015)
  172. Pairwise decomposition of an MMGBSA energy function for computational protein design. Gaillard T, Simonson T. J Comput Chem 35 1371-1387 (2014)
  173. ProDCoNN: Protein design using a convolutional neural network. Zhang Y, Chen Y, Wang C, Lo CC, Liu X, Wu W, Zhang J. Proteins 88 819-829 (2020)
  174. Toward high-resolution computational design of the structure and function of helical membrane proteins. Barth P, Senes A. Nat Struct Mol Biol 23 475-480 (2016)
  175. De Novo Proteins with Life-Sustaining Functions Are Structurally Dynamic. Murphy GS, Greisman JB, Hecht MH. J Mol Biol 428 399-411 (2016)
  176. Octarellin VI: using rosetta to design a putative artificial (β/α)8 protein. Figueroa M, Oliveira N, Lejeune A, Kaufmann KW, Dorr BM, Matagne A, Martial JA, Meiler J, Van de Weerdt C. PLoS One 8 e71858 (2013)
  177. Optimization of combinatorial mutagenesis. Parker AS, Griswold KE, Bailey-Kellogg C. J Comput Biol 18 1743-1756 (2011)
  178. Optimizing energy functions for protein-protein interface design. Sharabi O, Yanover C, Dekel A, Shifman JM. J Comput Chem 32 23-32 (2011)
  179. Proteins from an unevolved library of de novo designed sequences bind a range of small molecules. Cherny I, Korolev M, Koehler AN, Hecht MH. ACS Synth Biol 1 130-138 (2012)
  180. Synthetic beta-solenoid proteins with the fragment-free computational design of a beta-hairpin extension. MacDonald JT, Kabasakal BV, Godding D, Kraatz S, Henderson L, Barber J, Freemont PS, Murray JW. Proc Natl Acad Sci U S A 113 10346-10351 (2016)
  181. TX-2152: a conformationally rigid and electron-rich diyne analogue of FTY720 with in vivo antiangiogenic activity. Nakayama S, Uto Y, Tanimoto K, Okuno Y, Sasaki Y, Nagasawa H, Nakata E, Arai K, Momose K, Fujita T, Hashimoto T, Okamoto Y, Asakawa Y, Goto S, Hori H. Bioorg Med Chem 16 7705-7714 (2008)
  182. A "fuzzy"-logic language for encoding multiple physical traits in biomolecules. Warszawski S, Netzer R, Tawfik DS, Fleishman SJ. J Mol Biol 426 4125-4138 (2014)
  183. Computational Aminoacyl-tRNA Synthetase Library Design for Photocaged Tyrosine. Baumann T, Hauf M, Richter F, Albers S, Möglich A, Ignatova Z, Budisa N. Int J Mol Sci 20 E2343 (2019)
  184. Design and directed evolution of a dideoxy purine nucleoside phosphorylase. Nannemann DP, Kaufmann KW, Meiler J, Bachmann BO. Protein Eng Des Sel 23 607-616 (2010)
  185. Development of metal/organo catalytic systems for direct vinylogous Michael reactions to build chiral γ,γ-disubstituted butenolides. Yang D, Wang L, Zhao D, Han F, Zhang B, Wang R. Chemistry 19 4691-4694 (2013)
  186. Hydrogen-bond stabilization in oxyanion holes: grand jeté to three dimensions. Simón L, Goodman JM. Org Biomol Chem 10 1905-1913 (2012)
  187. Mechanism of the 6-hydroxy-3-succinoyl-pyridine 3-monooxygenase flavoprotein from Pseudomonas putida S16. Yu H, Hausinger RP, Tang HZ, Xu P. J Biol Chem 289 29158-29170 (2014)
  188. Small molecule probes to quantify the functional fraction of a specific protein in a cell with minimal folding equilibrium shifts. Liu Y, Tan YL, Zhang X, Bhabha G, Ekiert DC, Genereux JC, Cho Y, Kipnis Y, Bjelic S, Baker D, Kelly JW. Proc Natl Acad Sci U S A 111 4449-4454 (2014)
  189. Centenary Award and Sir Frederick Gowland Hopkins Memorial Lecture. Protein folding, structure prediction and design. Baker D. Biochem Soc Trans 42 225-229 (2014)
  190. Computational Modeling of Human Paraoxonase 1: Preparation of Protein Models, Binding Studies, and Mechanistic Insights. Sanan TT, Muthukrishnan S, Beck JM, Tao P, Hayes CJ, Otto TC, Cerasoli DM, Lenz DE, Hadad CM. J Phys Org Chem 23 357-369 (2010)
  191. Computational design of enzymes. Sterner R, Merkl R, Raushel FM. Chem Biol 15 421-423 (2008)
  192. Enhancing a de novo enzyme activity by computationally-focused ultra-low-throughput screening. Risso VA, Romero-Rivera A, Gutierrez-Rus LI, Ortega-Muñoz M, Santoyo-Gonzalez F, Gavira JA, Sanchez-Ruiz JM, Kamerlin SCL. Chem Sci 11 6134-6148 (2020)
  193. Novel conformation of an RNA structural switch. Kennedy SD, Kierzek R, Turner DH. Biochemistry 51 9257-9259 (2012)
  194. Recombination of protein fragments: a promising approach toward engineering proteins with novel nanomechanical properties. Balamurali MM, Sharma D, Chang A, Khor D, Chu R, Li H. Protein Sci 17 1815-1826 (2008)
  195. SABER: a computational method for identifying active sites for new reactions. Nosrati GR, Houk KN. Protein Sci 21 697-706 (2012)
  196. Structural insights into a low-spin myoglobin variant with bis-histidine coordination from molecular modeling. Lin YW. Proteins 79 679-684 (2011)
  197. An automated flow for directed evolution based on detection of promiscuous scaffolds using spatial and electrostatic properties of catalytic residues. Chakraborty S. PLoS One 7 e40408 (2012)
  198. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase. Roldán R, Sanchez-Moreno I, Scheidt T, Hélaine V, Lemaire M, Parella T, Clapés P, Fessner WD, Guérard-Hélaine C. Chemistry 23 5005-5009 (2017)
  199. Coarse-Grained Brownian Dynamics Simulations of the 10-23 DNAzyme. Kenward M, Dorfman KD. Biophys J 97 2785-2793 (2009)
  200. Comparison of designed and randomly generated catalysts for simple chemical reactions. Kipnis Y, Baker D. Protein Sci 21 1388-1395 (2012)
  201. Computational design of protein-small molecule interfaces. Allison B, Combs S, DeLuca S, Lemmon G, Mizoue L, Meiler J. J Struct Biol 185 193-202 (2014)
  202. Conformational stability as a design target to control protein aggregation. Costanzo JA, O'Brien CJ, Tiller K, Tamargo E, Robinson AS, Roberts CJ, Fernandez EJ. Protein Eng Des Sel 27 157-167 (2014)
  203. News Do-it-yourself enzymes. Nanda V. Nat Chem Biol 4 273-275 (2008)
  204. Increasing the stability of the bacteriophage endolysin PlyC using rationale-based FoldX computational modeling. Heselpoth RD, Yin Y, Moult J, Nelson DC. Protein Eng Des Sel 28 85-92 (2015)
  205. Origin of the activity drop with the E50D variant of catalytic antibody 34E4 for Kemp elimination. Alexandrova AN, Jorgensen WL. J Phys Chem B 113 497-504 (2009)
  206. Sub-AQUA: real-value quality assessment of protein structure models. Yang YD, Spratt P, Chen H, Park C, Kihara D. Protein Eng Des Sel 23 617-632 (2010)
  207. The use of ene adducts to study and engineer enoyl-thioester reductases. Rosenthal RG, Vögeli B, Quade N, Capitani G, Kiefer P, Vorholt JA, Ebert MO, Erb TJ. Nat Chem Biol 11 398-400 (2015)
  208. A computational method for design of connected catalytic networks in proteins. Weitzner BD, Kipnis Y, Daniel AG, Hilvert D, Baker D. Protein Sci 28 2036-2041 (2019)
  209. A protein sequence meta-functional signature for calcium binding residue prediction. Horst JA, Samudrala R. Pattern Recognit Lett 31 2103-2112 (2010)
  210. AutoMatch: target-binding protein design and enzyme design by automatic pinpointing potential active sites in available protein scaffolds. Zhang C, Lai L. Proteins 80 1078-1094 (2012)
  211. Clusters of branched aliphatic side chains serve as cores of stability in the native state of the HisF TIM barrel protein. Gangadhara BN, Laine JM, Kathuria SV, Massi F, Matthews CR. J Mol Biol 425 1065-1081 (2013)
  212. Computational design of an endo-1,4-beta-xylanase ligand binding site. Morin A, Kaufmann KW, Fortenberry C, Harp JM, Mizoue LS, Meiler J. Protein Eng Des Sel 24 503-516 (2011)
  213. Controlling complexity and water penetration in functional de novo protein design. Anderson JL, Koder RL, Moser CC, Dutton PL. Biochem Soc Trans 36 1106-1111 (2008)
  214. Design of a phosphorylatable PDZ domain with peptide-specific affinity changes. Smith CA, Shi CA, Chroust MK, Bliska TE, Kelly MJS, Jacobson MP, Kortemme T. Structure 21 54-64 (2013)
  215. Design of lanthanide fingers: compact lanthanide-binding metalloproteins. am Ende CW, Meng HY, Ye M, Pandey AK, Zondlo NJ. Chembiochem 11 1738-1747 (2010)
  216. Evolutionary walk between (β/α)(8) barrels: catalytic migration from triosephosphate isomerase to thiamin phosphate synthase. Saab-Rincón G, Olvera L, Olvera M, Rudiño-Piñera E, Benites E, Soberón X, Morett E. J Mol Biol 416 255-270 (2012)
  217. Improving computational protein design by using structure-derived sequence profile. Dai L, Yang Y, Kim HR, Zhou Y. Proteins 78 2338-2348 (2010)
  218. Light-driven oxygen production from superoxide by Mn-binding bacterial reaction centers. Allen JP, Olson TL, Oyala P, Lee WJ, Tufts AA, Williams JC. Proc Natl Acad Sci U S A 109 2314-2318 (2012)
  219. Probing the minimal determinants of zinc binding with computational protein design. Guffy SL, Der BS, Kuhlman B. Protein Eng Des Sel 29 327-338 (2016)
  220. The role of side chain entropy and mutual information for improving the de novo design of Kemp eliminases KE07 and KE70. Bhowmick A, Sharma SC, Honma H, Head-Gordon T. Phys Chem Chem Phys 18 19386-19396 (2016)
  221. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Steiner M, Reiher M. Top Catal 65 6-39 (2022)
  222. Biochemistry. Reengineering enzymes. Lutz S. Science 329 285-287 (2010)
  223. Bovine serum albumin-catalyzed deprotonation of [1-(13)C]glycolaldehyde: protein reactivity toward deprotonation of the alpha-hydroxy alpha-carbonyl carbon. Go MK, Malabanan MM, Amyes TL, Richard JP. Biochemistry 49 7704-7708 (2010)
  224. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm. Tian Y, Huang X, Zhu Y. J Mol Model 21 191 (2015)
  225. Computational design of membrane proteins using RosettaMembrane. Duran AM, Meiler J. Protein Sci 27 341-355 (2018)
  226. De novo selection of oncogenes. Chacón KM, Petti LM, Scheideman EH, Pirazzoli V, Politi K, DiMaio D. Proc Natl Acad Sci U S A 111 E6-E14 (2014)
  227. Frag'r'Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bonet J, Segura J, Planas-Iglesias J, Oliva B, Fernandez-Fuentes N. Bioinformatics 30 1935-1936 (2014)
  228. Identification of Thermal Conduits That Link the Protein-Water Interface to the Active Site Loop and Catalytic Base in Enolase. Thompson EJ, Paul A, Iavarone AT, Klinman JP. J Am Chem Soc 143 785-797 (2021)
  229. Improving membrane protein expression by optimizing integration efficiency. Niesen MJM, Marshall SS, Miller TF, Clemons WM. J Biol Chem 292 19537-19545 (2017)
  230. In proteins, the structural responses of a position to mutation rely on the Goldilocks principle: not too many links, not too few. Dorantes-Gilardi R, Bourgeat L, Pacini L, Vuillon L, Lesieur C. Phys Chem Chem Phys 20 25399-25410 (2018)
  231. Nucleophile Promiscuity of Natural and Engineered Aldolases. Hernández K, Szekrenyi A, Clapés P. Chembiochem 19 1353-1358 (2018)
  232. The roles of counterion and water in a stereoselective cysteine-catalyzed Rauhut-Currier reaction: a challenge for computational chemistry. Osuna S, Dermenci A, Miller SJ, Houk KN. Chemistry 19 14245-14253 (2013)
  233. A backbone-centred energy function of neural networks for protein design. Huang B, Xu Y, Hu X, Liu Y, Liao S, Zhang J, Huang C, Hong J, Chen Q, Liu H. Nature 602 523-528 (2022)
  234. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues. Chakraborty S, Ásgeirsson B, Rao BJ. PLoS One 7 e49313 (2012)
  235. Adaptive Correction from Virtually Complex Dynamic Libraries: The Role of Noncovalent Interactions in Structural Selection and Folding. Lafuente M, Atcher J, Solà J, Alfonso I. Chemistry 21 17002-17009 (2015)
  236. Artificial enzymes made to order: combination of computational design and directed evolution. Ward TR. Angew Chem Int Ed Engl 47 7802-7803 (2008)
  237. Comment Computational biochemistry: old enzymes, new tricks. Ghirlanda G. Nature 453 164-166 (2008)
  238. Computational design of a lipase for catalysis of the Diels-Alder reaction. Linder M, Hermansson A, Liebeschuetz J, Brinck T. J Mol Model 17 833-849 (2011)
  239. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids. Zheng S, Kwon I. Biotechnol Bioeng 110 2361-2370 (2013)
  240. Design of an allosterically regulated retroaldolase. Raymond EA, Mack KL, Yoon JH, Moroz OV, Moroz YS, Korendovych IV. Protein Sci 24 561-570 (2015)
  241. Rosetta and the Design of Ligand Binding Sites. Moretti R, Bender BJ, Allison B, Meiler J. Methods Mol Biol 1414 47-62 (2016)
  242. The solution of nitrogen inversion in amidases. Syrén PO. FEBS J 280 3069-3083 (2013)
  243. Three-dimensional vectorial holography based on machine learning inverse design. Ren H, Shao W, Li Y, Salim F, Gu M. Sci Adv 6 eaaz4261 (2020)
  244. iCFN: an efficient exact algorithm for multistate protein design. Karimi M, Shen Y. Bioinformatics 34 i811-i820 (2018)
  245. A residue outside the active site CXXC motif regulates the catalytic efficiency of Glutaredoxin 3. Shekhter T, Metanis N, Dawson PE, Keinan E. Mol Biosyst 6 241-248 (2010)
  246. A solvated ligand rotamer approach and its application in computational protein design. Huang X, Yang J, Zhu Y. J Mol Model 19 1355-1367 (2013)
  247. Acceleration of an aromatic Claisen rearrangement via a designed spiroligozyme catalyst that mimics the ketosteroid isomerase catalytic dyad. Parker MF, Osuna S, Bollot G, Vaddypally S, Zdilla MJ, Houk KN, Schafmeister CE. J Am Chem Soc 136 3817-3827 (2014)
  248. An enquiry into theoretical bioinorganic chemistry: how heuristic is the character of present-day quantum chemical methods? Podewitz M, Stiebritz MT, Reiher M. Faraday Discuss 148 119-35; discussion 207-28 (2011)
  249. Computational design of protein therapeutics. Hwang I, Park S. Drug Discov Today Technol 5 e43-8 (2008)
  250. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity. Tian Y, Huang X, Li Q, Zhu Y. Appl Microbiol Biotechnol 101 621-632 (2017)
  251. De novo-designed enzymes as small-molecule-regulated fluorescence imaging tags and fluorescent reporters. Liu Y, Zhang X, Tan YL, Bhabha G, Ekiert DC, Kipnis Y, Bjelic S, Baker D, Kelly JW. J Am Chem Soc 136 13102-13105 (2014)
  252. Designing a new Diels-Alderase: a combinatorial, semirational approach including dynamic optimization. Linder M, Johansson AJ, Olsson TS, Liebeschuetz J, Brinck T. J Chem Inf Model 51 1906-1917 (2011)
  253. Directed Evolution's Influence on Rapid Density Fluctuations Illustrates How Protein Dynamics Can Become Coupled to Chemistry. Schafer JW, Schwartz SD. ACS Catal 10 8476-8484 (2020)
  254. Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes. Chu WT, Wang J. Sci Rep 6 27808 (2016)
  255. Heteromeric assembled polypeptidic artificial hydrolases with a six-helical bundle scaffold. Bai Y, Ling Y, Shi W, Cai L, Jia Q, Jiang S, Liu K. Chembiochem 12 2647-2658 (2011)
  256. Highly diverse protein library based on the ubiquitous (β/α)₈ enzyme fold yields well-structured proteins through in vitro folding selection. Golynskiy MV, Haugner JC, Seelig B. Chembiochem 14 1553-1563 (2013)
  257. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals. Amrein B, Schmid M, Collet G, Cuniasse P, Gilardoni F, Seebeck FP, Ward TR. Metallomics 4 379-388 (2012)
  258. Incorporating receptor flexibility in the molecular design of protein interfaces. Li L, Liang S, Pilcher MM, Meroueh SO. Protein Eng Des Sel 22 575-586 (2009)
  259. Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis. Zaccardi MJ, O'Rourke KF, Yezdimer EM, Loggia LJ, Woldt S, Boehr DD. Protein Sci 23 302-311 (2014)
  260. Protein side chain conformation predictions with an MMGBSA energy function. Gaillard T, Panel N, Simonson T. Proteins 84 803-819 (2016)
  261. Quantum mechanics/molecular mechanics investigation of the mechanism of phosphate transfer in human uridine-cytidine kinase 2. Smith AJ, Li Y, Houk KN. Org Biomol Chem 7 2716-2724 (2009)
  262. Structure-based redesign of GST A2-2 for enhanced catalytic efficiency with azathioprine. Zhang W, Modén O, Tars K, Mannervik B. Chem Biol 19 414-421 (2012)
  263. The empirical valence bond as an effective strategy for computer-aided enzyme design. Vardi-Kilshtain A, Roca M, Warshel A. Biotechnol J 4 495-500 (2009)
  264. Theoretical study of the Raman optical activity spectra of 3(10)-helical polypeptides. Jacob CR. Chemphyschem 12 3291-3306 (2011)
  265. Unintended consequences? Water molecules at biological and crystallographic protein-protein interfaces. Ahmed MH, Habtemariam M, Safo MK, Scarsdale JN, Spyrakis F, Cozzini P, Mozzarelli A, Kellogg GE. Comput Biol Chem 47 126-141 (2013)
  266. A fluorogenic aldehyde bearing a 1,2,3-triazole moiety for monitoring the progress of aldol reactions. Guo HM, Tanaka F. J Org Chem 74 2417-2424 (2009)
  267. Adding energy minimization strategy to peptide-design algorithm enables better search for RNA-binding peptides: Redesigned λ N peptide binds boxB RNA. Xiao X, Hung ME, Leonard JN, Hall CK. J Comput Chem 37 2423-2435 (2016)
  268. An Evolution-Based Approach to De Novo Protein Design. Brender JR, Shultis D, Khattak NA, Zhang Y. Methods Mol Biol 1529 243-264 (2017)
  269. Computational design of a Diels-Alderase from a thermophilic esterase: the importance of dynamics. Linder M, Johansson AJ, Olsson TS, Liebeschuetz J, Brinck T. J Comput Aided Mol Des 26 1079-1095 (2012)
  270. Engineering an efficient and enantioselective enzyme for the Morita-Baylis-Hillman reaction. Crawshaw R, Crossley AE, Johannissen L, Burke AJ, Hay S, Levy C, Baker D, Lovelock SL, Green AP. Nat Chem 14 313-320 (2022)
  271. Establishing catalytic activity on an artificial (βα)8-barrel protein designed from identical half-barrels. Sperl JM, Rohweder B, Rajendran C, Sterner R. FEBS Lett 587 2798-2805 (2013)
  272. Integrating In Silico and In vitro approaches to dissect the stereoselectivity of Bacillus subtilis lipase A toward ketoprofen vinyl ester. Ni Z, Zhou P, Jin X, Lin XF. Chem Biol Drug Des 78 301-308 (2011)
  273. Nucleation-based prediction of the protein folding rate and its correlation with the folding nucleus size. Galzitskaya OV, Glyakina AV. Proteins 80 2711-2727 (2012)
  274. OptZyme: computational enzyme redesign using transition state analogues. Grisewood MJ, Gifford NP, Pantazes RJ, Li Y, Cirino PC, Janik MJ, Maranas CD. PLoS One 8 e75358 (2013)
  275. Predictive methods for computational metalloenzyme redesign - a test case with carboxypeptidase A. Valdez CE, Morgenstern A, Eberhart ME, Alexandrova AN. Phys Chem Chem Phys 18 31744-31756 (2016)
  276. Protein engineering from "scratch" is maturing. Höhne M, Bornscheuer UT. Angew Chem Int Ed Engl 53 1200-1202 (2014)
  277. SHARPEN-systematic hierarchical algorithms for rotamers and proteins on an extended network. Loksha IV, Maiolo JR, Hong CW, Ng A, Snow CD. J Comput Chem 30 999-1005 (2009)
  278. Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein. Huang YM, Banerjee S, Crone DE, Schenkelberg CD, Pitman DJ, Buck PM, Bystroff C. Biochemistry 54 6263-6273 (2015)
  279. Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model. Huang X, Xue J, Lin M, Zhu Y. PLoS One 11 e0156559 (2016)
  280. A sugar isomerization reaction established on various (βα)₈-barrel scaffolds is based on substrate-assisted catalysis. Reisinger B, Bocola M, List F, Claren J, Rajendran C, Sterner R. Protein Eng Des Sel 25 751-760 (2012)
  281. BioGPS descriptors for rational engineering of enzyme promiscuity and structure based bioinformatic analysis. Ferrario V, Siragusa L, Ebert C, Baroni M, Foscato M, Cruciani G, Gardossi L. PLoS One 9 e109354 (2014)
  282. Canonical and micro-canonical analysis of folding of trpzip2: an all-atom replica exchange Monte Carlo simulation study. Liu Y, Kellogg E, Liang H. J Chem Phys 137 045103 (2012)
  283. Computed structures of point deletion mutants and their enzymatic activities. Berrondo M, Gray JJ. Proteins 79 2844-2860 (2011)
  284. Evaluation of active designs of cephalosporin C acylase by molecular dynamics simulation and molecular docking. Li Q, Huang X, Zhu Y. J Mol Model 20 2314 (2014)
  285. Low-Temperature Reductive Aminolysis of Carbohydrates to Diamines and Aminoalcohols by Heterogeneous Catalysis. Pelckmans M, Vermandel W, Van Waes F, Moonen K, Sels BF. Angew Chem Int Ed Engl 56 14540-14544 (2017)
  286. Multi-scale structural analysis of proteins by deep semantic segmentation. Eguchi RR, Huang PS. Bioinformatics 36 1740-1749 (2020)
  287. QM/MM Description of Newly Selected Catalytic Bioscavengers Against Organophosphorus Compounds Revealed Reactivation Stimulus Mediated by Histidine Residue in the Acyl-Binding Loop. Zlobin A, Mokrushina Y, Terekhov S, Zalevsky A, Bobik T, Stepanova A, Aliseychik M, Kartseva O, Panteleev S, Golovin A, Belogurov A, Gabibov A, Smirnov I. Front Pharmacol 9 834 (2018)
  288. The effect of the hydrophobic environment on the retro-aldol reaction: comparison to a computationally-designed enzyme. Schmidt J, Ehasz C, Epperson M, Klas K, Wyatt J, Hennig M, Forconi M. Org Biomol Chem 11 8419-8425 (2013)
  289. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants. Mou Y, Huang PS, Thomas LM, Mayo SL. J Mol Biol 427 2697-2706 (2015)
  290. Using affinity chromatography to engineer and characterize pH-dependent protein switches. Sagermann M, Chapleau RR, DeLorimier E, Lei M. Protein Sci 18 217-228 (2009)
  291. A Pilot STEM Curriculum Designed to Teach High School Students Concepts in Biochemical Engineering and Pharmacology. Gasanoff ES, Li F, George EM, Dagda RK. EC Pharmacol Toxicol 7 846-877 (2019)
  292. An Approach to the De Novo Synthesis of Life. Otto S. Acc Chem Res 55 145-155 (2022)
  293. Aromatic Claisen Rearrangements of O-prenylated tyrosine and model prenyl aryl ethers: Computational study of the role of water on acceleration of Claisen rearrangements. Osuna S, Kim S, Bollot G, Houk KN. European J Org Chem 2013 (2013)
  294. Capturing, sharing and analysing biophysical data from protein engineering and protein characterization studies. Farrell D, O'Meara F, Johnston M, Bradley J, Søndergaard CR, Georgi N, Webb H, Tynan-Connolly BM, Bjarnadottir U, Carstensen T, Nielsen JE. Nucleic Acids Res 38 e186 (2010)
  295. Computational design of cephradine synthase in a new scaffold identified from structural databases. Huang X, Xue J, Zhu Y. Chem Commun (Camb) 53 7604-7607 (2017)
  296. Design of multispecific protein sequences using probabilistic graphical modeling. Fromer M, Yanover C, Linial M. Proteins 78 530-547 (2010)
  297. Discriminating between stabilizing and destabilizing protein design mutations via recombination and simulation. Johnson LB, Gintner LP, Park S, Snow CD. Protein Eng Des Sel 28 259-267 (2015)
  298. Extension of a de novo TIM barrel with a rationally designed secondary structure element. Wiese JG, Shanmugaratnam S, Höcker B. Protein Sci 30 982-989 (2021)
  299. Is it possible to reverse aged acetylcholinesterase inhibited by organophosphorus compounds? Insight from the theoretical study. An Y, Zhu Y, Yao Y, Liu J. Phys Chem Chem Phys 18 9838-9846 (2016)
  300. Minimalist de novo Design of Protein Catalysts. Marshall LR, Zozulia O, Lengyel-Zhand Z, Korendovych IV. ACS Catal 9 9265-9275 (2019)
  301. Congress Peptoids at the 7th Summit: toward macromolecular systems engineering. Drexler KE. Biopolymers 96 537-544 (2011)
  302. QM/MM free energy Simulations of an efficient Gluten Hydrolase (Kuma030) Implicate for a Reactant-State Based Protein-Design Strategy for General Acid/Base Catalysis. Wang X, Li R, Cui W, Li Q, Yao J. Sci Rep 8 7042 (2018)
  303. Rational design of DNA sequence-specific zinc fingers. Kono H, Imanishi M, Negi S, Tatsutani K, Sakaeda Y, Hashimoto A, Nakayama C, Futaki S, Sugiura Y. FEBS Lett 586 918-923 (2012)
  304. Selective Colorimetric "Turn-On" Probe for Efficient Engineering of Iminium Biocatalysis. Biewenga L, Crotti M, Saifuddin M, Poelarends GJ. ACS Omega 5 2397-2405 (2020)
  305. Valence bond and enzyme catalysis: a time to break down and a time to build up. Sharir-Ivry A, Varatharaj R, Shurki A. Chemistry 21 7159-7169 (2015)
  306. A computational method for the systematic screening of reaction barriers in enzymes: searching for Bacillus circulans xylanase mutants with greater activity towards a synthetic substrate. Hediger MR, Steinmann C, De Vico L, Jensen JH. PeerJ 1 e111 (2013)
  307. A fast loop-closure algorithm to accelerate residue matching in computational enzyme design. Xue J, Huang X, Lin M, Zhu Y. J Mol Model 22 49 (2016)
  308. A gradient-directed Monte Carlo approach for protein design. Hu X, Hu H, Beratan DN, Yang W. J Comput Chem 31 2164-2168 (2010)
  309. A novel strategy for molecular interfaces optimization: The case of Ferritin-Transferrin receptor interaction. Di Rienzo L, Milanetti E, Testi C, Montemiglio LC, Baiocco P, Boffi A, Ruocco G. Comput Struct Biotechnol J 18 2678-2686 (2020)
  310. Acyl Transfer Catalytic Activity in De Novo Designed Protein with N-Terminus of α-Helix As Oxyanion-Binding Site. Naudin EA, McEwen AG, Tan SK, Poussin-Courmontagne P, Schmitt JL, Birck C, DeGrado WF, Torbeev V. J Am Chem Soc 143 3330-3339 (2021)
  311. An Artificial Cofactor Catalyzing the Baylis-Hillman Reaction with Designed Streptavidin as Protein Host*. Lechner H, Emann VR, Breuning M, Höcker B. Chembiochem 22 1573-1577 (2021)
  312. An Engineered Glutamate in Biosynthetic Models of Heme-Copper Oxidases Drives Complete Product Selectivity by Tuning the Hydrogen-Bonding Network. Petrik ID, Davydov R, Kahle M, Sandoval B, Dwaraknath S, Ädelroth P, Hoffman B, Lu Y. Biochemistry 60 346-355 (2021)
  313. Analysis of electrostatic coupling throughout the laboratory evolution of a designed retroaldolase. Coulther TA, Pott M, Zeymer C, Hilvert D, Ondrechen MJ. Protein Sci 30 1617-1627 (2021)
  314. Assessing and enhancing foldability in designed proteins. Listov D, Lipsh-Sokolik R, Rosset S, Yang C, Correia BE, Fleishman SJ. Protein Sci 31 e4400 (2022)
  315. Computational approach for ranking mutant enzymes according to catalytic reaction rates. Kumarasiri M, Baker GA, Soudackov AV, Hammes-Schiffer S. J Phys Chem B 113 3579-3583 (2009)
  316. Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst. Van Overtveldt S, Gevaert O, Cherlet M, Beerens K, Desmet T. Molecules 23 E2519 (2018)
  317. Effects of Non-Natural Amino Acid Incorporation into the Enzyme Core Region on Enzyme Structure and Function. Wong HE, Kwon I. Int J Mol Sci 16 22735-22753 (2015)
  318. Fast, cheap and out of control--Insights into thermodynamic and informatic constraints on natural protein sequences from de novo protein design. Brisendine JM, Koder RL. Biochim Biophys Acta 1857 485-492 (2016)
  319. Hydrolysis of organophosphate compounds by mutant butyrylcholinesterase: a story of two histidines. Amitay M, Shurki A. Proteins 79 352-364 (2011)
  320. Introduction. Biomolecular simulation. Mulholland AJ. J R Soc Interface 5 Suppl 3 S169-72 (2008)
  321. Large-scale design and refinement of stable proteins using sequence-only models. Singer JM, Novotney S, Strickland D, Haddox HK, Leiby N, Rocklin GJ, Chow CM, Roy A, Bera AK, Motta FC, Cao L, Strauch EM, Chidyausiku TM, Ford A, Ho E, Zaitzeff A, Mackenzie CO, Eramian H, DiMaio F, Grigoryan G, Vaughn M, Stewart LJ, Baker D, Klavins E. PLoS One 17 e0265020 (2022)
  322. When the Scaffold Cannot Be Ignored: The Role of the Hydrophobic Core in Ligand Binding and Specificity. Koulechova DA, Tripp KW, Horner G, Marqusee S. J Mol Biol 427 3316-3326 (2015)
  323. A structural homology approach for computational protein design with flexible backbone. Simoncini D, Zhang KYJ, Schiex T, Barbe S. Bioinformatics 35 2418-2426 (2019)
  324. A thiocyanopalladation/carbocyclization transformation identified through enzymatic screening: stereocontrolled tandem C-SCN and C-C bond formation. Malik G, Swyka RA, Tiwari VK, Fei X, Applegate GA, Berkowitz DB. Chem Sci 8 8050-8060 (2017)
  325. An improved flurogenic probe for high-throughput screening of 2-deoxyribose aldolases. Fei H, Xu G, Wu JP, Yang LR. Biochem Biophys Res Commun 460 826-830 (2015)
  326. Can Second Coordination Sphere and Long-Range Interactions Modulate Hydrogen Atom Transfer in a Non-Heme Fe(II)-Dependent Histone Demethylase? Chaturvedi SS, Jaber Sathik Rifayee SB, Waheed SO, Wildey J, Warner C, Schofield CJ, Karabencheva-Christova TG, Christov CZ. JACS Au 2 2169-2186 (2022)
  327. Characterization and site-directed mutagenesis of a novel class II 5-enopyruvylshikimate-3-phosphate (EPSP) synthase from the deep-sea bacterium Alcanivorax sp. L27. Zhang Y, Yi L, Lin Y, Zhang L, Shao Z, Liu Z. Enzyme Microb Technol 63 64-70 (2014)
  328. Cofactor specificity switch in Shikimate dehydrogenase by rational design and consensus engineering. García-Guevara F, Bravo I, Martínez-Anaya C, Segovia L. Protein Eng Des Sel 30 533-541 (2017)
  329. Computational predictions of the mutant behavior of AraC. Berrondo M, Gray JJ, Schleif R. J Mol Biol 398 462-470 (2010)
  330. Design of a functional nitric oxide reductase within a myoglobin scaffold. Köhler V, Ward TR. Chembiochem 11 1049-1051 (2010)
  331. Designed protein aggregates entrapping carbon nanotubes for bioelectrochemical oxygen reduction. Garcia KE, Babanova S, Scheffler W, Hans M, Baker D, Atanassov P, Banta S. Biotechnol Bioeng 113 2321-2327 (2016)
  332. Expanded explorations into the optimization of an energy function for protein design. Huang YM, Bystroff C. IEEE/ACM Trans Comput Biol Bioinform 10 1176-1187 (2013)
  333. High-Throughput Fluorescence Assay for Ketone Detection and Its Applications in Enzyme Mining and Protein Engineering. Mei Z, Zhang K, Qu G, Li JK, Liu B, Ma JA, Tu R, Sun Z. ACS Omega 5 13588-13594 (2020)
  334. How Many Conformations of Enzymes Should Be Sampled for DFT/MM Calculations? A Case Study of Fluoroacetate Dehalogenase. Li Y, Zhang R, Du L, Zhang Q, Wang W. Int J Mol Sci 17 E1372 (2016)
  335. Improving computational efficiency and tractability of protein design using a piecemeal approach. A strategy for parallel and distributed protein design. Pitman DJ, Schenkelberg CD, Huang YM, Teets FD, DiTursi D, Bystroff C. Bioinformatics 30 1138-1145 (2014)
  336. Protein backbone ensemble generation explores the local structural space of unseen natural homologs. Schenkelberg CD, Bystroff C. Bioinformatics 32 1454-1461 (2016)
  337. Comment Protein design: A metalloenzyme reloaded. Höcker B. Nat Chem Biol 8 224-225 (2012)
  338. The Effect of Cofactor Binding on the Conformational Plasticity of the Biological Receptors in Artificial Metalloenzymes: The Case Study of LmrR. Alonso-Cotchico L, Rodríguez-Guerra Pedregal J, Lledós A, Maréchal JD. Front Chem 7 211 (2019)
  339. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. Reetz MT, Garcia-Borràs M. J Am Chem Soc 143 14939-14950 (2021)
  340. TransCent: computational enzyme design by transferring active sites and considering constraints relevant for catalysis. Fischer A, Enkler N, Neudert G, Bocola M, Sterner R, Merkl R. BMC Bioinformatics 10 54 (2009)
  341. Using physical features of protein core packing to distinguish real proteins from decoys. Grigas AT, Mei Z, Treado JD, Levine ZA, Regan L, O'Hern CS. Protein Sci 29 1931-1944 (2020)
  342. Computation-Aided Engineering of Cytochrome P450 for the Production of Pravastatin. Ashworth MA, Bombino E, de Jong RM, Wijma HJ, Janssen DB, McLean KJ, Munro AW. ACS Catal 12 15028-15044 (2022)
  343. Computational Studies of Candida Antarctica Lipase B to Test Its Capability as a Starting Point To Redesign New Diels-Alderases. Świderek K, Moliner V. J Phys Chem B 120 2053-2070 (2016)
  344. Comment Computational biology: A recipe for ligand-binding proteins. Ghirlanda G. Nature 501 177-178 (2013)
  345. De novo design of luciferases using deep learning. Yeh AH, Norn C, Kipnis Y, Tischer D, Pellock SJ, Evans D, Ma P, Lee GR, Zhang JZ, Anishchenko I, Coventry B, Cao L, Dauparas J, Halabiya S, DeWitt M, Carter L, Houk KN, Baker D. Nature 614 774-780 (2023)
  346. De novo protein design by inversion of the AlphaFold structure prediction network. Goverde CA, Wolf B, Khakzad H, Rosset S, Correia BE. Protein Sci 32 e4653 (2023)
  347. De novo protein fold families expand the designable ligand binding site space. Pan X, Kortemme T. PLoS Comput Biol 17 e1009620 (2021)
  348. Design of a minimal di-nickel hydrogenase peptide. Timm J, Pike DH, Mancini JA, Tyryshkin AM, Poudel S, Siess JA, Molinaro PM, McCann JJ, Waldie KM, Koder RL, Falkowski PG, Nanda V. Sci Adv 9 eabq1990 (2023)
  349. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template. Gouran H, Chakraborty S, Rao BJ, Asgeirsson B, Dandekar A. F1000Res 3 215 (2014)
  350. Kemp Eliminases of the AlleyCat Family Possess High Substrate Promiscuity. Caselle EA, Yoon JH, Bhattacharya S, Rempillo JJL, Lengyel Z, D'Souza A, Moroz YS, Tolbert PL, Volkov AN, Forconi M, Castañeda CA, Makhlynets OV, Korendovych IV. ChemCatChem 11 1425-1430 (2019)
  351. PocketOptimizer 2.0: A modular framework for computer-aided ligand-binding design. Noske J, Kynast JP, Lemm D, Schmidt S, Höcker B. Protein Sci 32 e4516 (2023)
  352. ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention. Zhou X, Chen G, Ye J, Wang E, Zhang J, Mao C, Li Z, Hao J, Huang X, Tang J, Heng PA. Nat Commun 14 7434 (2023)
  353. Protein Design: Getting to the bottom of the TIM barrel. Nanda V. Nat Chem Biol 12 2-3 (2016)
  354. Protein rethreading: A novel approach to protein design. Agah S, Poulos S, Yu A, Kucharska I, Faham S. Sci Rep 6 26847 (2016)
  355. Structure and kinetics of indole-3-glycerol phosphate synthase from Pseudomonas aeruginosa: Decarboxylation is not essential for indole formation. Söderholm A, Newton MS, Patrick WM, Selmer M. J Biol Chem 295 15948-15956 (2020)
  356. The RosettaCon 2012 Special Collection: Code Writ on Water, Documentation Writ in Stone. André I, Corn J. PLoS One 8 e73775 (2013)
  357. The role of streptavidin and its variants in catalysis by biotinylated secondary amines. Nödling AR, Santi N, Castillo R, Lipka-Lloyd M, Jin Y, Morrill LC, Świderek K, Moliner V, Luk LYP. Org Biomol Chem 19 10424-10431 (2021)
  358. Using molecular dynamics simulations to evaluate active designs of cephradine hydrolase by molecular mechanics/Poisson-Boltzmann surface area and molecular mechanics/generalized Born surface area methods. Xue J, Huang X, Zhu Y. RSC Adv 9 13868-13877 (2019)
  359. A new concept for molecular engineering of artificial enzymes: a multiscale simulation. Komarov PV, Khalatur PG, Khokhlov AR. Soft Matter 12 689-704 (2016)
  360. Computational Insights into the Allosteric Modulation of a Phthalate-Degrading Hydrolase by Distal Mutations. Xu R, Bao Y, Li M, Zhang Y, Xi L, Guo J. Biomolecules 13 443 (2023)
  361. Computational and structure-guided design of phosphoinositide substrate specificity into the tyrosine specific LMW-PTP enzyme. Egbe E, Levy CW, Tabernero L. PLoS One 15 e0235133 (2020)
  362. Computational design of highly efficient thermostable MHET hydrolases and dual enzyme system for PET recycling. Zhang J, Wang H, Luo Z, Yang Z, Zhang Z, Wang P, Li M, Zhang Y, Feng Y, Lu D, Zhu Y. Commun Biol 6 1135 (2023)
  363. Computational redesign of cytochrome P450 CYP102A1 for highly stereoselective omeprazole hydroxylation by UniDesign. Huang X, Sun Y, Osawa Y, Chen YE, Zhang H. J Biol Chem 299 105050 (2023)
  364. Computer-aided engineering of a branching sucrase for the glucodiversification of a tetrasaccharide precursor of S. flexneri antigenic oligosaccharides. Benkoulouche M, Ben Imeddourene A, Barel LA, Lefebvre D, Fanuel M, Rogniaux H, Ropartz D, Barbe S, Guieysse D, Mulard LA, Remaud-Siméon M, Moulis C, André I. Sci Rep 11 20294 (2021)
  365. De Novo Computational Design of a Lipase with Hydrolysis Activity towards Middle-Chained Fatty Acid Esters. Huang J, Xie X, Zheng Z, Ye L, Wang P, Xu L, Wu Y, Yan J, Yang M, Yan Y. Int J Mol Sci 24 8581 (2023)
  366. Design and optimization of enzymatic activity in a de novo β-barrel scaffold. Kipnis Y, Chaib AO, Vorobieva AA, Cai G, Reggiano G, Basanta B, Kumar E, Mittl PRE, Hilvert D, Baker D. Protein Sci 31 e4405 (2022)
  367. Design of a zinc-finger hydrolase with a synthetic αββ protein. Srivastava KR, Durani S. PLoS One 9 e96234 (2014)
  368. Efficient minimization of multipole electrostatic potentials in torsion space. Bodmer NK, Havranek JJ. PLoS One 13 e0195578 (2018)
  369. Evolution of Enzyme Function and the Development of Catalytic Efficiency: Triosephosphate Isomerase, Jeremy R. Knowles, and W. John Albery. Gerlt JA. Biochemistry 60 3529-3538 (2021)
  370. Improving Theaflavin-3,3'-digallate Production Efficiency Optimization by Transition State Conformation of Polyphenol Oxidase. Huang Y, Gao C, Song W, Wei W, Chen X, Gao C, Liu J, Wu J, Liu L. Molecules 28 3831 (2023)
  371. Is protein folding rate dependent on number of folding stages? Modeling of protein folding with ferredoxin-like fold. Galzitskaya OV. Biochemistry (Mosc) 75 717-727 (2010)
  372. Key difference between transition state stabilization and ground state destabilization: increasing atomic charge densities before or during enzyme-substrate binding. Chen D, Li Y, Li X, Hong X, Fan X, Savidge T. Chem Sci 13 8193-8202 (2022)
  373. Logistic Regression-Guided Identification of Cofactor Specificity-Contributing Residues in Enzyme with Sequence Datasets Partitioned by Catalytic Properties. Sugiki S, Niide T, Toya Y, Shimizu H. ACS Synth Biol 11 3973-3985 (2022)
  374. MetREx: a protein design approach for the exploration of sequence-reactivity relationships in metalloenzymes. Stiebritz MT. J Comput Chem 36 553-563 (2015)
  375. Optimizing enzymatic catalysts for rapid turnover of substrates with low enzyme sequestration. Deshpande A, Ouldridge TE. Biol Cybern 114 653-668 (2020)
  376. Tailoring Reaction Selectivity by Modulating a Catalytic Diad on a Foldamer Scaffold. Andrews MK, Liu X, Gellman SH. J Am Chem Soc 144 2225-2232 (2022)
  377. Targeted Mutation of a Non-catalytic Gating Residue Increases the Rate of Pseudomonas aeruginosa d-Arginine Dehydrogenase Catalytic Turnover. Quaye JA, Ouedraogo D, Gadda G. J Agric Food Chem (2023)
  378. Transient water wires mediate selective proton transport in designed channel proteins. Kratochvil HT, Watkins LC, Mravic M, Thomaston JL, Nicoludis JM, Somberg NH, Liu L, Hong M, Voth GA, DeGrado WF. Nat Chem 15 1012-1021 (2023)