3ap4 Citations

Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans.

J Biol Chem 286 11346-55 (2011)
Related entries: 3ap5, 3ap6, 3ap7, 3ap9

Cited: 74 times
EuropePMC logo PMID: 21288902

Abstract

Galectin-8 has much higher affinity for 3'-O-sulfated or 3'-O-sialylated glycoconjugates and a Lewis X-containing glycan than for oligosaccharides terminating in Galβ1→3/4GlcNAc, and this specificity is mainly attributed to the N-terminal carbohydrate recognition domain (N-domain, CRD) (Ideo, H., Seko, A., Ishizuka, I., and Yamashita, K. (2003) Glycobiology 13, 713-723). In this study, we elucidated the crystal structures of the human galectin-8-N-domain (-8N) in the absence or presence of 4 ligands. The apo molecule forms a dimer, which is different from the canonical 2-fold symmetric dimer observed for galectin-1 and -2. In a galectin-8N-lactose complex, the lactose-recognizing amino acids are highly conserved among the galectins. However, Arg(45), Gln(47), Arg(59), and the long loop region between the S3 and S4 β-strands are unique to galectin-8N. These amino acids directly or indirectly interact with the sulfate or sialic acid moieties of 3'-sialyl- and 3'-sulfolactose complexed with galectin-8N. Furthermore, in the LNF-III-galectin-8N complex, van der Waals interactions occur between the α1-3-branched fucose and galactose and between galactose and Tyr(141), and these interactions increase the affinity toward galectin-8N. Based on the findings of these x-ray crystallographic analyses, a mutagenesis study using surface plasmon resonance showed that Arg(45), Gln(47), and Arg(59) of galectin-8N are indispensable and coordinately contribute to the strong binding of galectins-8N to sialylated and sulfated oligosaccharides. Arg(59) is the most critical amino acid for binding in the S3-S4 loop region.

Articles - 3ap4 mentioned but not cited (5)

  1. Galectin-8-N-domain recognition mechanism for sialylated and sulfated glycans. Ideo H, Matsuzaka T, Nonaka T, Seko A, Yamashita K. J Biol Chem 286 11346-11355 (2011)
  2. Structure-based rationale for differential recognition of lacto- and neolacto- series glycosphingolipids by the N-terminal domain of human galectin-8. Bohari MH, Yu X, Zick Y, Blanchard H. Sci Rep 6 39556 (2016)
  3. The two domains of human galectin-8 bind sialyl- and fucose-containing oligosaccharides in an independent manner. A 3D view by using NMR. Gómez-Redondo M, Delgado S, Núñez-Franco R, Jiménez-Osés G, Ardá A, Jiménez-Barbero J, Gimeno A. RSC Chem Biol 2 932-941 (2021)
  4. Molecular dynamics simulations elucidate oligosaccharide recognition pathways by galectin-3 at atomic resolution. Koneru JK, Sinha S, Mondal J. J Biol Chem 297 101271 (2021)
  5. NMR Investigation of Protein-Carbohydrate Interactions: The Recognition of Glycans by Galectins Engineered with Fluorotryptophan Residues. Lete MG, Franconetti A, Bertuzzi S, Delgado S, Azkargorta M, Elortza F, Millet O, Jiménez-Osés G, Arda A, Jiménez-Barbero J. Chemistry 29 e202202208 (2023)


Reviews citing this publication (23)

  1. Multifarious roles of sialic acids in immunity. Varki A, Gagneux P. Ann N Y Acad Sci 1253 16-36 (2012)
  2. Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer. Rabinovich GA, Croci DO. Immunity 36 322-335 (2012)
  3. When galectins recognize glycans: from biochemistry to physiology and back again. Di Lella S, Sundblad V, Cerliani JP, Guardia CM, Estrin DA, Vasta GR, Rabinovich GA. Biochemistry 50 7842-7857 (2011)
  4. Unraveling galectin-1 as a novel therapeutic target for cancer. Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, Raymond E, Faivre S. Cancer Treat Rev 40 307-319 (2014)
  5. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments. Cardoso AC, Andrade LN, Bustos SO, Chammas R. Front Oncol 6 127 (2016)
  6. Key regulators of galectin-glycan interactions. Kamili NA, Arthur CM, Gerner-Smidt C, Tafesse E, Blenda A, Dias-Baruffi M, Stowell SR. Proteomics 16 3111-3125 (2016)
  7. Galectin-8: a matricellular lectin with key roles in angiogenesis. Troncoso MF, Ferragut F, Bacigalupo ML, Cárdenas Delgado VM, Nugnes LG, Gentilini L, Laderach D, Wolfenstein-Todel C, Compagno D, Rabinovich GA, Elola MT. Glycobiology 24 907-914 (2014)
  8. Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition. Roy R, Murphy PV, Gabius HJ. Molecules 21 E629 (2016)
  9. Dissecting the Structure-Activity Relationship of Galectin-Ligand Interactions. Chan YC, Lin HY, Tu Z, Kuo YH, Hsu SD, Lin CH. Int J Mol Sci 19 E392 (2018)
  10. Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. Valverde P, Quintana JI, Santos JI, Ardá A, Jiménez-Barbero J. ACS Omega 4 13618-13630 (2019)
  11. Pregnancy Galectinology: Insights Into a Complex Network of Glycan Binding Proteins. Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G. Front Immunol 10 1166 (2019)
  12. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Ahmad F, Döbel T, Schmitz M, Schäkel K. Front Immunol 10 948 (2019)
  13. Diversity in recognition of glycans by F-type lectins and galectins: molecular, structural, and biophysical aspects. Vasta GR, Ahmed H, Bianchet MA, Fernández-Robledo JA, Amzel LM. Ann N Y Acad Sci 1253 E14-26 (2012)
  14. Sugar recognition and protein-protein interaction of mammalian lectins conferring diverse functions. Nagae M, Yamaguchi Y. Curr Opin Struct Biol 34 108-115 (2015)
  15. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Raposo CD, Canelas AB, Barros MT. Biomolecules 11 188 (2021)
  16. Sialic acid as a target for the development of novel antiangiogenic strategies. Chiodelli P, Urbinati C, Paiardi G, Monti E, Rusnati M. Future Med Chem 10 2835-2854 (2018)
  17. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Shivatare SS, Shivatare VS, Wong CH. Chem Rev 122 15603-15671 (2022)
  18. The manifold roles of sialic acid for the biological functions of endothelial glycoproteins. D'Addio M, Frey J, Otto VI. Glycobiology 30 490-499 (2020)
  19. Identification of galectins as novel regulators of platelet signaling and function. Romaniuk MA, Negrotto S, Campetella O, Rabinovich GA, Schattner M. IUBMB Life 63 521-527 (2011)
  20. Glycan-Lectin Interactions as Novel Immunosuppression Drivers in Glioblastoma. Pace A, Scirocchi F, Napoletano C, Zizzari IG, D'Angelo L, Santoro A, Nuti M, Rahimi H, Rughetti A. Int J Mol Sci 23 6312 (2022)
  21. Modulation of the Gal-9/TIM-3 Immune Checkpoint with α-Lactose. Does Anomery of Lactose Matter? Bailly C, Thuru X, Quesnel B. Cancers (Basel) 13 6365 (2021)
  22. 3'-sulfated LewisA/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Das KK, Brown JW. Front Cell Dev Biol 11 1089028 (2023)
  23. Sialylation of cell surface glycoconjugates modulates cytosolic galectin-mediated responses upon organelle damage : Minireview. Weng IC, Chen HL, Lin WH, Liu FT. Glycoconj J 40 295-303 (2023)

Articles citing this publication (46)

  1. Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Kim BW, Hong SB, Kim JH, Kwon DH, Song HK. Nat Commun 4 1613 (2013)
  2. Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox. Vasta GR, Ahmed H, Nita-Lazar M, Banerjee A, Pasek M, Shridhar S, Guha P, Fernández-Robledo JA. Front Immunol 3 199 (2012)
  3. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Chen WS, Cao Z, Sugaya S, Lopez MJ, Sendra VG, Laver N, Leffler H, Nilsson UJ, Fu J, Song J, Xia L, Hamrah P, Panjwani N. Nat Commun 7 11302 (2016)
  4. Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin-glycan specificities in a natural context. Nielsen MI, Stegmayr J, Grant OC, Yang Z, Nilsson UJ, Boos I, Carlsson MC, Woods RJ, Unverzagt C, Leffler H, Wandall HH. J Biol Chem 293 20249-20262 (2018)
  5. Exploring functional pairing between surface glycoconjugates and human galectins using programmable glycodendrimersomes. Xiao Q, Ludwig AK, Romanò C, Buzzacchera I, Sherman SE, Vetro M, Vértesy S, Kaltner H, Reed EH, Möller M, Wilson CJ, Hammer DA, Oscarson S, Klein ML, Gabius HJ, Percec V. Proc Natl Acad Sci U S A 115 E2509-E2518 (2018)
  6. Natural single amino acid polymorphism (F19Y) in human galectin-8: detection of structural alterations and increased growth-regulatory activity on tumor cells. Ruiz FM, Scholz BA, Buzamet E, Kopitz J, André S, Menéndez M, Romero A, Solís D, Gabius HJ. FEBS J 281 1446-1464 (2014)
  7. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Weng IC, Chen HL, Lo TH, Lin WH, Chen HY, Hsu DK, Liu FT. Glycobiology 28 392-405 (2018)
  8. Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis. Pardo E, Cárcamo C, Uribe-San Martín R, Ciampi E, Segovia-Miranda F, Curkovic-Peña C, Montecino F, Holmes C, Tichauer JE, Acuña E, Osorio-Barrios F, Castro M, Cortes P, Oyanadel C, Valenzuela DM, Pacheco R, Naves R, Soza A, González A. PLoS One 12 e0177472 (2017)
  9. X-ray structure of a protease-resistant mutant form of human galectin-8 with two carbohydrate recognition domains. Yoshida H, Yamashita S, Teraoka M, Itoh A, Nakakita S, Nishi N, Kamitori S. FEBS J 279 3937-3951 (2012)
  10. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens. Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. FEBS J 282 3348-3367 (2015)
  11. Structural characterisation of human galectin-4 N-terminal carbohydrate recognition domain in complex with glycerol, lactose, 3'-sulfo-lactose, and 2'-fucosyllactose. Bum-Erdene K, Leffler H, Nilsson UJ, Blanchard H. Sci Rep 6 20289 (2016)
  12. Teaming up synthetic chemistry and histochemistry for activity screening in galectin-directed inhibitor design. Roy R, Cao Y, Kaltner H, Kottari N, Shiao TC, Belkhadem K, André S, Manning JC, Murphy PV, Gabius HJ. Histochem Cell Biol 147 285-301 (2017)
  13. Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFβ signaling. Sampson JF, Suryawanshi A, Chen WS, Rabinovich GA, Panjwani N. Immunol Cell Biol 94 213-219 (2016)
  14. O-Linked glycome and proteome of high-molecular-mass proteins in human ovarian cancer ascites: Identification of sulfation, disialic acid and O-linked fucose. Karlsson NG, McGuckin MA. Glycobiology 22 918-929 (2012)
  15. CD45-deficient severe combined immunodeficiency caused by uniparental disomy. Roberts JL, Buckley RH, Luo B, Pei J, Lapidus A, Peri S, Wei Q, Shin J, Parrott RE, Dunbrack RL, Testa JR, Zhong XP, Wiest DL. Proc Natl Acad Sci U S A 109 10456-10461 (2012)
  16. Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Suzuki O, Abe M, Hashimoto Y. Int J Oncol 46 973-980 (2015)
  17. Understanding the specificity of human Galectin-8C domain interactions with its glycan ligands based on molecular dynamics simulations. Kumar S, Frank M, Schwartz-Albiez R. PLoS One 8 e59761 (2013)
  18. Galectin-8 enhances adhesion of multiple myeloma cells to vascular endothelium and is an adverse prognostic factor. Friedel M, André S, Goldschmidt H, Gabius HJ, Schwartz-Albiez R. Glycobiology 26 1048-1058 (2016)
  19. Galectin-8 induces partial epithelial-mesenchymal transition with invasive tumorigenic capabilities involving a FAK/EGFR/proteasome pathway in Madin-Darby canine kidney cells. Oyanadel C, Holmes C, Pardo E, Retamal C, Shaughnessy R, Smith P, Cortés P, Bravo-Zehnder M, Metz C, Feuerhake T, Romero D, Roa JC, Montecinos V, Soza A, González A. Mol Biol Cell 29 557-574 (2018)
  20. Galectin-8 promotes migration and proliferation and prevents apoptosis in U87 glioblastoma cells. Metz C, Döger R, Riquelme E, Cortés P, Holmes C, Shaughnessy R, Oyanadel C, Grabowski C, González A, Soza A. Biol Res 49 33 (2016)
  21. Galectin-8 Ameliorates Murine Autoimmune Ocular Pathology and Promotes a Regulatory T Cell Response. Sampson JF, Hasegawa E, Mulki L, Suryawanshi A, Jiang S, Chen WS, Rabinovich GA, Connor KM, Panjwani N. PLoS One 10 e0130772 (2015)
  22. Synthesis and characterization of sulfated Gal-β-1,3/4-GlcNAc disaccharides through consecutive protection/glycosylation steps. Tu Z, Hsieh HW, Tsai CM, Hsu CW, Wang SG, Wu KJ, Lin KI, Lin CH. Chem Asian J 8 1536-1550 (2013)
  23. Distinct substrate specificities of human GlcNAc-6-sulfotransferases revealed by mass spectrometry-based sulfoglycomic analysis. Yu SY, Hsiao CT, Izawa M, Yusa A, Ishida H, Nakamura S, Yagi H, Kannagi R, Khoo KH. J Biol Chem 293 15163-15177 (2018)
  24. Probing sulfatide-tissue lectin recognition with functionalized glycodendrimersomes. Murphy PV, Romero A, Xiao Q, Ludwig AK, Jogula S, Shilova NV, Singh T, Gabba A, Javed B, Zhang D, Medrano FJ, Kaltner H, Kopitz J, Bovin NV, Wu AM, Klein ML, Percec V, Gabius HJ. iScience 24 101919 (2021)
  25. Combining Crystallography and Hydrogen-Deuterium Exchange to Study Galectin-Ligand Complexes. Ruiz FM, Gilles U, Lindner I, André S, Romero A, Reusch D, Gabius HJ. Chemistry 21 13558-13568 (2015)
  26. Laminin L4 domain structure resembles adhesion modules in ephrin receptor and other transmembrane glycoproteins. Moran T, Gat Y, Fass D. FEBS J 282 2746-2757 (2015)
  27. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker. Si Y, Wang Y, Gao J, Song C, Feng S, Zhou Y, Tai G, Su J. Int J Mol Sci 17 E2088 (2016)
  28. Structural basis of preferential binding of fucose-containing saccharide by the Caenorhabditis elegans galectin LEC-6. Makyio H, Takeuchi T, Tamura M, Nishiyama K, Takahashi H, Natsugari H, Arata Y, Kasai K, Yamada Y, Wakatsuki S, Kato R. Glycobiology 23 797-805 (2013)
  29. Role of N-glycosylation in activation of proMMP-9. A molecular dynamics simulations study. Kumar S, Cieplak P. PLoS One 13 e0191157 (2018)
  30. Chicken GRIFIN: Structural characterization in crystals and in solution. Ruiz FM, Gilles U, Ludwig AK, Sehad C, Shiao TC, García Caballero G, Kaltner H, Lindner I, Roy R, Reusch D, Romero A, Gabius HJ. Biochimie 146 127-138 (2018)
  31. Engineering of a 3'-sulpho-Galβ1-4GlcNAc-specific probe by a single amino acid substitution of a fungal galectin. Hu D, Huang H, Tateno H, Nakakita S, Sato T, Narimatsu H, Yao X, Hirabayashi J. J Biochem 157 197-200 (2015)
  32. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and anti-adhesive activity. Karakostis K, Costa C, Costa C, Zito F, Matranga V. Sci Rep 5 17665 (2015)
  33. N-Glycan profiling of chondrocytes and fibroblast-like synoviocytes: Towards functional glycomics in osteoarthritis. Fuehrer J, Pichler KM, Fischer A, Giurea A, Weinmann D, Altmann F, Windhager R, Gabius HJ, Toegel S. Proteomics Clin Appl 15 e2000057 (2021)
  34. Deep phylogenomics of a tandem-repeat galectin regulating appendicular skeletal pattern formation. Bhat R, Chakraborty M, Glimm T, Stewart TA, Newman SA. BMC Evol Biol 16 162 (2016)
  35. Galectin-4 N-Terminal Domain: Binding Preferences Toward A and B Antigens With Different Peripheral Core Presentations. Quintana JI, Delgado S, Núñez-Franco R, Cañada FJ, Jiménez-Osés G, Jiménez-Barbero J, Ardá A. Front Chem 9 664097 (2021)
  36. Resetting the ligand binding site of placental protein 13/galectin-13 recovers its ability to bind lactose. Su J, Cui L, Si Y, Song C, Li Y, Yang T, Wang H, Mayo KH, Tai G, Zhou Y. Biosci Rep 38 BSR20181787 (2018)
  37. NMR assignments of the C-terminal domain of human galectin-8. Liu CH, Chien CT, Lin CH, Hsu ST. Biomol NMR Assign 9 427-430 (2015)
  38. Structure-Based Design of a Monosaccharide Ligand Targeting Galectin-8. Bohari MH, Yu X, Kishor C, Patel B, Go RM, Eslampanah Seyedi HA, Vinik Y, Grice ID, Zick Y, Blanchard H. ChemMedChem 13 1664-1672 (2018)
  39. Studying the Structural Significance of Galectin Design by Playing a Modular Puzzle: Homodimer Generation from Human Tandem-Repeat-Type (Heterodimeric) Galectin-8 by Domain Shuffling. Ludwig AK, Michalak M, Shilova N, André S, Kaltner H, Bovin NV, Kopitz J, Gabius HJ. Molecules 22 E1572 (2017)
  40. Galectin-8 in IgA nephritis: decreased binding of IgA by galectin-8 affinity chromatography and associated increased binding in non-IgA serum glycoproteins. Carlsson MC, Bakoush O, Tengroth L, Kilsgård O, Malmström J, Hellmark T, Segelmark M, Leffler H. J Clin Immunol 32 246-255 (2012)
  41. Synthesis of Galectin Inhibitors by Regioselective 3'-O-Sulfation of Vanillin Lactosides Obtained under Phase Transfer Catalysis. Belkhadem K, Cao Y, Roy R. Molecules 26 E115 (2020)
  42. Dissecting Context-Specific Galectin Binding Using Glycoengineered Cell Libraries. Nielsen MI, Wandall HH. Methods Mol Biol 2442 205-214 (2022)
  43. Galectins from Onchocerca ochengi and O. volvulus and their immune recognition by Wistar rats, Gudali zebu cattle and human hosts. Ngwasiri NN, Brattig NW, Ndjonka D, Liebau E, Paguem A, Leusder D, Kingsley MT, Eisenbarth A, Renz A, Daniel AM. BMC Microbiol 21 5 (2021)
  44. A brief history of galectin evolution. Günther J, Galuska SP. Front Immunol 14 1147356 (2023)
  45. Galectin-8 Downmodulates TLR4 Activation and Impairs Bacterial Clearance in a Mouse Model of Pseudomonas aeruginosa Keratitis. Ramadan A, Cao Z, Hassan M, Zetterberg F, Nilsson UJ, Gadjeva M, Rathinam V, Panjwani N. J Immunol 210 398-407 (2023)
  46. Lactose-Functionalized Carbosilane Glycodendrimers Are Highly Potent Multivalent Ligands for Galectin-9 Binding: Increased Glycan Affinity to Galectins Correlates with Aggregation Behavior. Müllerová M, Hovorková M, Závodná T, Červenková Št Astná L, Krupková A, Hamala V, Nováková K, Topinka J, Bojarová P, Strašák T. Biomacromolecules 24 4705-4717 (2023)