2zme Citations

Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex.

Dev Cell 14 902-13 (2008)
Cited: 65 times
EuropePMC logo PMID: 18539118

Abstract

ESCRT-II plays a pivotal role in receptor downregulation and multivesicular body biogenesis and is conserved from yeast to humans. The crystal structures of two human ESCRT-II complex structures have been determined at 2.6 and 2.9 A resolution, respectively. The complex has three lobes and contains one copy each of VPS22 and VPS36 and two copies of VPS25. The structure reveals a dynamic helical domain to which both the VPS22 and VPS36 subunits contribute that connects the GLUE domain to the rest of the ESCRT-II core. Hydrodynamic analysis shows that intact ESCRT-II has a compact, closed conformation. ESCRT-II binds to the ESCRT-I VPS28 C-terminal domain subunit through a helix immediately C-terminal to the VPS36-GLUE domain. ESCRT-II is targeted to endosomal membranes by the lipid-binding activities of both the Vps36 GLUE domain and the first helix of Vps22. These data provide a unifying structural and functional framework for the ESCRT-II complex.

Reviews - 2zme mentioned but not cited (2)

  1. Membrane fission reactions of the mammalian ESCRT pathway. McCullough J, Colf LA, Sundquist WI. Annu Rev Biochem 82 663-692 (2013)
  2. Evolution: On a bender--BARs, ESCRTs, COPs, and finally getting your coat. Field MC, Sali A, Rout MP. J Cell Biol 193 963-972 (2011)

Articles - 2zme mentioned but not cited (2)

  1. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Im YJ, Hurley JH. Dev Cell 14 902-913 (2008)
  2. Prediction of the tetramer protein complex interaction based on CNN and SVM. Lyu Y, He R, Hu J, Wang C, Gong X. Front Genet 14 1076904 (2023)


Reviews citing this publication (27)

  1. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Raiborg C, Stenmark H. Nature 458 445-452 (2009)
  2. The ESCRT pathway. Henne WM, Buchkovich NJ, Emr SD. Dev Cell 21 77-91 (2011)
  3. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Hurley JH, Hanson PI. Nat Rev Mol Cell Biol 11 556-566 (2010)
  4. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery. Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Trends Biochem Sci 42 42-56 (2017)
  5. Reverse-topology membrane scission by the ESCRT proteins. Schöneberg J, Lee IH, Iwasa JH, Hurley JH. Nat Rev Mol Cell Biol 18 5-17 (2017)
  6. The ESCRT complexes. Hurley JH. Crit Rev Biochem Mol Biol 45 463-487 (2010)
  7. Membrane budding. Hurley JH, Boura E, Carlson LA, Różycki B. Cell 143 875-887 (2010)
  8. Ubiquitin in trafficking: the network at work. Acconcia F, Sigismund S, Polo S. Exp Cell Res 315 1610-1618 (2009)
  9. How ubiquitin functions with ESCRTs. Shields SB, Piper RC. Traffic 12 1306-1317 (2011)
  10. The ESCRT machinery: from the plasma membrane to endosomes and back again. Schuh AL, Audhya A. Crit Rev Biochem Mol Biol 49 242-261 (2014)
  11. Divergent pathways lead to ESCRT-III-catalyzed membrane fission. Peel S, Macheboeuf P, Martinelli N, Weissenhorn W. Trends Biochem Sci 36 199-210 (2011)
  12. The ESCRT machinery at a glance. Wollert T, Yang D, Ren X, Lee HH, Im YJ, Hurley JH. J Cell Sci 122 2163-2166 (2009)
  13. Cell biology of the ESCRT machinery. Hanson PI, Shim S, Merrill SA. Curr Opin Cell Biol 21 568-574 (2009)
  14. Modularized Extracellular Vesicles: The Dawn of Prospective Personalized and Precision Medicine. Tao SC, Guo SC, Zhang CQ. Adv Sci (Weinh) 5 1700449 (2018)
  15. ESCRT-dependent control of membrane remodelling during cell division. Stoten CL, Carlton JG. Semin Cell Dev Biol 74 50-65 (2018)
  16. Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell division. Morita E. FEBS J 279 1399-1406 (2012)
  17. Membrane protein targeting to the MVB/lysosome. Davies BA, Lee JR, Oestreich AJ, Katzmann DJ. Chem Rev 109 1575-1586 (2009)
  18. Developmental and cellular functions of the ESCRT machinery in pluricellular organisms. Michelet X, Djeddi A, Legouis R. Biol Cell 102 191-202 (2010)
  19. Structure and mechanism in membrane trafficking. Hughson FM, Reinisch KM. Curr Opin Cell Biol 22 454-460 (2010)
  20. The ESCRTs - converging on mechanism. Remec Pavlin M, Hurley JH. J Cell Sci 133 jcs240333 (2020)
  21. Phosphoinositides in the mammalian endo-lysosomal network. Cullen PJ, Carlton JG. Subcell Biochem 59 65-110 (2012)
  22. The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Meng B, Lever AML. Viruses 13 324 (2021)
  23. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Pemberton JG, Balla T. Adv Exp Med Biol 1111 77-137 (2019)
  24. Exosomal MicroRNAs as Novel Cell-Free Therapeutics in Tissue Engineering and Regenerative Medicine. Zeng EZ, Chen I, Chen X, Yuan X. Biomedicines 10 2485 (2022)
  25. How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Klingler J, Anton H, Réal E, Zeiger M, Moog C, Mély Y, Boutant E. Viruses 12 E888 (2020)
  26. Molecular Genetics of Frontotemporal Dementia Elucidated by Drosophila Models-Defects in Endosomal⁻Lysosomal Pathway. Vandal SE, Zheng X, Ahmad ST. Int J Mol Sci 19 E1714 (2018)
  27. The role of Vps4 in cancer development. Huang LJ, Zhan ST, Pan YQ, Bao W, Yang Y. Front Oncol 13 1203359 (2023)

Articles citing this publication (34)

  1. ESCRT-II coordinates the assembly of ESCRT-III filaments for cargo sorting and multivesicular body vesicle formation. Teis D, Saksena S, Judson BL, Emr SD. EMBO J 29 871-883 (2010)
  2. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Im YJ, Wollert T, Boura E, Hurley JH. Dev Cell 17 234-243 (2009)
  3. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. Christ L, Wenzel EM, Liestøl K, Raiborg C, Campsteijn C, Stenmark H. J Cell Biol 212 499-513 (2016)
  4. Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments. Fyfe I, Schuh AL, Edwardson JM, Audhya A. J Biol Chem 286 34262-34270 (2011)
  5. Membrane Binding by CHMP7 Coordinates ESCRT-III-Dependent Nuclear Envelope Reformation. Olmos Y, Perdrix-Rosell A, Carlton JG. Curr Biol 26 2635-2641 (2016)
  6. Genome-wide mRNA and microRNA profiling of the NCI 60 cell-line screen and comparison of FdUMP[10] with fluorouracil, floxuridine, and topoisomerase 1 poisons. Gmeiner WH, Reinhold WC, Pommier Y. Mol Cancer Ther 9 3105-3114 (2010)
  7. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Anantharaman V, Iyer LM, Aravind L. Mol Biosyst 8 3142-3165 (2012)
  8. LEM2 phase separation promotes ESCRT-mediated nuclear envelope reformation. von Appen A, LaJoie D, Johnson IE, Trnka MJ, Pick SM, Burlingame AL, Ullman KS, Frost A. Nature 582 115-118 (2020)
  9. Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission. Boura E, Różycki B, Chung HS, Herrick DZ, Canagarajah B, Cafiso DS, Eaton WA, Hummer G, Hurley JH. Structure 20 874-886 (2012)
  10. Hybrid structural model of the complete human ESCRT-0 complex. Ren X, Kloer DP, Kim YC, Ghirlando R, Saidi LF, Hummer G, Hurley JH. Structure 17 406-416 (2009)
  11. Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. Boura E, Ivanov V, Carlson LA, Mizuuchi K, Hurley JH. J Biol Chem 287 28144-28151 (2012)
  12. Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production. Meng B, Ip NC, Prestwood LJ, Abbink TE, Lever AM. Retrovirology 12 72 (2015)
  13. Involvement of ESCRT-II in hepatitis B virus morphogenesis. Stieler JT, Prange R. PLoS One 9 e91279 (2014)
  14. Structural basis for membrane targeting by the MVB12-associated β-prism domain of the human ESCRT-I MVB12 subunit. Boura E, Hurley JH. Proc Natl Acad Sci U S A 109 1901-1906 (2012)
  15. Membrane-elasticity model of Coatless vesicle budding induced by ESCRT complexes. Różycki B, Boura E, Hurley JH, Hummer G. PLoS Comput Biol 8 e1002736 (2012)
  16. Reconstitution of selective HIV-1 RNA packaging in vitro by membrane-bound Gag assemblies. Carlson LA, Bai Y, Keane SC, Doudna JA, Hurley JH. Elife 5 e14663 (2016)
  17. ESCRT-III binding protein MITD1 is involved in cytokinesis and has an unanticipated PLD fold that binds membranes. Hadders MA, Agromayor M, Obita T, Perisic O, Caballe A, Kloc M, Lamers MH, Williams RL, Martin-Serrano J. Proc Natl Acad Sci U S A 109 17424-17429 (2012)
  18. A helical assembly of human ESCRT-I scaffolds reverse-topology membrane scission. Flower TG, Takahashi Y, Hudait A, Rose K, Tjahjono N, Pak AJ, Yokom AL, Liang X, Wang HG, Bouamr F, Voth GA, Hurley JH. Nat Struct Mol Biol 27 570-580 (2020)
  19. Nipah Virus C Protein Recruits Tsg101 to Promote the Efficient Release of Virus in an ESCRT-Dependent Pathway. Park A, Yun T, Vigant F, Pernet O, Won ST, Dawes BE, Bartkowski W, Freiberg AN, Lee B. PLoS Pathog 12 e1005659 (2016)
  20. PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation. Gulluni F, Prever L, Li H, Krafcikova P, Corrado I, Lo WT, Margaria JP, Chen A, De Santis MC, Cnudde SJ, Fogerty J, Yuan A, Massarotti A, Sarijalo NT, Vadas O, Williams RL, Thelen M, Powell DR, Schueler M, Wiesener MS, Balla T, Baris HN, Tiosano D, McDermott BM, Perkins BD, Ghigo A, Martini M, Haucke V, Boura E, Merlo GR, Buchner DA, Hirsch E. Science 374 eabk0410 (2021)
  21. Vesicle formation within endosomes: An ESCRT marks the spot. Mayers JR, Audhya A. Commun Integr Biol 5 50-56 (2012)
  22. Need an ESCRT for autophagosomal maturation? Manil-Segalén M, Lefebvre C, Culetto E, Legouis R. Commun Integr Biol 5 566-571 (2012)
  23. ESCRT-II functions by linking to ESCRT-I in human immunodeficiency virus-1 budding. Meng B, Ip NCY, Abbink TEM, Kenyon JC, Lever AML. Cell Microbiol 22 e13161 (2020)
  24. Bud-neck scaffolding as a possible driving force in ESCRT-induced membrane budding. Mercker M, Marciniak-Czochra A. Biophys J 108 833-843 (2015)
  25. Constitutively active ESCRT-II suppresses the MVB-sorting phenotype of ESCRT-0 and ESCRT-I mutants. Mageswaran SK, Johnson NK, Odorizzi G, Babst M. Mol Biol Cell 26 554-568 (2015)
  26. Sprouty 2 binds ESCRT-II factor Eap20 and facilitates HIV-1 gag release. Medina GN, Ehrlich LS, Chen MH, Khan MB, Powell MD, Carter CA. J Virol 85 7353-7362 (2011)
  27. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery. Hatano T, Palani S, Papatziamou D, Salzer R, Souza DP, Tamarit D, Makwana M, Potter A, Haig A, Xu W, Townsend D, Rochester D, Bellini D, Hussain HMA, Ettema TJG, Löwe J, Baum B, Robinson NP, Balasubramanian M. Nat Commun 13 3398 (2022)
  28. ESCRT-II/Vps25 constrains digit number by endosome-mediated selective modulation of FGF-SHH signaling. Handschuh K, Feenstra J, Koss M, Ferretti E, Risolino M, Zewdu R, Sahai MA, Bénazet JD, Peng XP, Depew MJ, Quintana L, Sharpe J, Wang B, Alcorn H, Rivi R, Butcher S, Manak JR, Vaccari T, Weinstein H, Anderson KV, Lacy E, Selleri L. Cell Rep 9 674-687 (2014)
  29. The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans. Lefebvre C, Largeau C, Michelet X, Fourrage C, Maniere X, Matic I, Legouis R, Culetto E. J Cell Sci 129 1490-1499 (2016)
  30. In vitro reconstitution of calcium-dependent recruitment of the human ESCRT machinery in lysosomal membrane repair. Shukla S, Larsen KP, Ou C, Rose K, Hurley JH. Proc Natl Acad Sci U S A 119 e2205590119 (2022)
  31. The RNA-binding complex ESCRT-II in Xenopus laevis eggs recognizes purine-rich sequences through its subunit, Vps25. Emerman AB, Blower MD. J Biol Chem 293 12593-12605 (2018)
  32. Backbone and side-chain NMR assignments for the C-terminal domain of mammalian Vps28. Peterson TA, Yu L, Piper RC. Biomol NMR Assign 9 21-24 (2015)
  33. Dynamics of upstream ESCRT organization at the HIV-1 budding site. Hudait A, Hurley JH, Voth GA. Biophys J 122 2655-2674 (2023)
  34. Endosomal Arl4A attenuates EGFR degradation by binding to the ESCRT-II component VPS36. Lin SJ, Lin MC, Liu TJ, Tsai YT, Tsai MT, Lee FS. Nat Commun 14 7859 (2023)