2z1d Citations

Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: insights into cyanation reaction by thiol redox signaling.

Mol Cell 27 29-40 (2007)
Related entries: 2z1c, 2z1e, 2z1f

Cited: 47 times
EuropePMC logo PMID: 17612488

Abstract

[NiFe] hydrogenase maturation proteins HypC, HypD, and HypE catalyze the insertion and cyanation of the iron center of [NiFe] hydrogenases by an unknown mechanism. We have determined the crystal structures of HypC, HypD, and HypE from Thermococcus kodakaraensis KOD1 at 1.8 A, 2.07 A, and 1.55 A resolution, respectively. The structure of HypD reveals its probable iron binding and active sites for cyanation. An extended conformation of each conserved motif of HypC and HypE allows the essential cysteine residues of both proteins to interact with the active site of HypD. Furthermore, the C-terminal tail of HypE is shown to exist in an ATP-dependent dynamic equilibrium between outward and inward conformations. Unexpectedly, the [4Fe-4S] cluster environment of HypD is quite similar to that of ferredoxin:thioredoxin reductase (FTR), indicating the existence of a redox cascade similar to the FTR system. These results suggest a cyanation reaction mechanism via unique thiol redox signaling in the HypCDE complex.

Reviews citing this publication (7)

  1. The ferredoxin/thioredoxin system of oxygenic photosynthesis. Schürmann P, Buchanan BB. Antioxid. Redox Signal. 10 1235-1274 (2008)
  2. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Thauer RK, Kaster AK, Goenrich M, Schick M, Hiromoto T, Shima S. Annu. Rev. Biochem. 79 507-536 (2010)
  3. Structure-function relationships of anaerobic gas-processing metalloenzymes. Fontecilla-Camps JC, Amara P, Cavazza C, Nicolet Y, Volbeda A. Nature 460 814-822 (2009)
  4. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW. Structure 19 1038-1052 (2011)
  5. Metabolically engineered bacteria for producing hydrogen via fermentation. Vardar-Schara G, Maeda T, Wood TK. Microb Biotechnol 1 107-125 (2008)
  6. Prokaryotic assembly factors for the attachment of flavin to complex II. McNeil MB, Fineran PC. Biochim. Biophys. Acta 1827 637-647 (2013)
  7. An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research. Rashid N, Aslam M. Folia Microbiol (Praha) 65 67-78 (2020)

Articles citing this publication (40)

  1. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. BMC Microbiol. 11 104 (2011)
  2. The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps JC, Fontecave M. FEBS Lett. 583 506-511 (2009)
  3. Crystal structure of HypA, a nickel-binding metallochaperone for [NiFe] hydrogenase maturation. Watanabe S, Arai T, Matsumi R, Atomi H, Imanaka T, Miki K. J. Mol. Biol. 394 448-459 (2009)
  4. Structural analysis of metal sites in proteins: non-heme iron sites as a case study. Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM. J. Mol. Biol. 388 356-380 (2009)
  5. Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. Shomura Y, Higuchi Y. J. Biol. Chem. 287 28409-28419 (2012)
  6. Structural studies of thiamin monophosphate kinase in complex with substrates and products. McCulloch KM, Kinsland C, Begley TP, Ealick SE. Biochemistry 47 3810-3821 (2008)
  7. Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L, Waclawek M, Soboh B, Sawers RG, Cygler M. Structure 19 1773-1783 (2011)
  8. A universal scaffold for synthesis of the Fe(CN)2(CO) moiety of [NiFe] hydrogenase. Bürstel I, Siebert E, Winter G, Hummel P, Zebger I, Friedrich B, Lenz O. J. Biol. Chem. 287 38845-38853 (2012)
  9. Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer. Watanabe S, Kawashima T, Nishitani Y, Kanai T, Wada T, Inaba K, Atomi H, Imanaka T, Miki K. Proc. Natl. Acad. Sci. U.S.A. 112 7701-7706 (2015)
  10. Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. Itoh Y, Sekine S, Matsumoto E, Akasaka R, Takemoto C, Shirouzu M, Yokoyama S. J. Mol. Biol. 385 1456-1469 (2009)
  11. Conformational selection underlies recognition of a molybdoenzyme by its dedicated chaperone. Lorenzi M, Sylvi L, Gerbaud G, Mileo E, Halgand F, Walburger A, Vezin H, Belle V, Guigliarelli B, Magalon A. PLoS ONE 7 e49523 (2012)
  12. Crystal structures of the HypCD complex and the HypCDE ternary complex: transient intermediate complexes during [NiFe] hydrogenase maturation. Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Structure 20 2124-2137 (2012)
  13. Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF. Rangarajan ES, Asinas A, Proteau A, Munger C, Baardsnes J, Iannuzzi P, Matte A, Cygler M. J. Bacteriol. 190 1447-1458 (2008)
  14. [NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN- ligands. Soboh B, Stripp ST, Muhr E, Granich C, Braussemann M, Herzberg M, Heberle J, Gary Sawers R. FEBS Lett. 586 3882-3887 (2012)
  15. Development of a cell-free system reveals an oxygen-labile step in the maturation of [NiFe]-hydrogenase 2 of Escherichia coli. Soboh B, Krüger S, Kuhns M, Pinske C, Lehmann A, Sawers RG. FEBS Lett. 584 4109-4114 (2010)
  16. Characterization and in vitro interaction study of a [NiFe] hydrogenase large subunit from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Sasaki D, Watanabe S, Kanai T, Atomi H, Imanaka T, Miki K. Biochem. Biophys. Res. Commun. 417 192-196 (2012)
  17. Probing the origin of the metabolic precursor of the CO ligand in the catalytic center of [NiFe] hydrogenase. Bürstel I, Hummel P, Siebert E, Wisitruangsakul N, Zebger I, Friedrich B, Lenz O. J. Biol. Chem. 286 44937-44944 (2011)
  18. Role of histidine-86 in the catalytic mechanism of ferredoxin:thioredoxin reductase. Walters EM, Garcia-Serres R, Naik SG, Bourquin F, Glauser DA, Schürmann P, Huynh BH, Johnson MK. Biochemistry 48 1016-1024 (2009)
  19. Computational reconstruction of primordial prototypes of elementary functional loops in modern proteins. Goncearenco A, Berezovsky IN. Bioinformatics 27 2368-2375 (2011)
  20. Structure of the respiratory MBS complex reveals iron-sulfur cluster catalyzed sulfane sulfur reduction in ancient life. Yu H, Haja DK, Schut GJ, Wu CH, Meng X, Zhao G, Li H, Adams MWW. Nat Commun 11 5953 (2020)
  21. Identification and structure of a novel archaeal HypB for [NiFe] hydrogenase maturation. Sasaki D, Watanabe S, Matsumi R, Shoji T, Yasukochi A, Tagashira K, Fukuda W, Kanai T, Atomi H, Imanaka T, Miki K. J. Mol. Biol. 425 1627-1640 (2013)
  22. Levels of control exerted by the Isc iron-sulfur cluster system on biosynthesis of the formate hydrogenlyase complex. Pinske C, Jaroschinsky M, Sawers RG. Microbiology (Reading, Engl.) 159 1179-1189 (2013)
  23. The [NiFe]-hydrogenase accessory chaperones HypC and HybG of Escherichia coli are iron- and carbon dioxide-binding proteins. Soboh B, Stripp ST, Bielak C, Lindenstrauß U, Braussemann M, Javaid M, Hallensleben M, Granich C, Herzberg M, Heberle J, Sawers RG. FEBS Lett. 587 2512-2516 (2013)
  24. Crystal structures of the carbamoylated and cyanated forms of HypE for [NiFe] hydrogenase maturation. Tominaga T, Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Proc. Natl. Acad. Sci. U.S.A. 110 20485-20490 (2013)
  25. The influence of oxygen on [NiFe]-hydrogenase cofactor biosynthesis and how ligation of carbon monoxide precedes cyanation. Stripp ST, Lindenstrauss U, Granich C, Sawers RG, Soboh B. PLoS ONE 9 e107488 (2014)
  26. Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum. Albareda M, Manyani H, Imperial J, Brito B, Ruiz-Argüeso T, Böck A, Palacios JM. BMC Microbiol. 12 256 (2012)
  27. Iron restriction induces preferential down-regulation of H(2)-consuming over H(2)-evolving reactions during fermentative growth of Escherichia coli. Pinske C, Sawers G. BMC Microbiol. 11 196 (2011)
  28. Crystal structure of hydrogenase maturating endopeptidase HycI from Escherichia coli. Kumarevel T, Tanaka T, Bessho Y, Shinkai A, Yokoyama S. Biochem. Biophys. Res. Commun. 389 310-314 (2009)
  29. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation. Stripp ST, Lindenstrauss U, Sawers RG, Soboh B. PLoS ONE 10 e0133118 (2015)
  30. Solution structure of Escherichia coli HypC. Wang L, Xia B, Jin C. Biochem. Biophys. Res. Commun. 361 665-669 (2007)
  31. hypD as a marker for [NiFe]-hydrogenases in microbial communities of surface waters. Beimgraben C, Gutekunst K, Opitz F, Appel J. Appl. Environ. Microbiol. 80 3776-3782 (2014)
  32. A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro. Schiffels J, Selmer T. Biotechnol. Bioeng. 112 2360-2372 (2015)
  33. Crystal structures of a [NiFe] hydrogenase large subunit HyhL in an immature state in complex with a Ni chaperone HypA. Kwon S, Watanabe S, Nishitani Y, Kawashima T, Kanai T, Atomi H, Miki K. Proc. Natl. Acad. Sci. U.S.A. 115 7045-7050 (2018)
  34. Maturation of Rhizobium leguminosarum hydrogenase in the presence of oxygen requires the interaction of the chaperone HypC and the scaffolding protein HupK. Albareda M, Pacios LF, Manyani H, Rey L, Brito B, Imperial J, Ruiz-Argüeso T, Palacios JM. J. Biol. Chem. 289 21217-21229 (2014)
  35. A redox-active HybG-HypD scaffold complex is required for optimal ATPase activity during [NiFe]-hydrogenase maturation in Escherichia coli. Haase A, Sawers RG. FEBS Open Bio 13 341-351 (2023)
  36. Electron inventory of the iron-sulfur scaffold complex HypCD essential in [NiFe]-hydrogenase cofactor assembly. Stripp ST, Oltmanns J, Müller CS, Ehrenberg D, Schlesinger R, Heberle J, Adrian L, Schünemann V, Pierik AJ, Soboh B. Biochem J 478 3281-3295 (2021)
  37. Exchange of a Single Amino Acid Residue in the HybG Chaperone Allows Maturation of All H2-Activating [NiFe]-Hydrogenases in Escherichia coli. Haase A, Sawers RG. Front Microbiol 13 872581 (2022)
  38. Genome Sequence of a Thermoacidophilic Methanotroph Belonging to the Verrucomicrobiota Phylum from Geothermal Hot Springs in Yellowstone National Park: A Metagenomic Assembly and Reconstruction. Kim HW, Kim NK, Phillips APR, Parker DA, Liu P, Whitaker RJ, Rao CV, Mackie RI. Microorganisms 10 142 (2022)
  39. Structural characterization of HypX responsible for CO biosynthesis in the maturation of NiFe-hydrogenase. Muraki N, Ishii K, Uchiyama S, Itoh SG, Okumura H, Aono S. Commun Biol 2 385 (2019)
  40. The iron-sulfur-containing HypC-HypD scaffold complex of the [NiFe]-hydrogenase maturation machinery is an ATPase. Nutschan K, Golbik RP, Sawers RG. FEBS Open Bio 9 2072-2079 (2019)