2ykg Citations

Structural insights into RNA recognition by RIG-I.

Cell 147 409-22 (2011)
Cited: 261 times
EuropePMC logo PMID: 22000018

Abstract

Intracellular RIG-I-like receptors (RLRs, including RIG-I, MDA-5, and LGP2) recognize viral RNAs as pathogen-associated molecular patterns (PAMPs) and initiate an antiviral immune response. To understand the molecular basis of this process, we determined the crystal structure of RIG-I in complex with double-stranded RNA (dsRNA). The dsRNA is sheathed within a network of protein domains that include a conserved "helicase" domain (regions HEL1 and HEL2), a specialized insertion domain (HEL2i), and a C-terminal regulatory domain (CTD). A V-shaped pincer connects HEL2 and the CTD by gripping an α-helical shaft that extends from HEL1. In this way, the pincer coordinates functions of all the domains and couples RNA binding with ATP hydrolysis. RIG-I falls within the Dicer-RIG-I clade of the superfamily 2 helicases, and this structure reveals complex interplay between motor domains, accessory mechanical domains, and RNA that has implications for understanding the nanomechanical function of this protein family and other ATPases more broadly.

Reviews - 2ykg mentioned but not cited (8)

  1. A structure-based model of RIG-I activation. Kolakofsky D, Kowalinski E, Cusack S. RNA 18 2118-2127 (2012)
  2. Duplex RNA activated ATPases (DRAs): platforms for RNA sensing, signaling and processing. Luo D, Kohlway A, Pyle AM. RNA Biol 10 111-120 (2013)
  3. Structural insights into RNA recognition and activation of RIG-I-like receptors. Leung DW, Amarasinghe GK. Curr. Opin. Struct. Biol. 22 297-303 (2012)
  4. Molecular mechanisms of viral inhibitors of RIG-I-like receptors. Leung DW, Basler CF, Amarasinghe GK. Trends Microbiol. 20 139-146 (2012)
  5. When your cap matters: structural insights into self vs non-self recognition of 5' RNA by immunomodulatory host proteins. Leung DW, Amarasinghe GK. Curr. Opin. Struct. Biol. 36 133-141 (2016)
  6. Host DDX Helicases as Possible SARS-CoV-2 Proviral Factors: A Structural Overview of Their Hijacking Through Multiple Viral Proteins. Squeglia F, Romano M, Ruggiero A, Maga G, Berisio R. Front Chem 8 602162 (2020)
  7. Toward a crystal-clear view of the viral RNA sensing and response by RIG-I-like receptors. Luo D. RNA Biol 11 25-32 (2014)
  8. A Glimpse of "Dicer Biology" Through the Structural and Functional Perspective. Paturi S, Deshmukh MV. Front Mol Biosci 8 643657 (2021)

Articles - 2ykg mentioned but not cited (14)

  1. Structural insights into RNA recognition by RIG-I. Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. Cell 147 409-422 (2011)
  2. MDA5 assembles into a polar helical filament on dsRNA. Berke IC, Yu X, Modis Y, Egelman EH. Proc. Natl. Acad. Sci. U.S.A. 109 18437-18441 (2012)
  3. Defining the functional determinants for RNA surveillance by RIG-I. Kohlway A, Luo D, Rawling DC, Ding SC, Pyle AM. EMBO Rep. 14 772-779 (2013)
  4. Substrate-specific structural rearrangements of human Dicer. Taylor DW, Ma E, Shigematsu H, Cianfrocco MA, Noland CL, Nagayama K, Nogales E, Doudna JA, Wang HW. Nat. Struct. Mol. Biol. 20 662-670 (2013)
  5. Visualizing the determinants of viral RNA recognition by innate immune sensor RIG-I. Luo D, Kohlway A, Vela A, Pyle AM. Structure 20 1983-1988 (2012)
  6. Rig-I regulates NF-κB activity through binding to Nf-κb1 3'-UTR mRNA. Zhang HX, Liu ZX, Sun YP, Zhu J, Lu SY, Liu XS, Huang QH, Xie YY, Zhu HB, Dang SY, Chen HF, Zheng GY, Li YX, Kuang Y, Fei J, Chen SJ, Chen Z, Wang ZG. Proc. Natl. Acad. Sci. U.S.A. 110 6459-6464 (2013)
  7. Structure and dynamics of the second CARD of human RIG-I provide mechanistic insights into regulation of RIG-I activation. Ferrage F, Dutta K, Nistal-Villán E, Patel JR, Sánchez-Aparicio MT, De Ioannes P, Buku A, Aseguinolaza GG, García-Sastre A, Aggarwal AK. Structure 20 2048-2061 (2012)
  8. RNA-binding residues prediction using structural features. Ren H, Shen Y. BMC Bioinformatics 16 249 (2015)
  9. DDX58(RIG-I)-related disease is associated with tissue-specific interferon pathway activation. Prasov L, Bohnsack BL, El Husny AS, Tsoi LC, Guan B, Kahlenberg JM, Almeida E, Wang H, Cowen EW, De Jesus AA, Jani P, Billi AC, Moroi SE, Wasikowski R, Almeida I, Almeida LN, Kok F, Garnai SJ, Mian SI, Chen MY, Warner BM, Ferreira CR, Goldbach-Mansky R, Hur S, Brooks BP, Richards JE, Hufnagel RB, Gudjonsson JE. J Med Genet 59 294-304 (2022)
  10. Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding. Fitzgerald ME, Rawling DC, Potapova O, Ren X, Kohlway A, Pyle AM. Nucleic Acids Res. 45 1442-1454 (2017)
  11. 3D Molecular Modelling Study of the H7N9 RNA-Dependent RNA Polymerase as an Emerging Pharmacological Target. Vlachakis D, Karozou A, Kossida S. Influenza Res Treat 2013 645348 (2013)
  12. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  13. A comparative analysis of machine learning classifiers for predicting protein-binding nucleotides in RNA sequences. Agarwal A, Singh K, Kant S, Bahadur RP. Comput Struct Biotechnol J 20 3195-3207 (2022)
  14. Expression, purification, crystallization and preliminary X-ray analysis of full-length human RIG-I. Kwok J, Hui KP, Lescar J, Kotaka M. Acta Crystallogr F Struct Biol Commun 70 248-251 (2014)


Reviews citing this publication (92)

  1. Innate immune sensing and signaling of cytosolic nucleic acids. Wu J, Chen ZJ. Annu. Rev. Immunol. 32 461-488 (2014)
  2. Immune sensing of DNA. Paludan SR, Bowie AG. Immunity 38 870-880 (2013)
  3. Cytosolic sensing of viruses. Goubau D, Deddouche S, Reis e Sousa C. Immunity 38 855-869 (2013)
  4. Innate immunity to influenza virus infection. Iwasaki A, Pillai PS. Nat. Rev. Immunol. 14 315-328 (2014)
  5. Induction and evasion of type I interferon responses by influenza viruses. García-Sastre A. Virus Res. 162 12-18 (2011)
  6. The role of ubiquitylation in immune defence and pathogen evasion. Jiang X, Chen ZJ. Nat. Rev. Immunol. 12 35-48 (2011)
  7. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Reikine S, Nguyen JB, Modis Y. Front Immunol 5 342 (2014)
  8. Innate immune detection of microbial nucleic acids. Gürtler C, Bowie AG. Trends Microbiol. 21 413-420 (2013)
  9. Master sensors of pathogenic RNA - RIG-I like receptors. Schlee M. Immunobiology 218 1322-1335 (2013)
  10. Intracellular pathogen detection by RIG-I-like receptors. Dixit E, Kagan JC. Adv. Immunol. 117 99-125 (2013)
  11. Discriminating self from non-self in nucleic acid sensing. Schlee M, Hartmann G. Nat. Rev. Immunol. 16 566-580 (2016)
  12. RIG-I in RNA virus recognition. Kell AM, Gale M. Virology 479-480 110-121 (2015)
  13. Functions of the influenza A virus NS1 protein in antiviral defense. Krug RM. Curr Opin Virol 12 1-6 (2015)
  14. RNA helicases in infection and disease. Steimer L, Klostermeier D. RNA Biol 9 751-771 (2012)
  15. Defense genes missing from the flight division. Magor KE, Miranzo Navarro D, Barber MR, Petkau K, Fleming-Canepa X, Blyth GA, Blaine AH. Dev. Comp. Immunol. 41 377-388 (2013)
  16. Influenza virus activation of the interferon system. Killip MJ, Fodor E, Randall RE. Virus Res. 209 11-22 (2015)
  17. Activation and evasion of antiviral innate immunity by hepatitis C virus. Horner SM. J. Mol. Biol. 426 1198-1209 (2014)
  18. Regulation of RIG-I-like receptor signaling by host and viral proteins. Chiang JJ, Davis ME, Gack MU. Cytokine Growth Factor Rev. 25 491-505 (2014)
  19. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Zinzula L, Tramontano E. Antiviral Res. 100 615-635 (2013)
  20. Structural biology of innate immunity. Yin Q, Fu TM, Li J, Wu H. Annu. Rev. Immunol. 33 393-416 (2015)
  21. MDA5 and LGP2: accomplices and antagonists of antiviral signal transduction. Rodriguez KR, Bruns AM, Horvath CM. J. Virol. 88 8194-8200 (2014)
  22. PRRs are watching you: Localization of innate sensing and signaling regulators. Chow J, Franz KM, Kagan JC. Virology 479-480 104-109 (2015)
  23. Antiviral RNA recognition and assembly by RLR family innate immune sensors. Bruns AM, Horvath CM. Cytokine Growth Factor Rev. 25 507-512 (2014)
  24. The Cytosolic DNA-Sensing cGAS-STING Pathway in Cancer. Kwon J, Bakhoum SF. Cancer Discov 10 26-39 (2020)
  25. Structural basis of innate immune recognition of viral RNA. Berke IC, Li Y, Modis Y. Cell. Microbiol. 15 386-394 (2013)
  26. Fitting CRISPR-associated Cas3 into the helicase family tree. Jackson RN, Lavin M, Carter J, Wiedenheft B. Curr. Opin. Struct. Biol. 24 106-114 (2014)
  27. Parts, assembly and operation of the RIG-I family of motors. Rawling DC, Pyle AM. Curr. Opin. Struct. Biol. 25 25-33 (2014)
  28. LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Bruns AM, Horvath CM. Cytokine 74 198-206 (2015)
  29. Pattern recognition receptors in health and diseases. Li D, Wu M. Signal Transduct Target Ther 6 291 (2021)
  30. The molecular mechanisms of signaling by cooperative assembly formation in innate immunity pathways. Vajjhala PR, Ve T, Bentham A, Stacey KJ, Kobe B. Mol. Immunol. 86 23-37 (2017)
  31. The Epitranscriptome and Innate Immunity. O'Connell MA, Mannion NM, Keegan LP. PLoS Genet. 11 e1005687 (2015)
  32. The molecular mechanism of RIG-I activation and signaling. Thoresen D, Wang W, Galls D, Guo R, Xu L, Pyle AM. Immunol Rev 304 154-168 (2021)
  33. RIG-I-like receptors: their regulation and roles in RNA sensing. Rehwinkel J, Gack MU. Nat Rev Immunol 20 537-551 (2020)
  34. Activation and regulation of pathogen sensor RIG-I. Patel JR, García-Sastre A. Cytokine Growth Factor Rev. 25 513-523 (2014)
  35. NLR activation takes a direct route. Monie TP. Trends Biochem. Sci. 38 131-139 (2013)
  36. RNA mediated Toll-like receptor stimulation in health and disease. Dalpke A, Helm M. RNA Biol 9 828-842 (2012)
  37. Helicases in Antiviral Immunity: Dual Properties as Sensors and Effectors. Ahmad S, Hur S. Trends Biochem. Sci. 40 576-585 (2015)
  38. MDA5-filament, dynamics and disease. del Toro Duany Y, Wu B, Hur S. Curr Opin Virol 12 20-25 (2015)
  39. Cytosolic nucleic acid sensors and innate immune regulation. Ori D, Murase M, Kawai T. Int. Rev. Immunol. 36 74-88 (2017)
  40. Sensing microbial RNA in the cytosol. Vabret N, Blander JM. Front Immunol 4 468 (2013)
  41. Regulators of innate immunity as novel targets for panviral therapeutics. Es-Saad S, Tremblay N, Baril M, Lamarre D. Curr Opin Virol 2 622-628 (2012)
  42. Dissecting the roles of TRBP and PACT in double-stranded RNA recognition and processing of noncoding RNAs. Heyam A, Lagos D, Plevin M. Wiley Interdiscip Rev RNA 6 271-289 (2015)
  43. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. Pharmacol. Rev. 67 462-504 (2015)
  44. Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses. Hastie KM, Bale S, Kimberlin CR, Saphire EO. Curr Opin Virol 2 151-156 (2012)
  45. Prion-like polymerization as a signaling mechanism. Cai X, Chen ZJ. Trends Immunol. 35 622-630 (2014)
  46. Role of the HIN domain in regulation of innate immune responses. Shaw N, Liu ZJ. Mol. Cell. Biol. 34 2-15 (2014)
  47. An evolving arsenal: viral RNA detection by RIG-I-like receptors. Fitzgerald ME, Rawling DC, Vela A, Pyle AM. Curr. Opin. Microbiol. 20 76-81 (2014)
  48. Host and Viral Modulation of RIG-I-Mediated Antiviral Immunity. Liu Y, Olagnier D, Lin R. Front Immunol 7 662 (2016)
  49. Targeting the viral Achilles' heel: recognition of 5'-triphosphate RNA in innate anti-viral defence. Rehwinkel J, Reis e Sousa C. Curr. Opin. Microbiol. 16 485-492 (2013)
  50. Multi-level regulation of cellular recognition of viral dsRNA. Peisley A, Hur S. Cell. Mol. Life Sci. 70 1949-1963 (2013)
  51. A to I editing in disease is not fake news. Bajad P, Jantsch MF, Keegan L, O'Connell M. RNA Biol 14 1223-1231 (2017)
  52. Regulation of antiviral innate immune signaling by stress-induced RNA granules. Yoneyama M, Jogi M, Onomoto K. J. Biochem. 159 279-286 (2016)
  53. Sensing viral RNAs by Dicer/RIG-I like ATPases across species. Paro S, Imler JL, Meignin C. Curr. Opin. Immunol. 32 106-113 (2015)
  54. Highlights of the advances in basic immunology in 2011. Liu J, Liu S, Cao X. Cell. Mol. Immunol. 9 197-207 (2012)
  55. Sequence-Specific Sensing of Nucleic Acids. Vabret N, Bhardwaj N, Greenbaum BD. Trends Immunol. 38 53-65 (2017)
  56. Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. Lässig C, Hopfner KP. J. Biol. Chem. 292 9000-9009 (2017)
  57. Emerging Roles of Protein Deamidation in Innate Immune Signaling. Zhao J, Li J, Xu S, Feng P. J. Virol. 90 4262-4268 (2016)
  58. Recognition of viruses in the cytoplasm by RLRs and other helicases--how conformational changes, mitochondrial dynamics and ubiquitination control innate immune responses. Ng CS, Kato H, Fujita T. Int. Immunol. 24 739-749 (2012)
  59. Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization. Chuenchor W, Jin T, Ravilious G, Xiao TS. Curr. Opin. Immunol. 26 14-20 (2014)
  60. Unzippers, resolvers and sensors: a structural and functional biochemistry tale of RNA helicases. Leitão AL, Costa MC, Enguita FJ. Int J Mol Sci 16 2269-2293 (2015)
  61. Autoimmunity caused by constitutive activation of cytoplasmic viral RNA sensors. Kato H, Fujita T. Cytokine Growth Factor Rev. 25 739-743 (2014)
  62. Superresolution imaging of viral protein trafficking. Colberg-Poley AM, Patterson GH, Salka K, Bhuvanendran S, Yang D, Jaiswal JK. Med. Microbiol. Immunol. 204 449-460 (2015)
  63. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals. de Faria IJ, Olmo RP, Silva EG, Marques JT. J. Interferon Cytokine Res. 33 239-253 (2013)
  64. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Tan X, Sun L, Chen J, Chen ZJ. Annu. Rev. Microbiol. 72 447-478 (2018)
  65. A molecular arms race between host innate antiviral response and emerging human coronaviruses. Wong LY, Lui PY, Jin DY. Virol Sin 31 12-23 (2016)
  66. Cytoplasmic Mechanisms of Recognition and Defense of Microbial Nucleic Acids. Hu MM, Shu HB. Annu. Rev. Cell Dev. Biol. 34 357-379 (2018)
  67. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Xia S, Chen Z, Shen C, Fu TM. Protein Cell 12 680-694 (2021)
  68. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Latanova A, Starodubova E, Karpov V. Viruses 14 1808 (2022)
  69. Coronaviral Infection and Interferon Response: The Virus-Host Arms Race and COVID-19. Liu Q, Chi S, Dmytruk K, Dmytruk O, Tan S. Viruses 14 1349 (2022)
  70. A Novel Mechanism Underlying the Innate Immune Response Induction upon Viral-Dependent Replication of Host Cell mRNA: A Mistake of +sRNA Viruses' Replicases. Delgui LR, Colombo MI. Front Cell Infect Microbiol 7 5 (2017)
  71. DEAD/H-Box Helicases in Immunity, Inflammation, Cell Differentiation, and Cell Death and Disease. Samir P, Kanneganti TD. Cells 11 1608 (2022)
  72. RIG-I-Like Receptor Signaling in Singleton-Merten Syndrome. Lu C, MacDougall M. Front Genet 8 118 (2017)
  73. RIG-I-Like Receptors as Novel Targets for Pan-Antivirals and Vaccine Adjuvants Against Emerging and Re-Emerging Viral Infections. Yong HY, Luo D. Front Immunol 9 1379 (2018)
  74. Activation and Evasion of RLR Signaling by DNA Virus Infection. Jia J, Fu J, Tang H. Front Microbiol 12 804511 (2021)
  75. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Nat Rev Mol Cell Biol (2023)
  76. Crosstalk between Autophagy and RLR Signaling. Ke PY. Cells 12 956 (2023)
  77. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Nat Rev Mol Cell Biol (2023)
  78. Exploiting RIG-I-like receptor pathway for cancer immunotherapy. Jiang Y, Zhang H, Wang J, Chen J, Guo Z, Liu Y, Hua H. J Hematol Oncol 16 8 (2023)
  79. Filament-like Assemblies of Intracellular Nucleic Acid Sensors: Commonalities and Differences. Cadena C, Hur S. Mol. Cell 76 243-254 (2019)
  80. Induction and Suppression of Innate Antiviral Responses by Hepatitis A Virus. Cao X, Xue YJ, Du JL, Xu Q, Yang XC, Zeng Y, Wang BB, Wang HZ, Liu J, Cai KZ, Ma ZR. Front Microbiol 9 1865 (2018)
  81. Innate Immune Sensing of Influenza A Virus. Malik G, Zhou Y. Viruses 12 (2020)
  82. Intracellular sensing of viral genomes and viral evasion. Lee HC, Chathuranga K, Lee JS. Exp. Mol. Med. 51 1-13 (2019)
  83. Mechanisms of Non-segmented Negative Sense RNA Viral Antagonism of Host RIG-I-Like Receptors. Leung DW. J. Mol. Biol. 431 4281-4289 (2019)
  84. New Techniques to Study Intracellular Receptors in Living Cells: Insights Into RIG-I-Like Receptor Signaling. Corby MJ, Raicu V, Frick DN. Adv Exp Med Biol 1111 219-240 (2019)
  85. Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Li S, Yang J, Zhu Z, Zheng H. Pathogens 9 (2020)
  86. Post-translational Control of Innate Immune Signaling Pathways by Herpesviruses. Carriere J, Rao Y, Liu Q, Lin X, Zhao J, Feng P. Front Microbiol 10 2647 (2019)
  87. Recognition of Arboviruses by the Mosquito Immune System. Prince BC, Walsh E, Torres TZB, Rückert C. Biomolecules 13 1159 (2023)
  88. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Onomoto K, Onoguchi K, Yoneyama M. Cell Mol Immunol (2021)
  89. Structural Variability in the RLR-MAVS Pathway and Sensitive Detection of Viral RNAs. Jiang QX. Med Chem 15 443-458 (2019)
  90. The Emerging Role of RNA Modifications in the Regulation of Antiviral Innate Immunity. Tong J, Zhang W, Chen Y, Yuan Q, Qin NN, Qu G. Front Microbiol 13 845625 (2022)
  91. The Interplay between Human Cytomegalovirus and Pathogen Recognition Receptor Signaling. Marques M, Ferreira AR, Ribeiro D. Viruses 10 (2018)
  92. The influenza virus RNA polymerase as an innate immune agonist and antagonist. Elshina E, Te Velthuis AJW. Cell Mol Life Sci 78 7237-7256 (2021)

Articles citing this publication (147)

  1. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S. Cell 147 423-435 (2011)
  2. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S. Cell 152 276-289 (2013)
  3. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, Jiang Z, Horvath G, Rathinam VA, Johnstone RW, Hornung V, Latz E, Bowie AG, Fitzgerald KA, Xiao TS. Immunity 36 561-571 (2012)
  4. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C. Nature 514 372-375 (2014)
  5. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Mannion NM, Greenwood SM, Young R, Cox S, Brindle J, Read D, Nellåker C, Vesely C, Ponting CP, McLaughlin PJ, Jantsch MF, Dorin J, Adams IR, Scadden AD, Ohman M, Keegan LP, O'Connell MA. Cell Rep 9 1482-1494 (2014)
  6. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW, Gack MU. Immunity 38 437-449 (2013)
  7. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Liu S, Chen J, Cai X, Wu J, Chen X, Wu YT, Sun L, Chen ZJ. Elife 2 e00785 (2013)
  8. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Peisley A, Wu B, Xu H, Chen ZJ, Hur S. Nature 509 110-114 (2014)
  9. Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins. Abbas YM, Pichlmair A, Górna MW, Superti-Furga G, Nagar B. Nature 494 60-64 (2013)
  10. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Wu B, Peisley A, Tetrault D, Li Z, Egelman EH, Magor KE, Walz T, Penczek PA, Hur S. Mol. Cell 55 511-523 (2014)
  11. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. Berke IC, Modis Y. EMBO J. 31 1714-1726 (2012)
  12. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Peisley A, Wu B, Yao H, Walz T, Hur S. Mol. Cell 51 573-583 (2013)
  13. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. Xu H, He X, Zheng H, Huang LJ, Hou F, Yu Z, de la Cruz MJ, Borkowski B, Zhang X, Chen ZJ, Jiang QX. Elife 3 e01489 (2014)
  14. Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. Hou J, Zhou Y, Zheng Y, Fan J, Zhou W, Ng IO, Sun H, Qin L, Qiu S, Lee JM, Lo CM, Man K, Yang Y, Yang Y, Yang Y, Zhang Q, Zhu X, Li N, Wang Z, Ding G, Zhuang SM, Zheng L, Luo X, Xie Y, Liang A, Wang Z, Zhang M, Xia Q, Liang T, Yu Y, Cao X. Cancer Cell 25 49-63 (2014)
  15. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Zhu J, Zhang Y, Ghosh A, Cuevas RA, Forero A, Dhar J, Ibsen MS, Schmid-Burgk JL, Schmidt T, Ganapathiraju MK, Fujita T, Hartmann R, Barik S, Hornung V, Coyne CB, Sarkar SN. Immunity 40 936-948 (2014)
  16. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J. Proc. Natl. Acad. Sci. U.S.A. 113 596-601 (2016)
  17. Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments. Peisley A, Jo MH, Lin C, Wu B, Orme-Johnson M, Walz T, Hohng S, Hur S. Proc. Natl. Acad. Sci. U.S.A. 109 E3340-9 (2012)
  18. Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling. Motz C, Schuhmann KM, Kirchhofer A, Moldt M, Witte G, Conzelmann KK, Hopfner KP. Science 339 690-693 (2013)
  19. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2'O-Methylated Self RNA. Schuberth-Wagner C, Ludwig J, Bruder AK, Herzner AM, Zillinger T, Goldeck M, Schmidt T, Schmid-Burgk JL, Kerber R, Wolter S, Stümpel JP, Roth A, Bartok E, Drosten C, Coch C, Hornung V, Barchet W, Kümmerer BM, Hartmann G, Schlee M. Immunity 43 41-51 (2015)
  20. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Mallam AL, Del Campo M, Gilman B, Sidote DJ, Lambowitz AM. Nature 490 121-125 (2012)
  21. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cui J, Song Y, Li Y, Zhu Q, Tan P, Qin Y, Wang HY, Wang RF. Cell Res. 24 400-416 (2014)
  22. Uridine composition of the poly-U/UC tract of HCV RNA defines non-self recognition by RIG-I. Schnell G, Loo YM, Marcotrigiano J, Gale M. PLoS Pathog. 8 e1002839 (2012)
  23. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. Runge S, Sparrer KM, Lässig C, Hembach K, Baum A, García-Sastre A, Söding J, Conzelmann KK, Hopfner KP. PLoS Pathog. 10 e1004081 (2014)
  24. ATP hydrolysis enhances RNA recognition and antiviral signal transduction by the innate immune sensor, laboratory of genetics and physiology 2 (LGP2). Bruns AM, Pollpeter D, Hadizadeh N, Myong S, Marko JF, Horvath CM. J. Biol. Chem. 288 938-946 (2013)
  25. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism. Bale S, Julien JP, Bornholdt ZA, Kimberlin CR, Halfmann P, Zandonatti MA, Kunert J, Kroon GJ, Kawaoka Y, MacRae IJ, Wilson IA, Saphire EO. PLoS Pathog. 8 e1002916 (2012)
  26. Nucleic Acid Immunity. Hartmann G. Adv Immunol 133 121-169 (2017)
  27. ATP-independent diffusion of double-stranded RNA binding proteins. Koh HR, Kidwell MA, Ragunathan K, Doudna JA, Myong S. Proc. Natl. Acad. Sci. U.S.A. 110 151-156 (2013)
  28. The thermodynamic basis for viral RNA detection by the RIG-I innate immune sensor. Vela A, Fedorova O, Ding SC, Pyle AM. J. Biol. Chem. 287 42564-42573 (2012)
  29. Structural Analysis of dsRNA Binding to Anti-viral Pattern Recognition Receptors LGP2 and MDA5. Uchikawa E, Lethier M, Malet H, Brunel J, Gerlier D, Cusack S. Mol. Cell 62 586-602 (2016)
  30. Mechanism of TRIM25 Catalytic Activation in the Antiviral RIG-I Pathway. Sanchez JG, Chiang JJ, Sparrer KMJ, Alam SL, Chi M, Roganowicz MD, Sankaran B, Gack MU, Pornillos O. Cell Rep 16 1315-1325 (2016)
  31. Type I interferons: diversity of sources, production pathways and effects on immune responses. Swiecki M, Colonna M. Curr Opin Virol 1 463-475 (2011)
  32. ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. Lässig C, Matheisl S, Sparrer KM, de Oliveira Mann CC, Moldt M, Patel JR, Goldeck M, Hartmann G, García-Sastre A, Hornung V, Conzelmann KK, Beckmann R, Hopfner KP. Elife 4 (2015)
  33. HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I. Choi SJ, Lee HC, Kim JH, Park SY, Kim TH, Lee WK, Jang DJ, Yoon JE, Choi YI, Kim S, Ma J, Kim CJ, Yao TP, Jung JU, Lee JY, Lee JS. EMBO J. 35 429-442 (2016)
  34. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production. He S, Zhao J, Song S, He X, Minassian A, Zhou Y, Zhang J, Brulois K, Wang Y, Cabo J, Zandi E, Liang C, Jung JU, Zhang X, Feng P. Mol. Cell 58 134-146 (2015)
  35. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Zheng J, Yong HY, Panutdaporn N, Liu C, Tang K, Luo D. Nucleic Acids Res. 43 1216-1230 (2015)
  36. Homologous RIG-I-like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms. Guo X, Zhang R, Wang J, Ding SW, Lu R. Proc. Natl. Acad. Sci. U.S.A. 110 16085-16090 (2013)
  37. A Viral Deamidase Targets the Helicase Domain of RIG-I to Block RNA-Induced Activation. Zhao J, Zeng Y, Xu S, Chen J, Shen G, Yu C, Knipe D, Yuan W, Peng J, Xu W, Zhang C, Xia Z, Feng P. Cell Host Microbe 20 770-784 (2016)
  38. Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists. Chiang C, Beljanski V, Yin K, Olagnier D, Ben Yebdri F, Steel C, Goulet ML, DeFilippis VR, Streblow DN, Haddad EK, Trautmann L, Ross T, Lin R, Hiscott J. J. Virol. 89 8011-8025 (2015)
  39. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. Anchisi S, Guerra J, Garcin D. MBio 6 e02349 (2015)
  40. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. Louber J, Brunel J, Uchikawa E, Cusack S, Gerlier D. BMC Biol. 13 54 (2015)
  41. Drosophila dicer-2 cleavage is mediated by helicase- and dsRNA termini-dependent states that are modulated by Loquacious-PD. Sinha NK, Trettin KD, Aruscavage PJ, Bass BL. Mol. Cell 58 406-417 (2015)
  42. Establishing the role of ATP for the function of the RIG-I innate immune sensor. Rawling DC, Fitzgerald ME, Pyle AM. Elife 4 (2015)
  43. Polymorphisms in melanoma differentiation-associated gene 5 link protein function to clearance of hepatitis C virus. Hoffmann FS, Schmidt A, Dittmann Chevillotte M, Wisskirchen C, Hellmuth J, Willms S, Gilmore RH, Glas J, Folwaczny M, Müller T, Berg T, Spengler U, Fitzmaurice K, Kelleher D, Reisch N, Rice CM, Endres S, Rothenfusser S. Hepatology 61 460-470 (2015)
  44. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y, Zhang L, Zhang J, Cao X. Proc. Natl. Acad. Sci. U.S.A. 113 9581-9586 (2016)
  45. The influence of viral RNA secondary structure on interactions with innate host cell defences. Witteveldt J, Blundell R, Maarleveld JJ, McFadden N, Evans DJ, Simmonds P. Nucleic Acids Res. 42 3314-3329 (2014)
  46. miR-545 inhibited pancreatic ductal adenocarcinoma growth by targeting RIG-I. Song B, Ji W, Guo S, Liu A, Jing W, Shao C, Li G, Jin G. FEBS Lett. 588 4375-4381 (2014)
  47. Ancient origins of vertebrate-specific innate antiviral immunity. Mukherjee K, Korithoski B, Kolaczkowski B. Mol. Biol. Evol. 31 140-153 (2014)
  48. Structural insights into the activation of RIG-I, a nanosensor for viral RNAs. Jiang QX, Chen ZJ. EMBO Rep. 13 7-8 (2011)
  49. The powerstroke and camshaft of the RIG-I antiviral RNA detection machine. O'Neill LA, Bowie AG. Cell 147 259-261 (2011)
  50. Cancer-associated mutants of RNA helicase DDX3X are defective in RNA-stimulated ATP hydrolysis. Epling LB, Grace CR, Lowe BR, Partridge JF, Enemark EJ. J. Mol. Biol. 427 1779-1796 (2015)
  51. RIG-I-like receptors evolved adaptively in mammals, with parallel evolution at LGP2 and RIG-I. Cagliani R, Forni D, Tresoldi C, Pozzoli U, Filippi G, Rainone V, De Gioia L, Clerici M, Sironi M. J. Mol. Biol. 426 1351-1365 (2014)
  52. Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly. Beckham SA, Brouwer J, Roth A, Wang D, Sadler AJ, John M, Jahn-Hofmann K, Williams BR, Wilce JA, Wilce MC. Nucleic Acids Res. 41 3436-3445 (2013)
  53. A structural perspective of the MAVS-regulatory mechanism on the mitochondrial outer membrane using bioluminescence resonance energy transfer. Sasaki O, Yoshizumi T, Kuboyama M, Ishihara T, Suzuki E, Kawabata S, Koshiba T. Biochim. Biophys. Acta 1833 1017-1027 (2013)
  54. An autoinhibitory mechanism modulates MAVS activity in antiviral innate immune response. Shi Y, Yuan B, Qi N, Zhu W, Su J, Li X, Qi P, Zhang D, Hou F. Nat Commun 6 7811 (2015)
  55. Higher antiviral response of RIG-I through enhancing RIG-I/MAVS-mediated signaling by its long insertion variant in zebrafish. Zou PF, Chang MX, Li Y, Huan Zhang S, Fu JP, Chen SN, Nie P. Fish Shellfish Immunol. 43 13-24 (2015)
  56. DAMP-driven metabolic adaptation. Minton K. Nat Rev Immunol 20 1 (2020)
  57. Efficient solid-phase synthesis of pppRNA by using product-specific labeling. Goldeck M, Tuschl T, Hartmann G, Ludwig J. Angew. Chem. Int. Ed. Engl. 53 4694-4698 (2014)
  58. Helicase proteins DHX29 and RIG-I cosense cytosolic nucleic acids in the human airway system. Sugimoto N, Mitoma H, Kim T, Hanabuchi S, Liu YJ. Proc. Natl. Acad. Sci. U.S.A. 111 7747-7752 (2014)
  59. Intrinsic disorder in proteins involved in the innate antiviral immunity: another flexible side of a molecular arms race. Xue B, Uversky VN. J. Mol. Biol. 426 1322-1350 (2014)
  60. Structural analysis of RIG-I-like receptors reveals ancient rules of engagement between diverse RNA helicases and TRIM ubiquitin ligases. Kato K, Ahmad S, Zhu Z, Young JM, Mu X, Park S, Malik HS, Hur S. Mol Cell 81 599-613.e8 (2021)
  61. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Ibsen MS, Gad HH, Andersen LL, Hornung V, Julkunen I, Sarkar SN, Hartmann R. Nucleic Acids Res. 43 5236-5248 (2015)
  62. Structure of chromatin remodeler Swi2/Snf2 in the resting state. Xia X, Liu X, Li T, Fang X, Chen Z. Nat. Struct. Mol. Biol. 23 722-729 (2016)
  63. A non-canonical role of the p97 complex in RIG-I antiviral signaling. Hao Q, Jiao S, Shi Z, Li C, Meng X, Zhang Z, Wang Y, Song X, Wang W, Zhang R, Zhao Y, Wong CC, Zhou Z. EMBO J. 34 2903-2920 (2015)
  64. Activation of duck RIG-I by TRIM25 is independent of anchored ubiquitin. Miranzo-Navarro D, Magor KE. PLoS ONE 9 e86968 (2014)
  65. Hepatitis C Virus. Strategies to Evade Antiviral Responses. Gokhale NS, Vazquez C, Horner SM. Future Virol 9 1061-1075 (2014)
  66. Pathogen-Associated Molecular Pattern Recognition of Hepatitis C Virus Transmitted/Founder Variants by RIG-I Is Dependent on U-Core Length. Kell A, Stoddard M, Li H, Marcotrigiano J, Shaw GM, Gale M. J. Virol. 89 11056-11068 (2015)
  67. Stabilization of human interferon-α1 mRNA by its antisense RNA. Kimura T, Jiang S, Nishizawa M, Yoshigai E, Hashimoto I, Nishikawa M, Okumura T, Yamada H. Cell. Mol. Life Sci. 70 1451-1467 (2013)
  68. Dicer-2-Dependent Generation of Viral DNA from Defective Genomes of RNA Viruses Modulates Antiviral Immunity in Insects. Poirier EZ, Goic B, Tomé-Poderti L, Frangeul L, Boussier J, Gausson V, Blanc H, Vallet T, Loyd H, Levi LI, Lanciano S, Baron C, Merkling SH, Lambrechts L, Mirouze M, Carpenter S, Vignuzzi M, Saleh MC. Cell Host Microbe 23 353-365.e8 (2018)
  69. The first invertebrate RIG-I-like receptor (RLR) homolog gene in the pacific oyster Crassostrea gigas. Zhang Y, Yu F, Li J, Tong Y, Zhang Y, Yu Z. Fish Shellfish Immunol. 40 466-471 (2014)
  70. A minimal RNA ligand for potent RIG-I activation in living mice. Linehan MM, Dickey TH, Molinari ES, Fitzgerald ME, Potapova O, Iwasaki A, Pyle AM. Sci Adv 4 e1701854 (2018)
  71. Porcine deltacoronavirus nucleocapsid protein antagonizes IFN-β production by impairing dsRNA and PACT binding to RIG-I. Chen J, Fang P, Wang M, Peng Q, Ren J, Wang D, Peng G, Fang L, Xiao S, Ding Z. Virus Genes 55 520-531 (2019)
  72. The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain. Rawling DC, Kohlway AS, Luo D, Ding SC, Pyle AM. Nucleic Acids Res. 42 11601-11611 (2014)
  73. The autoinhibitory CARD2-Hel2i Interface of RIG-I governs RNA selection. Ramanathan A, Devarkar SC, Jiang F, Miller MT, Khan AG, Marcotrigiano J, Patel SS. Nucleic Acids Res. 44 896-909 (2016)
  74. Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity. Shi Y, Yuan B, Zhu W, Zhang R, Li L, Hao X, Chen S, Hou F. Nat Commun 8 15138 (2017)
  75. Large-scale nucleotide optimization of simian immunodeficiency virus reduces its capacity to stimulate type I interferon in vitro. Vabret N, Bailly-Bechet M, Lepelley A, Najburg V, Schwartz O, Verrier B, Tangy F. J. Virol. 88 4161-4172 (2014)
  76. Structural Insights into mitochondrial antiviral signaling protein (MAVS)-tumor necrosis factor receptor-associated factor 6 (TRAF6) signaling. Shi Z, Zhang Z, Zhang Z, Wang Y, Li C, Wang X, He F, Sun L, Jiao S, Shi W, Zhou Z. J. Biol. Chem. 290 26811-26820 (2015)
  77. Structure of the C-terminal half of human XPB helicase and the impact of the disease-causing mutation XP11BE. Hilario E, Li Y, Nobumori Y, Liu X, Fan L. Acta Crystallogr. D Biol. Crystallogr. 69 237-246 (2013)
  78. A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice. Mao T, Israelow B, Lucas C, Vogels CBF, Gomez-Calvo ML, Fedorova O, Breban MI, Menasche BL, Dong H, Linehan M, Yale SARS-CoV-2 Genome Surveillance Initiative, Wilen CB, Landry ML, Grubaugh ND, Pyle AM, Iwasaki A. J Exp Med 219 e20211818 (2022)
  79. MAVS activates TBK1 and IKKε through TRAFs in NEMO dependent and independent manner. Fang R, Jiang Q, Zhou X, Wang C, Guan Y, Tao J, Xi J, Feng JM, Jiang Z. PLoS Pathog. 13 e1006720 (2017)
  80. Structural features of influenza A virus panhandle RNA enabling the activation of RIG-I independently of 5'-triphosphate. Lee MK, Kim HE, Park EB, Lee J, Kim KH, Lim K, Yum S, Lee YH, Kang SJ, Lee JH, Choi BS. Nucleic Acids Res. 44 8407-8416 (2016)
  81. Dicer-related helicase 3 forms an obligate dimer for recognizing 22G-RNA. Fitzgerald ME, Vela A, Pyle AM. Nucleic Acids Res. 42 3919-3930 (2014)
  82. Evolutionarily conserved roles of the dicer helicase domain in regulating RNA interference processing. Kidwell MA, Chan JM, Doudna JA. J. Biol. Chem. 289 28352-28362 (2014)
  83. Hepatitis C virus replicative double-stranded RNA is a potent interferon inducer that triggers interferon production through MDA5. Du X, Pan T, Xu J, Zhang Y, Song W, Yi Z, Yuan Z. J. Gen. Virol. 97 2868-2882 (2016)
  84. RIG-I self-oligomerization is either dispensable or very transient for signal transduction. Louber J, Kowalinski E, Bloyet LM, Brunel J, Cusack S, Gerlier D. PLoS ONE 9 e108770 (2014)
  85. Structural basis for IFN antagonism by human respiratory syncytial virus nonstructural protein 2. Pei J, Wagner ND, Zou AJ, Chatterjee S, Borek D, Cole AR, Kim PJ, Basler CF, Otwinowski Z, Gross ML, Amarasinghe GK, Leung DW. Proc Natl Acad Sci U S A 118 e2020587118 (2021)
  86. Dicer uses distinct modules for recognizing dsRNA termini. Sinha NK, Iwasa J, Shen PS, Bass BL. Science 359 329-334 (2018)
  87. TRAF3IP3 mediates the recruitment of TRAF3 to MAVS for antiviral innate immunity. Zhu W, Li J, Zhang R, Cai Y, Wang C, Qi S, Chen S, Liang X, Qi N, Hou F. EMBO J 38 e102075 (2019)
  88. An RNA Molecule Derived From Sendai Virus DI Particles Induces Antitumor Immunity and Cancer Cell-selective Apoptosis. Liu LW, Nishikawa T, Kaneda Y. Mol. Ther. 24 135-145 (2016)
  89. Monitoring activation of the antiviral pattern recognition receptors RIG-I and PKR by limited protease digestion and native PAGE. Weber M, Weber F. J Vis Exp e51415 (2014)
  90. Phosphorylation-Dependent Feedback Inhibition of RIG-I by DAPK1 Identified by Kinome-wide siRNA Screening. Willemsen J, Wicht O, Wolanski JC, Baur N, Bastian S, Haas DA, Matula P, Knapp B, Meyniel-Schicklin L, Wang C, Bartenschlager R, Lohmann V, Rohr K, Erfle H, Kaderali L, Marcotrigiano J, Pichlmair A, Binder M. Mol. Cell 65 403-415.e8 (2017)
  91. Species-Specific Deamidation of RIG-I Reveals Collaborative Action between Viral and Cellular Deamidases in HSV-1 Lytic Replication. Huang H, Zhao J, Wang TY, Zhang S, Zhou Y, Rao Y, Qin C, Liu Y, Chen Y, Xia Z, Feng P. mBio 12 e00115-21 (2021)
  92. Structural basis of microRNA processing by Dicer-like 1. Wei X, Ke H, Wen A, Gao B, Shi J, Feng Y. Nat Plants 7 1389-1396 (2021)
  93. Therapeutic advances in the management of chronic hepatitis B infection. Brooks J, Gelson W, Rushbrook SM. Ther Adv Chronic Dis 4 157-166 (2013)
  94. A DN-mda5 transgenic zebrafish model demonstrates that Mda5 plays an important role in snakehead rhabdovirus resistance. Gabor KA, Charette JR, Pietraszewski MJ, Wingfield DJ, Shim JS, Millard PJ, Kim CH. Dev. Comp. Immunol. 51 298-304 (2015)
  95. Arenaviral Nucleoproteins Suppress PACT-Induced Augmentation of RIG-I Function To Inhibit Type I Interferon Production. Shao J, Huang Q, Liu X, Di D, Liang Y, Ly H. J. Virol. 92 (2018)
  96. Bcl6 Sets a Threshold for Antiviral Signaling by Restraining IRF7 Transcriptional Program. Xu F, Kang Y, Zhuang N, Lu Z, Zhang H, Xu D, Ding Y, Yin H, Shi L. Sci Rep 6 18778 (2016)
  97. Duck RIG-I CARD Domain Induces the Chicken IFN-β by Activating NF-κB. Chen Y, Huang Z, Wang B, Yu Q, Liu R, Xu Q, Chang G, Ding J, Chen G. Biomed Res Int 2015 348792 (2015)
  98. Insight into buffalo (Bubalus bubalis) RIG1 and MDA5 receptors: a comparative study on dsRNA recognition and in-vitro antiviral response. Singh M, Brahma B, Maharana J, Patra MC, Kumar S, Mishra P, Saini M, De BC, Mahanty S, Datta TK, De S. PLoS ONE 9 e89788 (2014)
  99. Molecular mechanics of RNA translocases. Ding SC, Pyle AM. Meth. Enzymol. 511 131-147 (2012)
  100. Nature Biotechnology's academic spinouts of 2015. Bouchie A, DeFrancesco L. Nat. Biotechnol. 34 484-492 (2016)
  101. The intrinsically disordered CARDs-Helicase linker in RIG-I is a molecular gate for RNA proofreading. Schweibenz BD, Devarkar SC, Solotchi M, Craig C, Zheng J, Pascal BD, Gokhale S, Xie P, Griffin PR, Patel SS. EMBO J 41 e109782 (2022)
  102. Vibrio vulnificus quorum-sensing molecule cyclo(Phe-Pro) inhibits RIG-I-mediated antiviral innate immunity. Lee W, Lee SH, Kim M, Moon JS, Kim GW, Jung HG, Kim IH, Oh JE, Jung HE, Lee HK, Ku KB, Ahn DG, Kim SJ, Kim KS, Oh JW. Nat Commun 9 1606 (2018)
  103. News [RIG-I: a viral RNA detector molecular switch]. Kowalinski E, Louber J, Gerlier D, Cusack S. Med Sci (Paris) 28 136-138 (2012)
  104. DHX29 functions as an RNA co-sensor for MDA5-mediated EMCV-specific antiviral immunity. Zhu Q, Tan P, Li Y, Lin M, Li C, Mao J, Cui J, Zhao W, Wang HY, Wang RF. PLoS Pathog. 14 e1006886 (2018)
  105. Loquacious-PD facilitates Drosophila Dicer-2 cleavage through interactions with the helicase domain and dsRNA. Trettin KD, Sinha NK, Eckert DM, Apple SE, Bass BL. Proc. Natl. Acad. Sci. U.S.A. 114 E7939-E7948 (2017)
  106. Porcine Deltacoronavirus Accessory Protein NS6 Antagonizes Interferon Beta Production by Interfering with the Binding of RIG-I/MDA5 to Double-Stranded RNA. Fang P, Fang L, Ren J, Hong Y, Liu X, Zhao Y, Wang D, Peng G, Xiao S. J. Virol. 92 (2018)
  107. RIG-I Detects Kaposi's Sarcoma-Associated Herpesvirus Transcripts in a RNA Polymerase III-Independent Manner. Zhang Y, Dittmer DP, Mieczkowski PA, Host KM, Fusco WG, Duncan JA, Damania B. MBio 9 (2018)
  108. Transgene-Assisted Genetic Screen Identifies rsd-6 and Novel Genes as Key Components of Antiviral RNA Interference in Caenorhabditis elegans. Long T, Meng F, Lu R. J. Virol. 92 (2018)
  109. USP19 suppresses cellular type I interferon signaling by targeting TRAF3 for deubiquitination. Gu Z, Shi W, Zhang L, Hu Z, Xu C. Future Microbiol 12 767-779 (2017)
  110. Combined roles of ATP and small hairpin RNA in the activation of RIG-I revealed by solution-based analysis. Shah N, Beckham SA, Wilce JA, Wilce MCJ. Nucleic Acids Res. 46 3169-3186 (2018)
  111. Cryo-EM Structures of MDA5-dsRNA Filaments at Different Stages of ATP Hydrolysis. Yu Q, Qu K, Modis Y. Mol. Cell 72 999-1012.e6 (2018)
  112. Duck LGP2 Downregulates RIG-I Signaling Pathway-Mediated Innate Immunity Against Tembusu Virus. Li T, Ren Y, Zhang T, Zhai X, Wang X, Wang J, Xing B, Miao R, Li N, Wei L. Front Immunol 13 916350 (2022)
  113. Duck Tembusu Virus Infection Promotes the Expression of Duck Interferon-Induced Protein 35 to Counteract RIG-I Antiviral Signaling in Duck Embryo Fibroblasts. Zhou P, Ma L, Rao Z, Li Y, Zheng H, He Q, Luo R. Front Immunol 12 711517 (2021)
  114. Energetics of Preferential Binding of Retinoic Acid-Inducible Gene-I to Double-Stranded Viral RNAs with 5' Tri-/Diphosphate over 5' Monophosphate. Kumar A, Satpati P. ACS Omega 3 3786-3795 (2018)
  115. HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Zheng J, Wang C, Chang MR, Devarkar SC, Schweibenz B, Crynen GC, Garcia-Ordonez RD, Pascal BD, Novick SJ, Patel SS, Marcotrigiano J, Griffin PR. Nat Commun 9 5366 (2018)
  116. Measuring Monomer-to-Filament Transition of MAVS as an In Vitro Activity Assay for RIG-I-Like Receptors. Wu B, Huoh YS, Hur S. Methods Mol. Biol. 1390 131-142 (2016)
  117. RIG-I Activation by a Designer Short RNA Ligand Protects Human Immune Cells against Dengue Virus Infection without Causing Cytotoxicity. Ho V, Yong HY, Chevrier M, Narang V, Lum J, Toh YX, Lee B, Chen J, Tan EY, Luo D, Fink K. J. Virol. 93 (2019)
  118. RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization. Devarkar SC, Schweibenz B, Wang C, Marcotrigiano J, Patel SS. Mol. Cell 72 355-368.e4 (2018)
  119. Systematic editing of synthetic RIG-I ligands to produce effective antiviral and anti-tumor RNA immunotherapies. Lee J, Park EB, Min J, Sung SE, Jang Y, Shin JS, Chun D, Kim KH, Hwang J, Lee MK, Go YY, Kwon D, Kim M, Kang SJ, Choi BS. Nucleic Acids Res. 46 1635-1647 (2018)
  120. The antiviral action of the RIG-I induced pathway of apoptosis (RIPA) is enhanced by its ability to degrade Otulin, which deubiquitinates IRF3. Raja R, Sen GC. Cell Death Differ 29 504-513 (2022)
  121. The middle half genome of interferon-inducing porcine reproductive and respiratory syndrome virus strain A2MC2 is essential for interferon induction. Ma Z, Yu Y, Xiao Y, Opriessnig T, Wang R, Yang L, Nan Y, Samal SK, Halbur PG, Zhang YJ. J. Gen. Virol. 98 1720-1729 (2017)
  122. γHV68 vGAT: a viral pseudoenzyme pimping for PAMPs. Kolakofsky D, Garcin D. Mol. Cell 58 3-4 (2015)
  123. A loosened gating mechanism of RIG-I leads to autoimmune disorders. Lei Y, Fei P, Song B, Shi W, Luo C, Luo D, Li D, Chen W, Zheng J. Nucleic Acids Res 50 5850-5863 (2022)
  124. A rapid RIG-I signaling relay mediates efficient antiviral response. Thoresen DT, Galls D, Götte B, Wang W, Pyle AM. Mol Cell 83 90-104.e4 (2023)
  125. Ancestral protein reconstruction reveals evolutionary events governing variation in Dicer helicase function. Aderounmu AM, Aruscavage PJ, Kolaczkowski B, Bass BL. Elife 12 e85120 (2023)
  126. CD97 negatively regulates the innate immune response against RNA viruses by promoting RNF125-mediated RIG-I degradation. Chang H, Hou P, Wang X, Xiang A, Wu H, Qi W, Yang R, Wang X, Li X, He W, Zhao G, Sun W, Wang T, He DC, Wang H, Gao Y, He H. Cell Mol Immunol 20 1457-1471 (2023)
  127. Cooperative DNA binding mediated by KicGAS/ORF52 oligomerization allows inhibition of DNA-induced phase separation and activation of cGAS. Bhowmik D, Du M, Tian Y, Ma S, Wu J, Chen Z, Yin Q, Zhu F. Nucleic Acids Res 49 9389-9403 (2021)
  128. DDX58 and Classic Singleton-Merten Syndrome. Ferreira CR, Crow YJ, Gahl WA, Gardner PJ, Goldbach-Mansky R, Hur S, de Jesús AA, Nehrebecky M, Park JW, Briggs TA. J. Clin. Immunol. 39 75-80 (2019)
  129. DEAD-box RNA helicase 21 negatively regulates cytosolic RNA-mediated innate immune signaling. Li J, Fang P, Zhou Y, Wang D, Fang L, Xiao S. Front Immunol 13 956794 (2022)
  130. Defining the Functional Interactome of Spliceosome-Associated G-Patch Protein Gpl1 in the Fission Yeast Schizosaccharomyces pombe. Selicky T, Jurcik M, Mikolaskova B, Pitelova A, Mayerova N, Kretova M, Osadska M, Jurcik J, Holic R, Kohutova L, Bellova J, Benko Z, Gregan J, Bagelova Polakova S, Barath P, Cipak L, Cipakova I. Int J Mol Sci 23 12800 (2022)
  131. FIP200 restricts RNA virus infection by facilitating RIG-I activation. Wang L, Song K, Hao W, Wu Y, Patil G, Hua F, Sun Y, Huang C, Ritchey J, Jones C, Liu L, Guan JL, Li S. Commun Biol 4 921 (2021)
  132. Functional comparisons of the virus sensor RIG-I from humans, the microbat Myotis daubentonii, and the megabat Rousettus aegyptiacus, and their response to SARS-CoV-2 infection. Schoen A, Hölzer M, Müller MA, Wallerang KB, Drosten C, Marz M, Lamp B, Weber F. J Virol 97 e0020523 (2023)
  133. Insights into the structure and RNA-binding specificity of Caenorhabditis elegans Dicer-related helicase 3 (DRH-3). Li K, Zheng J, Wirawan M, Trinh NM, Fedorova O, Griffin PR, Pyle AM, Luo D. Nucleic Acids Res 49 9978-9991 (2021)
  134. MAVS deSUMOylation by SENP1 inhibits its aggregation and antagonizes IRF3 activation. Dai T, Zhang L, Ran Y, Zhang M, Yang B, Lu H, Lin S, Zhang L, Zhou F. Nat Struct Mol Biol 30 785-799 (2023)
  135. MAVS-loaded unanchored Lys63-linked polyubiquitin chains activate the RIG-I-MAVS signaling cascade. Liu F, Zhuang W, Song B, Yang Y, Liu J, Zheng Y, Liu B, Zheng J, Zhao W, Gao C. Cell Mol Immunol 20 1186-1202 (2023)
  136. MDA5 disease variant M854K prevents ATP-dependent structural discrimination of viral and cellular RNA. Yu Q, Herrero Del Valle A, Singh R, Modis Y. Nat Commun 12 6668 (2021)
  137. Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling. Qi N, Shi Y, Zhang R, Zhu W, Yuan B, Li X, Wang C, Zhang X, Hou F. Nat Commun 8 15676 (2017)
  138. RIG-I acts as a tumor suppressor in melanoma via regulating the activation of the MKK/p38MAPK signaling pathway. Guo R, Lu SY, Ma JX, Wang QL, Zhang L, Tang LY, Shen Y, Shen CL, Wang JJ, Lu LM, Wang ZG, Zhang HX. Hum Cell 35 1071-1083 (2022)
  139. RNA binding activates RIG-I by releasing an autorepressed signaling domain. Dickey TH, Song B, Pyle AM. Sci Adv 5 eaax3641 (2019)
  140. Structural and biophysical properties of RIG-I bound to dsRNA with G-U wobble base pairs. Kim KH, Hwang J, Kim JH, Son KP, Jang Y, Kim M, Kang SJ, Lee JO, Kang JY, Choi BS. RNA Biol 17 325-334 (2020)
  141. Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase. Law YS, Utt A, Tan YB, Zheng J, Wang S, Chen MW, Griffin PR, Merits A, Luo D. Proc. Natl. Acad. Sci. U.S.A. 116 9558-9567 (2019)
  142. TIAMMAt: Leveraging Biodiversity to Revise Protein Domain Models, Evidence from Innate Immunity. Tassia MG, David KT, Townsend JP, Halanych KM. Mol Biol Evol 38 5806-5818 (2021)
  143. The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands. Wang W, Pyle AM. Mol Cell 82 4131-4144.e6 (2022)
  144. Unified mechanisms for self-RNA recognition by RIG-I Singleton-Merten syndrome variants. Lässig C, Lammens K, Gorenflos López JL, Michalski S, Fettscher O, Hopfner KP. Elife 7 (2018)
  145. Unraveling blunt-end RNA binding and ATPase-driven translocation activities of the RIG-I family helicase LGP2. Lee KY, Craig C, Patel SS. Nucleic Acids Res 52 355-369 (2024)
  146. WDR77 inhibits prion-like aggregation of MAVS to limit antiviral innate immune response. Li J, Zhang R, Wang C, Zhu J, Ren M, Jiang Y, Hou X, Du Y, Wu Q, Qi S, Li L, Chen S, Yang H, Hou F. Nat Commun 14 4824 (2023)
  147. mRNA produced by VSW-3 RNAP has high-level translation efficiency with low inflammatory stimulation. Wang G, Cheng R, Chen Q, Xu Y, Yu B, Zhu B, Yin H, Xia H. Cell Insight 1 100056 (2022)