2yjd Citations

Design and structure of stapled peptides binding to estrogen receptors.

J Am Chem Soc 133 9696-9 (2011)
Related entries: 2lda, 2ldc, 2ldd, 2yja

Cited: 113 times
EuropePMC logo PMID: 21612236

Abstract

Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.

Reviews - 2yjd mentioned but not cited (2)

  1. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Chem Sci 12 5977-5993 (2021)
  2. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery. Ali AM, Atmaj J, Van Oosterwijk N, Groves MR, Dömling A. Comput Struct Biotechnol J 17 263-281 (2019)

Articles - 2yjd mentioned but not cited (1)

  1. In Silico and In Vitro Anticancer Activity of Isolated Novel Marker Compound from Chemically Modified Bioactive Fraction from Curcuma longa (NCCL). Naqvi A, Malasoni R, Gupta S, Srivastava A, Pandey RR, Dwivedi AK. Pharmacogn Mag 13 S640-S644 (2017)


Reviews citing this publication (27)

  1. Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Azzarito V, Long K, Murphy NS, Wilson AJ. Nat Chem 5 161-173 (2013)
  2. Structure-Based Design of Inhibitors of Protein-Protein Interactions: Mimicking Peptide Binding Epitopes. Pelay-Gimeno M, Glas A, Koch O, Grossmann TN. Angew. Chem. Int. Ed. Engl. 54 8896-8927 (2015)
  3. Getting in shape: controlling peptide bioactivity and bioavailability using conformational constraints. Bock JE, Gavenonis J, Kritzer JA. ACS Chem. Biol. 8 488-499 (2013)
  4. Constraining cyclic peptides to mimic protein structure motifs. Hill TA, Shepherd NE, Diness F, Fairlie DP. Angew. Chem. Int. Ed. Engl. 53 13020-13041 (2014)
  5. Protein-protein interactions as druggable targets: recent technological advances. Higueruelo AP, Jubb H, Blundell TL. Curr Opin Pharmacol 13 791-796 (2013)
  6. Druggable protein-protein interactions--from hot spots to hot segments. London N, Raveh B, Schueler-Furman O. Curr Opin Chem Biol 17 952-959 (2013)
  7. Beyond the ligand-binding pocket: targeting alternate sites in nuclear receptors. Caboni L, Lloyd DG. Med Res Rev 33 1081-1118 (2013)
  8. Peptide-based inhibitors of protein-protein interactions. Wójcik P, Berlicki Ł. Bioorg. Med. Chem. Lett. 26 707-713 (2016)
  9. Targeting recognition surfaces on natural proteins with peptidic foldamers. Checco JW, Gellman SH. Curr. Opin. Struct. Biol. 39 96-105 (2016)
  10. New Modalities for Challenging Targets in Drug Discovery. Valeur E, Guéret SM, Adihou H, Gopalakrishnan R, Lemurell M, Waldmann H, Grossmann TN, Plowright AT. Angew. Chem. Int. Ed. Engl. 56 10294-10323 (2017)
  11. Versatility or promiscuity: the estrogen receptors, control of ligand selectivity and an update on subtype selective ligands. Ng HW, Perkins R, Tong W, Hong H. Int J Environ Res Public Health 11 8709-8742 (2014)
  12. Stapled peptide design: principles and roles of computation. Tan YS, Lane DP, Verma CS. Drug Discov. Today 21 1642-1653 (2016)
  13. Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications. Zhang J, Liu K, Müllen K, Yin M. Chem. Commun. (Camb.) 51 11541-11555 (2015)
  14. Discovery and optimization of peptide macrocycles. White AM, Craik DJ. Expert Opin Drug Discov 11 1151-1163 (2016)
  15. An enhanced functional interrogation/manipulation of intracellular signaling pathways with the peptide 'stapling' technology. He Y, Chen D, Zheng W. Oncogene 34 5685-5698 (2015)
  16. Pharmaceutical implications of helix length control in helix-mediated protein-protein interactions. Milroy LG, Brunsveld L. Future Med Chem 5 2175-2183 (2013)
  17. Steroid receptor/coactivator binding inhibitors: An update. Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, Lian A, Siddiqui Z, Speltz TE, Moore TW. Mol Cell Endocrinol 493 110471 (2019)
  18. Human Coronaviruses: Counteracting the Damage by Storm. Schoeman D, Fielding BC. Viruses 13 1457 (2021)
  19. Inhibitors for the Vitamin D Receptor-Coregulator Interaction. Teske KA, Yu O, Arnold LA. Vitam. Horm. 100 45-82 (2016)
  20. Strategies to expand peptide functionality through hybridisation with a small molecule component. Wu Y, Williams J, Calder EDD, Walport LJ. RSC Chem Biol 2 151-165 (2021)
  21. Thioether-derived Macrocycle for Peptide Secondary Structure Fixation. Tian Y, Yang D, Ye X, Li Z. Chem Rec 17 874-885 (2017)
  22. Constrained Peptides with Fine-Tuned Flexibility Inhibit NF-Y Transcription Factor Assembly. Jeganathan S, Wendt M, Kiehstaller S, Brancaccio D, Kuepper A, Pospiech N, Carotenuto A, Novellino E, Hennig S, Grossmann TN. Angew. Chem. Int. Ed. Engl. 58 17351-17358 (2019)
  23. Coronavirus envelope protein: current knowledge. Schoeman D, Fielding BC. Virol. J. 16 69 (2019)
  24. Design of Protein Segments and Peptides for Binding to Protein Targets. Gupta S, Azadvari N, Hosseinzadeh P. Biodes Res 2022 9783197 (2022)
  25. Rational design of stapled antimicrobial peptides. You Y, Liu H, Zhu Y, Zheng H. Amino Acids 55 421-442 (2023)
  26. Recent structural advances in constrained helical peptides. Skowron KJ, Speltz TE, Moore TW. Med Res Rev 39 749-770 (2019)
  27. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation. Cheng J, Zhou J, Kong L, Wang H, Zhang Y, Wang X, Liu G, Chu Q. RSC Med Chem 14 2496-2508 (2023)

Articles citing this publication (83)

  1. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Chang YS, Graves B, Guerlavais V, Tovar C, Packman K, To KH, Olson KA, Kesavan K, Gangurde P, Mukherjee A, Baker T, Darlak K, Elkin C, Filipovic Z, Qureshi FZ, Cai H, Berry P, Feyfant E, Shi XE, Horstick J, Annis DA, Manning AM, Fotouhi N, Nash H, Vassilev LT, Sawyer TK. Proc. Natl. Acad. Sci. U.S.A. 110 E3445-54 (2013)
  2. Estrogen receptor alpha somatic mutations Y537S and D538G confer breast cancer endocrine resistance by stabilizing the activating function-2 binding conformation. Fanning SW, Mayne CG, Dharmarajan V, Carlson KE, Martin TA, Novick SJ, Toy W, Green B, Panchamukhi S, Katzenellenbogen BS, Tajkhorshid E, Griffin PR, Shen Y, Chandarlapaty S, Katzenellenbogen JA, Greene GL. Elife 5 (2016)
  3. Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein-protein interaction. Glas A, Bier D, Hahne G, Rademacher C, Ottmann C, Grossmann TN. Angew. Chem. Int. Ed. Engl. 53 2489-2493 (2014)
  4. Comparative α-helicity of cyclic pentapeptides in water. de Araujo AD, Hoang HN, Kok WM, Diness F, Gupta P, Hill TA, Driver RW, Price DA, Liras S, Fairlie DP. Angew. Chem. Int. Ed. Engl. 53 6965-6969 (2014)
  5. A potent α/β-peptide analogue of GLP-1 with prolonged action in vivo. Johnson LM, Barrick S, Hager MV, McFedries A, Homan EA, Rabaglia ME, Keller MP, Attie AD, Saghatelian A, Bisello A, Gellman SH. J. Am. Chem. Soc. 136 12848-12851 (2014)
  6. Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated α-synuclein. Oh M, Lee JH, Wang W, Lee HS, Lee WS, Burlak C, Im W, Hoang QQ, Lim HS. Proc. Natl. Acad. Sci. U.S.A. 111 11007-11012 (2014)
  7. Investigating peptide sequence variations for 'double-click' stapled p53 peptides. Lau YH, de Andrade P, Sköld N, McKenzie GJ, Venkitaraman AR, Verma C, Lane DP, Spring DR. Org. Biomol. Chem. 12 4074-4077 (2014)
  8. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Hu K, Geng H, Zhang Q, Liu Q, Xie M, Sun C, Li W, Lin H, Jiang F, Wang T, Wu YD, Li Z. Angew. Chem. Int. Ed. Engl. 55 8013-8017 (2016)
  9. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides. Cromm PM, Schaubach S, Spiegel J, Fürstner A, Grossmann TN, Waldmann H. Nat Commun 7 11300 (2016)
  10. Rational optimization of conformational effects induced by hydrocarbon staples in peptides and their binding interfaces. Lama D, Quah ST, Verma CS, Lakshminarayanan R, Beuerman RW, Lane DP, Brown CJ. Sci Rep 3 3451 (2013)
  11. Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides. Lau YH, de Andrade P, McKenzie GJ, Venkitaraman AR, Spring DR. Chembiochem 15 2680-2683 (2014)
  12. Stapled Peptides with γ-Methylated Hydrocarbon Chains for the Estrogen Receptor/Coactivator Interaction. Speltz TE, Fanning SW, Mayne CG, Fowler C, Tajkhorshid E, Greene GL, Moore TW. Angew. Chem. Int. Ed. Engl. 55 4252-4255 (2016)
  13. Double Strain-Promoted Macrocyclization for the Rapid Selection of Cell-Active Stapled Peptides. Lau YH, Wu Y, Rossmann M, Tan BX, de Andrade P, Tan YS, Verma C, McKenzie GJ, Venkitaraman AR, Hyvönen M, Spring DR. Angew. Chem. Int. Ed. Engl. 54 15410-15413 (2015)
  14. Inhibition of nutlin-resistant HDM2 mutants by stapled peptides. Wei SJ, Joseph T, Chee S, Li L, Yurlova L, Zolghadr K, Brown C, Lane D, Verma C, Ghadessy F. PLoS ONE 8 e81068 (2013)
  15. Structure of a stapled peptide antagonist bound to nutlin-resistant Mdm2. Chee SM, Wongsantichon J, Soo Tng Q, Robinson R, Joseph TL, Verma C, Lane DP, Brown CJ, Ghadessy FJ. PLoS ONE 9 e104914 (2014)
  16. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection. Mangold SL, O'Leary DJ, Grubbs RH. J. Am. Chem. Soc. 136 12469-12478 (2014)
  17. At a supra-physiological concentration, human sexual hormones act as quorum-sensing inhibitors. Beury-Cirou A, Tannières M, Minard C, Soulère L, Rasamiravaka T, Dodd RH, Queneau Y, Dessaux Y, Guillou C, Vandeputte OM, Faure D. PLoS ONE 8 e83564 (2013)
  18. Hydrocarbon constrained peptides - understanding preorganisation and binding affinity. Miles JA, Yeo DJ, Rowell P, Rodriguez-Marin S, Pask CM, Warriner SL, Edwards TA, Wilson AJ. Chem Sci 7 3694-3702 (2016)
  19. Improving the passive permeability of macrocyclic peptides: Balancing permeability with other physicochemical properties. Thansandote P, Harris RM, Dexter HL, Simpson GL, Pal S, Upton RJ, Valko K. Bioorg. Med. Chem. 23 322-327 (2015)
  20. Stapled BH3 peptides against MCL-1: mechanism and design using atomistic simulations. Joseph TL, Lane DP, Verma CS. PLoS ONE 7 e43985 (2012)
  21. Monosubstituted alkenyl amino acids for peptide "stapling". Yeo DJ, Warriner SL, Wilson AJ. Chem. Commun. (Camb.) 49 9131-9133 (2013)
  22. Letter Benzene Probes in Molecular Dynamics Simulations Reveal Novel Binding Sites for Ligand Design. Tan YS, Reeks J, Brown CJ, Thean D, Ferrer Gago FJ, Yuen TY, Goh ET, Lee XE, Jennings CE, Joseph TL, Lakshminarayanan R, Lane DP, Noble ME, Verma CS. J Phys Chem Lett 7 3452-3457 (2016)
  23. Design of a Short Thermally Stable α-Helix Embedded in a Macrocycle. Wu H, Acharyya A, Wu Y, Liu L, Jo H, Gai F, DeGrado WF. Chembiochem 19 902-906 (2018)
  24. Oxime side-chain cross-links in an α-helical coiled-coil protein: structure, thermodynamics, and folding-templated synthesis of bicyclic species. Haney CM, Horne WS. Chemistry 19 11342-11351 (2013)
  25. Switching substitution groups on the in-tether chiral centre influences backbone peptides' permeability and target binding affinity. Jiang Y, Hu K, Shi X, Tang Q, Wang Z, Ye X, Li Z. Org. Biomol. Chem. 15 541-544 (2017)
  26. A new i, i + 3 peptide stapling system for α-helix stabilization. Shim SY, Kim YW, Verdine GL. Chem Biol Drug Des 82 635-642 (2013)
  27. Cullin3-BTB interface: a novel target for stapled peptides. de Paola I, Pirone L, Palmieri M, Balasco N, Esposito L, Russo L, Mazzà D, Di Marcotullio L, Di Gaetano S, Malgieri G, Vitagliano L, Pedone E, Zaccaro L. PLoS ONE 10 e0121149 (2015)
  28. Stapling mimics noncovalent interactions of γ-carboxyglutamates in conantokins, peptidic antagonists of N-methyl-D-aspartic acid receptors. Platt RJ, Han TS, Green BR, Smith MD, Skalicky J, Gruszczynski P, White HS, Olivera B, Bulaj G, Gajewiak J. J. Biol. Chem. 287 20727-20736 (2012)
  29. Truncated and constrained helical analogs of antimicrobial esculentin-2EM. Pham TK, Kim DH, Lee BJ, Kim YW. Bioorg. Med. Chem. Lett. 23 6717-6720 (2013)
  30. Aerobic iron-based cross-dehydrogenative coupling enables efficient diversity-oriented synthesis of coumestrol-based selective estrogen receptor modulators. Kshirsagar UA, Parnes R, Goldshtein H, Ofir R, Zarivach R, Pappo D. Chemistry 19 13575-13583 (2013)
  31. Crosslinked Aspartic Acids as Helix-Nucleating Templates. Zhao H, Liu QS, Geng H, Tian Y, Cheng M, Jiang YH, Xie MS, Niu XG, Jiang F, Zhang YO, Lao YZ, Wu YD, Xu NH, Li ZG. Angew. Chem. Int. Ed. Engl. 55 12088-12093 (2016)
  32. Nonsteroidal bivalent estrogen ligands: an application of the bivalent concept to the estrogen receptor. Shan M, Carlson KE, Bujotzek A, Wellner A, Gust R, Weber M, Katzenellenbogen JA, Haag R. ACS Chem. Biol. 8 707-715 (2013)
  33. Iterative optimization yields Mcl-1-targeting stapled peptides with selective cytotoxicity to Mcl-1-dependent cancer cells. Rezaei Araghi R, Bird GH, Ryan JA, Jenson JM, Godes M, Pritz JR, Grant RA, Letai A, Walensky LD, Keating AE. Proc. Natl. Acad. Sci. U.S.A. 115 E886-E895 (2018)
  34. Novel structures of self-associating stapled peptides. Bhattacharya S, Zhang H, Cowburn D, Debnath AK. Biopolymers 97 253-264 (2012)
  35. Stapling of unprotected helical peptides via photo-induced intramolecular thiol-yne hydrothiolation. Tian Y, Li J, Zhao H, Zeng X, Wang D, Liu Q, Niu X, Huang X, Xu N, Li Z. Chem Sci 7 3325-3330 (2016)
  36. Conformations of helical Aib peptides containing a pair of L-amino acid and D-amino acid. Demizu Y, Yabuki YU, Doi M, Sato Y, Tanaka M, Kurihara M. J. Pept. Sci. 18 466-475 (2012)
  37. Constructing thioether-tethered cyclic peptides via on-resin intra-molecular thiol-ene reaction. Zhao B, Zhang Q, Li Z. J. Pept. Sci. 22 540-544 (2016)
  38. Hydrogen exchange-mass spectrometry measures stapled peptide conformational dynamics and predicts pharmacokinetic properties. Shi XE, Wales TE, Elkin C, Kawahata N, Engen JR, Annis DA. Anal. Chem. 85 11185-11188 (2013)
  39. Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7. Gunzburg MJ, Kulkarni K, Watson GM, Ambaye ND, Del Borgo MP, Brandt R, Pero SC, Perlmutter P, Wilce MC, Wilce JA. Sci Rep 6 27060 (2016)
  40. Versatile Peptide Macrocyclization with Diels-Alder Cycloadditions. Montgomery JE, Donnelly JA, Fanning SW, Speltz TE, Shangguan X, Coukos JS, Greene GL, Moellering RE. J Am Chem Soc 141 16374-16381 (2019)
  41. A Cell-Permeable Stapled Peptide Inhibitor of the Estrogen Receptor/Coactivator Interaction. Speltz TE, Danes JM, Stender JD, Frasor J, Moore TW. ACS Chem. Biol. 13 676-684 (2018)
  42. A natural-product switch for a dynamic protein interface. Scheepstra M, Nieto L, Hirsch AK, Fuchs S, Leysen S, Lam CV, in het Panhuis L, van Boeckel CA, Wienk H, Boelens R, Ottmann C, Milroy LG, Brunsveld L. Angew. Chem. Int. Ed. Engl. 53 6443-6448 (2014)
  43. Side-Chain Conformational Preferences Govern Protein-Protein Interactions. Watkins AM, Bonneau R, Arora PS. J. Am. Chem. Soc. 138 10386-10389 (2016)
  44. Stereoselective synthesis of unsaturated α-amino acids. Fanelli R, Jeanne-Julien L, René A, Martinez J, Cavelier F. Amino Acids 47 1107-1115 (2015)
  45. A New Methodology for Incorporating Chiral Linkers into Stapled Peptides. Serrano JC, Sipthorp J, Xu W, Itzhaki LS, Ley SV. Chembiochem 18 1066-1071 (2017)
  46. Antimicrobial activity of doubly-stapled alanine/lysine-based peptides. Dinh TT, Kim DH, Luong HX, Lee BJ, Kim YW. Bioorg. Med. Chem. Lett. 25 4016-4019 (2015)
  47. Design of ultrahigh-affinity and dual-specificity peptide antagonists of MDM2 and MDMX for P53 activation and tumor suppression. Li X, Gohain N, Chen S, Li Y, Zhao X, Li B, Tolbert WD, He W, Pazgier M, Hu H, Lu W. Acta Pharm Sin B 11 2655-2669 (2021)
  48. How does a hydrocarbon staple affect peptide hydrophobicity? Sim AY, Verma C. J Comput Chem 36 773-784 (2015)
  49. Small molecule probes to target the human Mediator complex. Phillips AJ, Taatjes DJ. Isr. J. Chem. 53 588-595 (2013)
  50. Avoiding drug resistance through extended drug target interfaces: a case for stapled peptides. Wei SJ, Chee S, Yurlova L, Lane D, Verma C, Brown C, Ghadessy F. Oncotarget 7 32232-32246 (2016)
  51. Chiral Sulfoxide-Induced Single Turn Peptide α-Helicity. Zhang Q, Jiang F, Zhao B, Lin H, Tian Y, Xie M, Bai G, Gilbert AM, Goetz GH, Liras S, Mathiowetz AA, Price DA, Song K, Tu M, Wu Y, Wang T, Flanagan ME, Wu YD, Li Z. Sci Rep 6 38573 (2016)
  52. De novo coiled-coil peptides as scaffolds for disrupting protein-protein interactions. Fletcher JM, Horner KA, Bartlett GJ, Rhys GG, Wilson AJ, Woolfson DN. Chem Sci 9 7656-7665 (2018)
  53. Molecular insights on xenoestrogenic potential of zearalenone-14-glucoside through a mixed in vitro/in silico approach. Dellafiora L, Ruotolo R, Perotti A, Cirlini M, Galaverna G, Cozzini P, Buschini A, Dall'Asta C. Food Chem. Toxicol. 108 257-266 (2017)
  54. Mono-substitution effects on antimicrobial activity of stapled heptapeptides. Luong HX, Kim DH, Mai NT, Lee BJ, Kim YW. Arch. Pharm. Res. 40 713-719 (2017)
  55. Tuning Sulfur Oxidation States on Thioether-Bridged Peptide Macrocycles for Modulation of Protein Interactions. Perell GT, Staebell RL, Hairani M, Cembran A, Pomerantz WCK. Chembiochem 18 1836-1844 (2017)
  56. A "cross-stitched" peptide with improved helicity and proteolytic stability. Speltz TE, Mayne CG, Fanning SW, Siddiqui Z, Tajkhorshid E, Greene GL, Moore TW. Org. Biomol. Chem. 16 3702-3706 (2018)
  57. Antimicrobial activity and stability of stapled helices of polybia-MP1. Luong HX, Kim DH, Lee BJ, Kim YW. Arch. Pharm. Res. 40 1414-1419 (2017)
  58. Contiguous hydrophobic and charged surface patches in short helix-constrained peptides drive cell permeability. Perry SR, Hill TA, de Araujo AD, Hoang HN, Fairlie DP. Org. Biomol. Chem. 16 367-371 (2018)
  59. HOPPI-NMR: Hot-Peptide-Based Screening Assay for Inhibitors of Protein-Protein Interactions by NMR. Brancaccio D, Di Maro S, Cerofolini L, Giuntini S, Fragai M, Luchinat C, Tomassi S, Limatola A, Russomanno P, Merlino F, Novellino E, Carotenuto A. ACS Med Chem Lett 11 1047-1053 (2020)
  60. Perfluoro-tert-butyl Homoserine Is a Helix-Promoting, Highly Fluorinated, NMR-Sensitive Aliphatic Amino Acid: Detection of the Estrogen Receptor·Coactivator Protein-Protein Interaction by 19F NMR. Tressler CM, Zondlo NJ. Biochemistry 56 1062-1074 (2017)
  61. Stapled Peptides as HIF-1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Hetherington K, Hegedus Z, Edwards TA, Sessions RB, Nelson A, Wilson AJ. Chemistry 26 7638-7646 (2020)
  62. The key position: influence of staple location on constrained peptide conformation and binding. Keeling KL, Cho O, Scanlon DB, Booker GW, Abell AD, Wegener KL. Org. Biomol. Chem. 14 9731-9735 (2016)
  63. De novo mapping of α-helix recognition sites on protein surfaces using unbiased libraries. Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG, Olsen TJ, Brennan MJ, Verdine GL, McGee JH. Proc Natl Acad Sci U S A 119 e2210435119 (2022)
  64. Design of affinity peptides from natural protein ligands: A study of the cardiac troponin complex. Chandra D, Sankalia N, Arcibal I, Banta S, Cropek D, Karande P. Biopolymers 102 97-106 (2014)
  65. Estrogen receptor α/β-cofactor motif interactions; interplay of tyrosine 537/488 phosphorylation and LXXLL motifs. Nguyen HD, Phan TT, Carraz M, Brunsveld L. Mol Biosyst 8 3134-3141 (2012)
  66. Fibrillisation of ring-closed amyloid peptides. Hamley IW, Cheng G, Castelletto V, Handschin S, Mezzenga R. Chem. Commun. (Camb.) 48 3757-3759 (2012)
  67. Grafting, Stripping and Stapling of Helical Peptides from the Dimerization Interface of ONFH-Related Bone Morphogenetic Protein-2. Song W, Wang K, Wang W, Yang P, Dang X. Protein J 38 12-22 (2019)
  68. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Li F, Song C, Zhang Y, Wu D. Acta Biochim Biophys Sin (Shanghai) 54 12-24 (2022)
  69. The role of NMR in leveraging dynamics and entropy in drug design. Dubey A, Takeuchi K, Reibarkh M, Arthanari H. J Biomol NMR 74 479-498 (2020)
  70. Bent Into Shape: Folded Peptides to Mimic Protein Structure and Modulate Protein Function. Merritt HI, Sawyer N, Arora PS. Pept Sci (Hoboken) 112 (2020)
  71. Breast cancer therapies reduce risk of Alzheimer's disease and promote estrogenic pathways and action in brain. Branigan GL, Torrandell-Haro G, Chen S, Shang Y, Perez-Miller S, Mao Z, Padilla-Rodriguez M, Cortes-Flores H, Vitali F, Brinton RD. iScience 26 108316 (2023)
  72. Discovery of an orally effective double-stapled peptide for reducing ovariectomy-induced bone loss in mice. Cong W, Shen H, Liao X, Zheng M, Kong X, Wang Z, Chen S, Li Y, Hu H, Li X. Acta Pharm Sin B 13 3770-3781 (2023)
  73. Dithiocarbamate-inspired side chain stapling chemistry for peptide drug design. Li X, Tolbert WD, Hu HG, Gohain N, Zou Y, Niu F, He WX, Yuan W, Su JC, Pazgier M, Lu W. Chem Sci 10 1522-1530 (2019)
  74. Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides. Luong HX, Kim DH, Lee BJ, Kim YW. Arch. Pharm. Res. 41 1092-1097 (2018)
  75. Exposing the Nucleation Site in α-Helix Folding: A Joint Experimental and Simulation Study. Acharyya A, Ge Y, Wu H, DeGrado WF, Voelz VA, Gai F. J Phys Chem B 123 1797-1807 (2019)
  76. Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry. Righetti L, Dellafiora L, Cavanna D, Rolli E, Galaverna G, Bruni R, Suman M, Dall'Asta C. Anal Bioanal Chem 410 5583-5592 (2018)
  77. Identification of the Stapled α-Helical Peptide ATSP-7041 as a Substrate and Strong Inhibitor of OATP1B1 In Vitro. Ishikawa R, Saito K, Misawa T, Demizu Y, Saito Y. Biomolecules 13 1002 (2023)
  78. PROTAC Degrader of Estrogen Receptor α Targeting DNA-Binding Domain in Breast Cancer. Zhang X, Zhang Z, Xue X, Fan T, Tan C, Liu F, Tan Y, Jiang Y. ACS Pharmacol Transl Sci 5 1109-1118 (2022)
  79. Rapid Evaluation of Staple Placement in Stabilized α Helices Using Bacterial Surface Display. Case M, Navaratna T, Vinh J, Thurber G. ACS Chem Biol 18 905-914 (2023)
  80. Rational Design of a 310 -Helical PIP-Box Mimetic Targeting PCNA, the Human Sliding Clamp. Wegener KL, McGrath AE, Dixon NE, Oakley AJ, Scanlon DB, Abell AD, Bruning JB. Chemistry 24 11325-11331 (2018)
  81. Rational design of stapled helical peptides as antidiabetic PPARγ antagonists to target coactivator site by decreasing unfavorable entropy penalty instead of increasing favorable enthalpy contribution. Zhang Y, Wang J, Li W, Guo Y. Eur Biophys J 51 535-543 (2022)
  82. Simultaneous Stabilization and Multimerization of a Peptide α-Helix by Stapling Polymerization. Lee YJ, Han S, Lim YB. Macromol Rapid Commun 37 1021-1026 (2016)
  83. Target-templated de novo design of macrocyclic d-/l-peptides: discovery of drug-like inhibitors of PD-1. Guardiola S, Varese M, Roig X, Sánchez-Navarro M, García J, Giralt E. Chem Sci 12 5164-5170 (2021)