2wwz Citations

Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain.

Nat Struct Mol Biol 16 1328-30 (2009)
Related entries: 2wx0, 2wx1

Cited: 135 times
EuropePMC logo PMID: 19935683

Abstract

The protein kinase TAK1 is activated by binding to Lys63 (K63)-linked ubiquitin chains through its subunit TAB2. Here we analyze crystal structures of the TAB2 NZF domain bound to Lys63-linked di- and triubiquitin, revealing that TAB2 binds adjacent ubiquitin moieties via two distinct binding sites. The conformational constraints imposed by TAB2 on a Lys63 dimer cannot be adopted by linear chains, explaining why TAK1 cannot be activated by linear ubiquitination events.

Reviews - 2wwz mentioned but not cited (3)

  1. Structural basis of signal transduction in the TNF receptor superfamily. Li J, Yin Q, Wu H. Adv. Immunol. 119 135-153 (2013)
  2. Versatile roles of k63-linked ubiquitin chains in trafficking. Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Cells 3 1027-1088 (2014)
  3. Unraveling the complexity of ubiquitin signaling. Strieter ER, Korasick DA. ACS Chem. Biol. 7 52-63 (2012)

Articles - 2wwz mentioned but not cited (5)

  1. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SM, Komander D. EMBO J. 34 307-325 (2015)
  2. Two-sided ubiquitin binding of NF-κB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome. Ngadjeua F, Chiaravalli J, Traincard F, Raynal B, Fontan E, Agou F. J. Biol. Chem. 288 33722-33737 (2013)
  3. Comparison of native and non-native ubiquitin oligomers reveals analogous structures and reactivities. Pham GH, Rana AS, Korkmaz EN, Trang VH, Cui Q, Strieter ER. Protein Sci. 25 456-471 (2016)
  4. A convenient protein library for spectroscopic calibrations. De Meutter J, Goormaghtigh E. Comput Struct Biotechnol J 18 1864-1876 (2020)
  5. Dynamic recognition and linkage specificity in K63 di-ubiquitin and TAB2 NZF domain complex. Moritsugu K, Nishi H, Inariyama K, Kobayashi M, Kidera A. Sci Rep 8 16478 (2018)


Reviews citing this publication (53)

  1. The ubiquitin code. Komander D, Rape M. Annu. Rev. Biochem. 81 203-229 (2012)
  2. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Kyriakis JM, Avruch J. Physiol. Rev. 92 689-737 (2012)
  3. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Husnjak K, Dikic I. Annu. Rev. Biochem. 81 291-322 (2012)
  4. Molecular basis of NF-κB signaling. Napetschnig J, Wu H. Annu Rev Biophys 42 443-468 (2013)
  5. A20: from ubiquitin editing to tumour suppression. Hymowitz SG, Wertz IE. Nat Rev Cancer 10 332-341 (2010)
  6. Ubiquitin modifications. Swatek KN, Komander D. Cell Res. 26 399-422 (2016)
  7. Ubiquitin signalling in DNA replication and repair. Ulrich HD, Walden H. Nat Rev Mol Cell Biol 11 479-489 (2010)
  8. Constructing and decoding unconventional ubiquitin chains. Behrends C, Harper JW. Nat. Struct. Mol. Biol. 18 520-528 (2011)
  9. TNFR1-induced activation of the classical NF-κB pathway. Wajant H, Scheurich P. FEBS J. 278 862-876 (2011)
  10. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Walczak H. Immunol. Rev. 244 9-28 (2011)
  11. How ubiquitin functions with ESCRTs. Shields SB, Piper RC. Traffic 12 1306-1317 (2011)
  12. The diversity of ubiquitin recognition: hot spots and varied specificity. Winget JM, Mayor T. Mol. Cell 38 627-635 (2010)
  13. The Drosophila IMD pathway in the activation of the humoral immune response. Kleino A, Silverman N. Dev. Comp. Immunol. 42 25-35 (2014)
  14. TAK1, more than just innate immunity. Dai L, Aye Thu C, Liu XY, Xi J, Cheung PC. IUBMB Life 64 825-834 (2012)
  15. Molecular control of the NEMO family of ubiquitin-binding proteins. Clark K, Nanda S, Cohen P. Nat. Rev. Mol. Cell Biol. 14 673-685 (2013)
  16. Linear ubiquitination in immunity. Shimizu Y, Taraborrelli L, Walczak H. Immunol. Rev. 266 190-207 (2015)
  17. The TLR and IL-1 signalling network at a glance. Cohen P. J. Cell. Sci. 127 2383-2390 (2014)
  18. Endosomal transport via ubiquitination. Piper RC, Lehner PJ. Trends Cell Biol. 21 647-655 (2011)
  19. Ubiquitin-dependent sorting in endocytosis. Piper RC, Dikic I, Lukacs GL. Cold Spring Harb Perspect Biol 6 (2014)
  20. The emerging role of linear ubiquitination in cell signaling. Emmerich CH, Schmukle AC, Walczak H. Sci Signal 4 re5 (2011)
  21. Multitasking with ubiquitin through multivalent interactions. Liu F, Walters KJ. Trends Biochem. Sci. 35 352-360 (2010)
  22. Structural insights into the assembly of large oligomeric signalosomes in the Toll-like receptor-interleukin-1 receptor superfamily. Ferrao R, Li J, Bergamin E, Wu H. Sci Signal 5 re3 (2012)
  23. The ubiquitin code and its decoding machinery in the endocytic pathway. Tanno H, Komada M. J. Biochem. 153 497-504 (2013)
  24. Readers of PCNA modifications. Ulrich HD, Takahashi T. Chromosoma 122 259-274 (2013)
  25. Linear ubiquitination signals in adaptive immune responses. Ikeda F. Immunol. Rev. 266 222-236 (2015)
  26. Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting. Emmerich CH, Cohen P. Biochem. Biophys. Res. Commun. 466 1-14 (2015)
  27. Selectivity of the ubiquitin-binding modules. Rahighi S, Dikic I. FEBS Lett. 586 2705-2710 (2012)
  28. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. Genes Dis 8 287-297 (2021)
  29. Regulation of Met1-linked polyubiquitin signalling by the deubiquitinase OTULIN. Elliott PR, Komander D. FEBS J. 283 39-53 (2016)
  30. The zinc finger domain of IKKγ (NEMO) protein in health and disease. Shifera AS. J. Cell. Mol. Med. 14 2404-2414 (2010)
  31. Ubiquitin and its binding domains. Randles L, Walters KJ. Front Biosci (Landmark Ed) 17 2140-2157 (2012)
  32. Post-Translational Modifications of the TAK1-TAB Complex. Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Int J Mol Sci 18 (2017)
  33. TNFR1-activated NF-κB signal transduction: regulation by the ubiquitin/proteasome system. Wertz IE. Curr Opin Chem Biol 23 71-77 (2014)
  34. Ubiquitin enzymes in the regulation of immune responses. Ebner P, Versteeg GA, Ikeda F. Crit. Rev. Biochem. Mol. Biol. 52 425-460 (2017)
  35. Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Scott D, Oldham NJ, Strachan J, Searle MS, Layfield R. Proteomics 15 844-861 (2015)
  36. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cohen P, Strickson S. Cell Death Differ. 24 1153-1159 (2017)
  37. The diversity of linkage-specific polyubiquitin chains and their role in synaptic plasticity and memory formation. Musaus M, Navabpour S, Jarome TJ. Neurobiol Learn Mem 174 107286 (2020)
  38. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Shi JH, Sun SC. Front Immunol 9 1849 (2018)
  39. Review: unchained maladie - a reassessment of the role of Ubb(+1) -capped polyubiquitin chains in Alzheimer's disease. Chadwick L, Gentle L, Strachan J, Layfield R. Neuropathol. Appl. Neurobiol. 38 118-131 (2012)
  40. Atypical p38 Signaling, Activation, and Implications for Disease. Burton JC, Antoniades W, Okalova J, Roos MM, Grimsey NJ. Int J Mol Sci 22 4183 (2021)
  41. Branched Ubiquitination: Detection Methods, Biological Functions and Chemical Synthesis. Wang YS, Wu KP, Jiang HK, Kurkute P, Chen RH. Molecules 25 E5200 (2020)
  42. Integration of endothelial protease-activated receptor-1 inflammatory signaling by ubiquitin. Grimsey NJ, Trejo J. Curr. Opin. Hematol. 23 274-279 (2016)
  43. Molecular basis for specificity of the Met1-linked polyubiquitin signal. Elliott PR. Biochem. Soc. Trans. 44 1581-1602 (2016)
  44. Protein crystallization screens developed at the MRC Laboratory of Molecular Biology. Gorrec F. Drug Discov. Today 21 819-825 (2016)
  45. The Many Roles of Ubiquitin in NF-κB Signaling. Courtois G, Fauvarque MO. Biomedicines 6 (2018)
  46. Ubiquitin-like modifiers. Taherbhoy AM, Schulman BA, Kaiser SE. Essays Biochem. 52 51-63 (2012)
  47. Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. de Jong MF, Alto NM. Infect. Immun. 86 (2018)
  48. Regulation of the Drosophila Imd pathway by signaling amyloids. Kleino A, Silverman N. Insect Biochem Mol Biol 108 16-23 (2019)
  49. Proteomic approaches to study ubiquitinomics. Sahu I, Zhu H, Buhrlage SJ, Marto JA. Biochim Biophys Acta Gene Regul Mech 1866 194940 (2023)
  50. HOIL-1, an atypical E3 ligase that controls MyD88 signalling by forming ester bonds between ubiquitin and components of the Myddosome. Cohen P, Kelsall IR, Nanda SK, Zhang J. Adv Biol Regul 75 100666 (2020)
  51. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Patwardhan A, Cheng N, Trejo J. Pharmacol Rev 73 120-151 (2021)
  52. Ubiquitination as a Key Regulator of Endosomal Signaling by GPCRs. Burton JC, Grimsey NJ. Front Cell Dev Biol 7 43 (2019)
  53. Ubiquitination detection techniques. De Silva ARI, Page RC. Exp Biol Med (Maywood) 248 1333-1346 (2023)

Articles citing this publication (74)

  1. Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress. Ciccia A, Nimonkar AV, Hu Y, Hajdu I, Achar YJ, Izhar L, Petit SA, Adamson B, Yoon JC, Kowalczykowski SC, Livingston DM, Haracska L, Elledge SJ. Mol. Cell 47 396-409 (2012)
  2. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O. EMBO J. 31 3856-3870 (2012)
  3. What determines the specificity and outcomes of ubiquitin signaling? Ikeda F, Crosetto N, Dikic I. Cell 143 677-681 (2010)
  4. Cysteine methylation disrupts ubiquitin-chain sensing in NF-κB activation. Zhang L, Ding X, Cui J, Xu H, Chen J, Gong YN, Hu L, Zhou Y, Ge J, Lu Q, Liu L, Chen S, Shao F. Nature 481 204-208 (2012)
  5. Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon β. Gleason CE, Ordureau A, Gourlay R, Arthur JS, Cohen P. J. Biol. Chem. 286 35663-35674 (2011)
  6. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. van Wijk SJ, Fiskin E, Putyrski M, Pampaloni F, Hou J, Wild P, Kensche T, Grecco HE, Bastiaens P, Dikic I. Mol. Cell 47 797-809 (2012)
  7. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-κB signaling. Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D, Kirkpatrick DS, Dixit VM, Hymowitz SG. Mol. Cell 40 548-557 (2010)
  8. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Wertz IE, Newton K, Seshasayee D, Kusam S, Lam C, Zhang J, Popovych N, Helgason E, Schoeffler A, Jeet S, Ramamoorthi N, Kategaya L, Newman RJ, Horikawa K, Dugger D, Sandoval W, Mukund S, Zindal A, Martin F, Quan C, Tom J, Fairbrother WJ, Townsend M, Warming S, DeVoss J, Liu J, Dueber E, Caplazi P, Lee WP, Goodnow CC, Balazs M, Yu K, Kolumam G, Dixit VM. Nature 528 370-375 (2015)
  9. Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. Nanda SK, Venigalla RK, Ordureau A, Patterson-Kane JC, Powell DW, Toth R, Arthur JS, Cohen P. J. Exp. Med. 208 1215-1228 (2011)
  10. LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. Niu J, Shi Y, Iwai K, Wu ZH. EMBO J. 30 3741-3753 (2011)
  11. A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. Stringer DK, Piper RC. J. Cell Biol. 192 229-242 (2011)
  12. NF-κB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-κB activation. Hadian K, Griesbach RA, Dornauer S, Wanger TM, Nagel D, Metlitzky M, Beisker W, Schmidt-Supprian M, Krappmann D. J. Biol. Chem. 286 26107-26117 (2011)
  13. Lysine 63-linked polyubiquitination is required for EGF receptor degradation. Huang F, Zeng X, Kim W, Balasubramani M, Fortian A, Gygi SP, Yates NA, Sorkin A. Proc. Natl. Acad. Sci. U.S.A. 110 15722-15727 (2013)
  14. Molecular mechanisms of ubiquitin-dependent membrane traffic. Hurley JH, Stenmark H. Annu Rev Biophys 40 119-142 (2011)
  15. An ankyrin-repeat ubiquitin-binding domain determines TRABID's specificity for atypical ubiquitin chains. Licchesi JD, Mieszczanek J, Mevissen TE, Rutherford TJ, Akutsu M, Virdee S, El Oualid F, Chin JW, Ovaa H, Bienz M, Komander D. Nat. Struct. Mol. Biol. 19 62-71 (2011)
  16. Specific recognition of linear ubiquitin chains by the Npl4 zinc finger (NZF) domain of the HOIL-1L subunit of the linear ubiquitin chain assembly complex. Sato Y, Fujita H, Yoshikawa A, Yamashita M, Yamagata A, Kaiser SE, Iwai K, Fukai S. Proc. Natl. Acad. Sci. U.S.A. 108 20520-20525 (2011)
  17. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN, Wagstaff JL, Freund SM, Komander D. Mol. Cell 58 95-109 (2015)
  18. Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. J. Biol. Chem. 287 23626-23634 (2012)
  19. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. Kumari S, Redouane Y, Lopez-Mosqueda J, Shiraishi R, Romanowska M, Lutzmayer S, Kuiper J, Martinez C, Dikic I, Pasparakis M, Ikeda F. Elife 3 (2014)
  20. K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Kristariyanto YA, Abdul Rehman SA, Campbell DG, Morrice NA, Johnson C, Toth R, Kulathu Y. Mol. Cell 58 83-94 (2015)
  21. Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains. Zhao S, Ulrich HD. Proc. Natl. Acad. Sci. U.S.A. 107 7704-7709 (2010)
  22. A dual role for K63-linked ubiquitin chains in multivesicular body biogenesis and cargo sorting. Erpapazoglou Z, Dhaoui M, Pantazopoulou M, Giordano F, Giordano F, Mari M, Léon S, Raposo G, Reggiori F, Haguenauer-Tsapis R. Mol. Biol. Cell 23 2170-2183 (2012)
  23. Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs. Ori D, Kato H, Sanjo H, Tartey S, Mino T, Akira S, Takeuchi O. J Immunol 190 4037-4045 (2013)
  24. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA, Komander D, Bycroft M, Randow F. EMBO J. 35 1779-1792 (2016)
  25. K63-linked ubiquitination in kinase activation and cancer. Wang G, Gao Y, Li L, Jin G, Cai Z, Chao JI, Lin HK. Front Oncol 2 5 (2012)
  26. Two coordinated mechanisms underlie tumor necrosis factor alpha-induced immediate and delayed IκB kinase activation. Blackwell K, Zhang L, Workman LM, Ting AT, Iwai K, Habelhah H. Mol. Cell. Biol. 33 1901-1915 (2013)
  27. Assembly and structure of Lys33-linked polyubiquitin reveals distinct conformations. Kristariyanto YA, Choi SY, Rehman SA, Ritorto MS, Campbell DG, Morrice NA, Toth R, Kulathu Y. Biochem. J. 467 345-352 (2015)
  28. Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Emmerich CH, Bakshi S, Kelsall IR, Ortiz-Guerrero J, Shpiro N, Cohen P. Biochem. Biophys. Res. Commun. 474 452-461 (2016)
  29. The yeast E4 ubiquitin ligase Ufd2 interacts with the ubiquitin-like domains of Rad23 and Dsk2 via a novel and distinct ubiquitin-like binding domain. Hänzelmann P, Stingele J, Hofmann K, Schindelin H, Raasi S. J. Biol. Chem. 285 20390-20398 (2010)
  30. Ubiquitin plays an atypical role in GPCR-induced p38 MAP kinase activation on endosomes. Grimsey NJ, Aguilar B, Smith TH, Le P, Soohoo AL, Puthenveedu MA, Nizet V, Trejo J. J. Cell Biol. 210 1117-1131 (2015)
  31. Roles of the TRAF6 and Pellino E3 ligases in MyD88 and RANKL signaling. Strickson S, Emmerich CH, Goh ETH, Zhang J, Kelsall IR, Macartney T, Hastie CJ, Knebel A, Peggie M, Marchesi F, Arthur JSC, Cohen P. Proc. Natl. Acad. Sci. U.S.A. 114 E3481-E3489 (2017)
  32. Linear polyubiquitin chains: a new modifier involved in NFκB activation and chronic inflammation, including dermatitis. Iwai K. Cell Cycle 10 3095-3104 (2011)
  33. Mechanisms of generating polyubiquitin chains of different topology. Suryadinata R, Roesley SN, Yang G, Sarčević B. Cells 3 674-689 (2014)
  34. Myosin VI Contains a Compact Structural Motif that Binds to Ubiquitin Chains. He F, Wollscheid HP, Nowicka U, Biancospino M, Valentini E, Ehlinger A, Acconcia F, Magistrati E, Polo S, Walters KJ. Cell Rep 14 2683-2694 (2016)
  35. Ubiquitin linkages make a difference. Dikic I, Dötsch V. Nat. Struct. Mol. Biol. 16 1209-1210 (2009)
  36. An Interaction Landscape of Ubiquitin Signaling. Zhang X, Smits AH, van Tilburg GB, Jansen PW, Makowski MM, Ovaa H, Vermeulen M. Mol. Cell 65 941-955.e8 (2017)
  37. Determination of Protein Structural Ensembles by Hybrid-Resolution SAXS Restrained Molecular Dynamics. Paissoni C, Jussupow A, Camilloni C. J Chem Theory Comput 16 2825-2834 (2020)
  38. Shared and unique properties of ubiquitin and SUMO interaction networks in DNA repair. van Wijk SJ, Müller S, Dikic I. Genes Dev. 25 1763-1769 (2011)
  39. G protein-coupled receptors activate p38 MAPK via a non-canonical TAB1-TAB2- and TAB1-TAB3-dependent pathway in endothelial cells. Grimsey NJ, Lin Y, Narala R, Rada CC, Mejia-Pena H, Trejo J. J Biol Chem 294 5867-5878 (2019)
  40. Recent advances in polyubiquitin chain recognition. Wu H, Lo YC, Lin SC. F1000 Biol Rep 2 1-5 (2010)
  41. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps). Mark KG, Loveless TB, Toczyski DP. Nat Protoc 11 291-301 (2016)
  42. NMR analysis of Lys63-linked polyubiquitin recognition by the tandem ubiquitin-interacting motifs of Rap80. Sekiyama N, Jee J, Isogai S, Akagi K, Huang TH, Ariyoshi M, Tochio H, Shirakawa M. J. Biomol. NMR 52 339-350 (2012)
  43. Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20. Toma A, Takahashi TS, Sato Y, Yamagata A, Goto-Ito S, Nakada S, Fukuto A, Horikoshi Y, Tashiro S, Fukai S. PLoS ONE 10 e0120887 (2015)
  44. Lys63-linked ubiquitin chain adopts multiple conformational states for specific target recognition. Liu Z, Gong Z, Jiang WX, Yang J, Zhu WK, Guo DC, Zhang WP, Liu ML, Tang C. Elife 4 (2015)
  45. Make them, break them, and catch them: studying rare ubiquitin chains. Uckelmann M, Sixma TK. Mol. Cell 58 1-2 (2015)
  46. Selective Binding of AIRAPL Tandem UIMs to Lys48-Linked Tri-Ubiquitin Chains. Rahighi S, Braunstein I, Ternette N, Kessler B, Kawasaki M, Kato R, Matsui T, Weiss TM, Stanhill A, Wakatsuki S. Structure 24 412-422 (2016)
  47. Editorial A novel mode of ubiquitin recognition by the ubiquitin-binding zinc finger domain of WRNIP1. Suzuki N, Rohaim A, Kato R, Dikic I, Wakatsuki S, Kawasaki M. FEBS J. 283 2004-2017 (2016)
  48. A ubiquitin-binding CUE domain in presenilin-1 enables interaction with K63-linked polyubiquitin chains. Duggan SP, Yan R, McCarthy JV. FEBS Lett. 589 1001-1008 (2015)
  49. Covalent modification of the NF-κB essential modulator (NEMO) by a chemical compound can regulate its ubiquitin binding properties in vitro. Hooper C, Jackson SS, Coughlin EE, Coon JJ, Miyamoto S. J. Biol. Chem. 289 33161-33174 (2014)
  50. Selective monitoring of ubiquitin signals with genetically encoded ubiquitin chain-specific sensors. van Wijk SJ, Fiškin E, Dikic I. Nat Protoc 8 1449-1458 (2013)
  51. The p38-interacting protein p38IP suppresses TCR and LPS signaling by targeting TAK1. Wang XD, Zhao CS, Wang QL, Zeng Q, Feng XZ, Li L, Chen ZL, Gong Y, Han J, Li Y. EMBO Rep 21 e48035 (2020)
  52. Human IFT-A complex structures provide molecular insights into ciliary transport. Jiang M, Palicharla VR, Miller D, Hwang SH, Zhu H, Hixson P, Mukhopadhyay S, Sun J. Cell Res 33 288-298 (2023)
  53. Site-specific ubiquitylation and SUMOylation using genetic-code expansion and sortase. Fottner M, Brunner AD, Bittl V, Horn-Ghetko D, Jussupow A, Kaila VRI, Bremm A, Lang K. Nat. Chem. Biol. 15 276-284 (2019)
  54. GIT1 regulates angiogenic factor secretion in bone marrow mesenchymal stem cells via NF-κB/Notch signalling to promote angiogenesis. Li L, Tang P, Zhou Z, Wang Q, Xu T, Zhao S, Huang Y, Kong F, Liu W, Cheng L, Zhou Z, Zhao X, Gu C, Luo Y, Tao G, Qian D, Chen J, Fan J, Yin G. Cell Prolif 52 e12689 (2019)
  55. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Zhang J, Macartney T, Peggie M, Cohen P. Biochem. J. 474 2235-2248 (2017)
  56. The SUMOylation of TAB2 mediated by TRIM60 inhibits MAPK/NF-κB activation and the innate immune response. Gu Z, Chen X, Yang W, Qi Y, Yu H, Wang X, Gong Y, Chen Q, Zhong B, Dai L, Qi S, Zhang Z, Zhang H, Hu H. Cell Mol Immunol 18 1981-1994 (2021)
  57. A Feedback Regulatory Loop Involving dTrbd/dTak1 in Controlling IMD Signaling in Drosophila Melanogaster. Hua Y, Zhu Y, Hu Y, Kong F, Duan R, Zhang C, Zhang C, Zhang S, Jin Y, Ye Y, Cai Q, Ji S. Front Immunol 13 932268 (2022)
  58. A modular toolbox to generate complex polymeric ubiquitin architectures using orthogonal sortase enzymes. Fottner M, Weyh M, Gaussmann S, Schwarz D, Sattler M, Lang K. Nat Commun 12 6515 (2021)
  59. A network-centric approach to drugging TNF-induced NF-κB signaling. Pabon NA, Zhang Q, Cruz JA, Schipper DL, Camacho CJ, Lee REC. Nat Commun 10 860 (2019)
  60. Letter TAK1 adaptor proteins, TAB2 and TAB3, link the signalosome to B-cell receptor-induced IKK activation. Shinohara H, Yasuda T, Kurosaki T. FEBS Lett. 590 3264-3269 (2016)
  61. TAK1-binding proteins (TAB1 and TAB2) in grass carp (Ctenopharyngodon idella): identification, characterization, and expression analysis after infection with Ichthyophthirius multifiliis. Zhao F, Li YW, Pan HJ, Shi CB, Luo XC, Li AX, Wu SQ. Fish Shellfish Immunol. 38 389-399 (2014)
  62. TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Chan TY, Egbert CM, Maxson JE, Siddiqui A, Larsen LJ, Kohler K, Balasooriya ER, Pennington KL, Tsang TM, Frey M, Soderblom EJ, Geng H, Müschen M, Forostyan TV, Free S, Mercenne G, Banks CJ, Valdoz J, Whatcott CJ, Foulks JM, Bearss DJ, O'Hare T, Huang DCS, Christensen KA, Moody J, Warner SL, Tyner JW, Andersen JL. Nat Commun 12 5337 (2021)
  63. USP25 Inhibits Neuroinflammatory Responses After Cerebral Ischemic Stroke by Deubiquitinating TAB2. Li Z, Liu B, Lambertsen KL, Clausen BH, Zhu Z, Du X, Xu Y, Poulsen FR, Halle B, Bonde C, Chen M, Wang X, Schlüter D, Huang J, Waisman A, Song W, Wang X. Adv Sci (Weinh) 10 e2301641 (2023)
  64. A novel reporter for real-time, quantitative imaging of AKT-directed K63-poly-ubiquitination in living cells. Nyati S, Chaudhry N, Chatur A, Gregg BS, Kimmel L, Khare D, Basrur V, Ray D, Rehemtulla A. Oncotarget 9 11083-11099 (2018)
  65. Assigning pathogenicity for TAB2 variants using a novel scalable functional assay and expanding TAB2 disease spectrum. Xu W, Graves A, Weisz-Hubshman M, Hegazy L, Magyar C, Liu Z, Nasiotis E, Samee MAH, Burris T, Lalani S, Zhang L. Hum Mol Genet 32 959-970 (2023)
  66. Co-ordinated control of the ADP-heptose/ALPK1 signalling network by the E3 ligases TRAF6, TRAF2/c-IAP1 and LUBAC. Snelling T, Shpiro N, Gourlay R, Lamoliatte F, Cohen P. Biochem J 479 2195-2216 (2022)
  67. Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Sheng C, Yao C, Wang Z, Chen H, Zhao Y, Xu D, Huang H, Huang W, Chen S. Nat Commun 9 4381 (2018)
  68. Keeping Cell Death in Check: Ubiquitylation-Dependent Control of TNFR1 and TLR Signaling. Griewahn L, Köser A, Maurer U. Front Cell Dev Biol 7 117 (2019)
  69. Probing protein ubiquitination in live cells. Qin W, Steinek C, Kolobynina K, Forné I, Imhof A, Cardoso MC, Leonhardt H. Nucleic Acids Res 50 e125 (2022)
  70. Solution structure of the HOIL-1L NZF domain reveals a conformational switch regulating linear ubiquitin affinity. Walinda E, Sugase K, Ishii N, Shirakawa M, Iwai K, Morimoto D. J Biol Chem 299 105165 (2023)
  71. Structural basis for specific recognition of K6-linked polyubiquitin chains by the TAB2 NZF domain. Li Y, Okatsu K, Fukai S, Sato Y. Biophys J 120 3355-3362 (2021)
  72. Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4. Sato Y, Tsuchiya H, Yamagata A, Okatsu K, Tanaka K, Saeki Y, Fukai S. Nat Commun 10 5708 (2019)
  73. Two NEMO-like Ubiquitin-Binding Domains in CEP55 Differently Regulate Cytokinesis. Said Halidi KN, Fontan E, Boucharlat A, Davignon L, Charpentier M, Boullé M, Weil R, Israël A, Laplantine E, Agou F. iScience 20 292-309 (2019)
  74. USP8 prevents aberrant NF-κB and Nrf2 activation by counteracting ubiquitin signals from endosomes. Endo A, Fukushima T, Takahashi C, Tsuchiya H, Ohtake F, Ono S, Ly T, Yoshida Y, Tanaka K, Saeki Y, Komada M. J Cell Biol 223 e202306013 (2024)