2wwx Citations

Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA.

EMBO J 29 496-504 (2010)
Cited: 51 times
EuropePMC logo PMID: 19942850

Abstract

GDP-bound prenylated Rabs, sequestered by GDI (GDP dissociation inhibitor) in the cytosol, are delivered to destined sub-cellular compartment and subsequently activated by GEFs (guanine nucleotide exchange factors) catalysing GDP-to-GTP exchange. The dissociation of GDI from Rabs is believed to require a GDF (GDI displacement factor). Only two RabGDFs, human PRA-1 and Legionella pneumophila SidM/DrrA, have been identified so far and the molecular mechanism of GDF is elusive. Here, we present the structure of a SidM/DrrA fragment possessing dual GEF and GDF activity in complex with Rab1. SidM/DrrA reconfigures the Switch regions of the GTPase domain of Rab1, as eukaryotic GEFs do toward cognate Rabs. Structure-based mutational analyses show that the surface of SidM/DrrA, catalysing nucleotide exchange, is involved in GDI1 displacement from prenylated Rab1:GDP. In comparison with an eukaryotic GEF TRAPP I, this bacterial GEF/GDF exhibits high binding affinity for Rab1 with GDP retained at the active site, which appears as the key feature for the GDF activity of the protein.

Reviews - 2wwx mentioned but not cited (3)

Articles - 2wwx mentioned but not cited (2)

  1. Fic and non-Fic AMPylases: protein AMPylation in metazoans. Chatterjee BK, Truttmann MC. Open Biol 11 210009 (2021)
  2. Allosteric binding sites in Rab11 for potential drug candidates. Kumar AP, Lukman S. PLoS ONE 13 e0198632 (2018)


Reviews citing this publication (18)

  1. Role of Rab GTPases in membrane traffic and cell physiology. Hutagalung AH, Novick PJ. Physiol. Rev. 91 119-149 (2011)
  2. Phosphoinositides: tiny lipids with giant impact on cell regulation. Balla T. Physiol. Rev. 93 1019-1137 (2013)
  3. Regulation of small GTPases by GEFs, GAPs, and GDIs. Cherfils J, Zeghouf M. Physiol. Rev. 93 269-309 (2013)
  4. Modulation of host cell function by Legionella pneumophila type IV effectors. Hubber A, Roy CR. Annu. Rev. Cell Dev. Biol. 26 261-283 (2010)
  5. Rab GEFs and GAPs. Barr F, Lambright DG. Curr. Opin. Cell Biol. 22 461-470 (2010)
  6. Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones. Finsel I, Hilbi H. Cell. Microbiol. 17 935-950 (2015)
  7. A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Sherwood RK, Roy CR. Cell Host Microbe 14 256-268 (2013)
  8. Subversion of membrane transport pathways by vacuolar pathogens. Alix E, Mukherjee S, Roy CR. J. Cell Biol. 195 943-952 (2011)
  9. Exploitation of evolutionarily conserved amoeba and mammalian processes by Legionella. Al-Quadan T, Price CT, Abu Kwaik Y. Trends Microbiol. 20 299-306 (2012)
  10. Manipulation of host vesicular trafficking and innate immune defence by Legionella Dot/Icm effectors. Ge J, Shao F. Cell. Microbiol. 13 1870-1880 (2011)
  11. GTPases involved in vesicular trafficking: structures and mechanisms. Itzen A, Goody RS. Semin. Cell Dev. Biol. 22 48-56 (2011)
  12. Manipulation of host membrane machinery by bacterial pathogens. Cossart P, Roy CR. Curr. Opin. Cell Biol. 22 547-554 (2010)
  13. Molecular mimicry and original biochemical strategies for the biogenesis of a Legionella pneumophila replicative niche in phagocytic cells. Allombert J, Fuche F, Michard C, Doublet P. Microbes Infect. 15 981-988 (2013)
  14. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Várnai P, Gulyás G, Tóth DJ, Sohn M, Sengupta N, Balla T. Cell Calcium 64 72-82 (2017)
  15. Invited review: Small GTPases and their GAPs. Mishra AK, Lambright DG. Biopolymers 105 431-448 (2016)
  16. Phosphoinositides and the Fate of Legionella in Phagocytes. Swart AL, Hilbi H. Front Immunol 11 25 (2020)
  17. Taking control: Hijacking of Rab GTPases by intracellular bacterial pathogens. Spanò S, Galán JE. Small GTPases 9 182-191 (2018)
  18. Tiny architects: biogenesis of intracellular replicative niches by bacterial pathogens. Martinez E, Siadous FA, Bonazzi M. FEMS Microbiol. Rev. 42 425-447 (2018)

Articles citing this publication (28)

  1. Modulation of Rab GTPase function by a protein phosphocholine transferase. Mukherjee S, Liu X, Arasaki K, McDonough J, Galán JE, Roy CR. Nature 477 103-106 (2011)
  2. The E Block motif is associated with Legionella pneumophila translocated substrates. Huang L, Boyd D, Amyot WM, Hempstead AD, Luo ZQ, O'Connor TJ, Chen C, Machner M, Montminy T, Isberg RR. Cell. Microbiol. 13 227-245 (2011)
  3. High-affinity binding of phosphatidylinositol 4-phosphate by Legionella pneumophila DrrA. Schoebel S, Blankenfeldt W, Goody RS, Itzen A. EMBO Rep. 11 598-604 (2010)
  4. Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Zhu Y, Hu L, Zhou Y, Yao Q, Liu L, Shao F. Proc. Natl. Acad. Sci. U.S.A. 107 4699-4704 (2010)
  5. The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Arasaki K, Toomre DK, Roy CR. Cell Host Microbe 11 46-57 (2012)
  6. VipD of Legionella pneumophila targets activated Rab5 and Rab22 to interfere with endosomal trafficking in macrophages. Ku B, Lee KH, Park WS, Yang CS, Ge J, Lee SG, Cha SS, Shao F, Heo WD, Jung JU, Oh BH. PLoS Pathog. 8 e1003082 (2012)
  7. The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin-fold-Rab interface and association with PI3P-positive membranes. Cabrera M, Nordmann M, Perz A, Schmedt D, Gerondopoulos A, Barr F, Piehler J, Engelbrecht-Vandré S, Ungermann C. J. Cell. Sci. 127 1043-1051 (2014)
  8. The Rab family of proteins: 25 years on. Kelly EE, Horgan CP, Goud B, McCaffrey MW. Biochem. Soc. Trans. 40 1337-1347 (2012)
  9. eIF2B promotes eIF5 dissociation from eIF2*GDP to facilitate guanine nucleotide exchange for translation initiation. Jennings MD, Zhou Y, Mohammad-Qureshi SS, Bennett D, Pavitt GD. Genes Dev. 27 2696-2707 (2013)
  10. Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. Langemeyer L, Nunes Bastos R, Cai Y, Itzen A, Reinisch KM, Barr FA. Elife 3 e01623 (2014)
  11. Guanine nucleotide exchange factors (GEFs) have a critical but not exclusive role in organelle localization of Rab GTPases. Cabrera M, Ungermann C. J. Biol. Chem. 288 28704-28712 (2013)
  12. Structural insights into a unique Legionella pneumophila effector LidA recognizing both GDP and GTP bound Rab1 in their active state. Cheng W, Yin K, Lu D, Li B, Zhu D, Chen Y, Zhang H, Xu S, Chai J, Gu L. PLoS Pathog. 8 e1002528 (2012)
  13. Host-pathogen interaction profiling using self-assembling human protein arrays. Yu X, Decker KB, Barker K, Neunuebel MR, Saul J, Graves M, Westcott N, Hang H, LaBaer J, Qiu J, Machner MP. J. Proteome Res. 14 1920-1936 (2015)
  14. Rab GTPases and tethering in the yeast endocytic pathway. Lachmann J, Ungermann C, Engelbrecht-Vandré S. Small GTPases 2 182-186 (2011)
  15. AMPylation is critical for Rab1 localization to vacuoles containing Legionella pneumophila. Hardiman CA, Roy CR. MBio 5 e01035-13 (2014)
  16. Structural analyses of Legionella LepB reveal a new GAP fold that catalytically mimics eukaryotic RasGAP. Yu Q, Hu L, Yao Q, Zhu Y, Dong N, Wang DC, Shao F. Cell Res. 23 775-787 (2013)
  17. The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. Mishra AK, Del Campo CM, Collins RE, Roy CR, Lambright DG. J. Biol. Chem. 288 24000-24011 (2013)
  18. Modulation of membrane phosphoinositide dynamics by the phosphatidylinositide 4-kinase activity of the Legionella LepB effector. Dong N, Niu M, Hu L, Yao Q, Zhou R, Shao F. Nat Microbiol 2 16236 (2016)
  19. Characterization of enzymes from Legionella pneumophila involved in reversible adenylylation of Rab1 protein. Müller MP, Shkumatov AV, Oesterlin LK, Schoebel S, Goody PR, Goody RS, Itzen A. J. Biol. Chem. 287 35036-35046 (2012)
  20. Innate immunity kinase TAK1 phosphorylates Rab1 on a hotspot for posttranslational modifications by host and pathogen. Levin RS, Hertz NT, Burlingame AL, Shokat KM, Mukherjee S. Proc. Natl. Acad. Sci. U.S.A. 113 E4776-83 (2016)
  21. The versatile Legionella effector protein DrrA. Goody RS, Müller MP, Schoebel S, Oesterlin LK, Blümer J, Peters H, Blankenfeldt W, Itzen A. Commun Integr Biol 4 72-74 (2011)
  22. Lpg0393 of Legionella pneumophila is a guanine-nucleotide exchange factor for Rab5, Rab21 and Rab22. Sohn YS, Shin HC, Park WS, Ge J, Kim CH, Lee BL, Heo WD, Jung JU, Rigden DJ, Oh BH. PLoS ONE 10 e0118683 (2015)
  23. A guanine nucleotide exchange factor (GEF) limits Rab GTPase-driven membrane fusion. Langemeyer L, Perz A, Kümmel D, Ungermann C. J. Biol. Chem. 293 731-739 (2018)
  24. GOP-1 promotes apoptotic cell degradation by activating the small GTPase Rab2 in C. elegans. Yin J, Huang Y, Guo P, Hu S, Yoshina S, Xuan N, Gan Q, Mitani S, Yang C, Wang X. J. Cell Biol. 216 1775-1794 (2017)
  25. Discovery of Rab1 binding sites using an ensemble of clustering methods. Lukman S, Nguyen MN, Sim K, Teo JC. Proteins 85 859-871 (2017)
  26. Legionella- and host-driven lipid flux at LCV-ER membrane contact sites promotes vacuole remodeling. Vormittag S, Hüsler D, Haneburger I, Kroniger T, Anand A, Prantl M, Barisch C, Maaß S, Becher D, Letourneur F, Hilbi H. EMBO Rep 24 e56007 (2023)
  27. Rabs on the fly: Functions of Rab GTPases during development. Caviglia S, Flores-Benitez D, Lattner J, Luschnig S, Brankatschk M. Small GTPases 10 89-98 (2019)
  28. SPIN90, an adaptor protein, alters the proximity between Rab5 and Gapex5 and facilitates Rab5 activation during EGF endocytosis. Kim H, Oh H, Oh YS, Bae J, Hong NH, Park SJ, Ahn S, Lee M, Rhee S, Lee SH, Jun Y, Kim SH, Huh YH, Song WK. Exp. Mol. Med. 51 85 (2019)