2woj Citations

The structural basis of tail-anchored membrane protein recognition by Get3.

Nature 461 361-6 (2009)
Cited: 120 times
EuropePMC logo PMID: 19675567

Abstract

Targeting of newly synthesized membrane proteins to the endoplasmic reticulum is an essential cellular process. Most membrane proteins are recognized and targeted co-translationally by the signal recognition particle. However, nearly 5% of membrane proteins are 'tail-anchored' by a single carboxy-terminal transmembrane domain that cannot access the co-translational pathway. Instead, tail-anchored proteins are targeted post-translationally by a conserved ATPase termed Get3. The mechanistic basis for tail-anchored protein recognition or targeting by Get3 is not known. Here we present crystal structures of yeast Get3 in 'open' (nucleotide-free) and 'closed' (ADP.AlF(4)(-)-bound) dimer states. In the closed state, the dimer interface of Get3 contains an enormous hydrophobic groove implicated by mutational analyses in tail-anchored protein binding. In the open state, Get3 undergoes a striking rearrangement that disrupts the groove and shields its hydrophobic surfaces. These data provide a molecular mechanism for nucleotide-regulated binding and release of tail-anchored proteins during their membrane targeting by Get3.

Reviews - 2woj mentioned but not cited (8)

  1. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Hegde RS, Keenan RJ. Nat. Rev. Mol. Cell Biol. 12 787-798 (2011)
  2. The complex process of GETting tail-anchored membrane proteins to the ER. Chartron JW, Clemons WM, Suloway CJ. Curr. Opin. Struct. Biol. 22 217-224 (2012)
  3. Structures of Get3, Get4, and Get5 provide new models for TA membrane protein targeting. Simpson PJ, Schwappach B, Dohlman HG, Isaacson RL. Structure 18 897-902 (2010)
  4. Helix insertion into bilayers and the evolution of membrane proteins. Renthal R. Cell. Mol. Life Sci. 67 1077-1088 (2010)
  5. ATPase and GTPase Tangos Drive Intracellular Protein Transport. Shan SO. Trends Biochem. Sci. 41 1050-1060 (2016)
  6. Mechanisms of Tail-Anchored Membrane Protein Targeting and Insertion. Chio US, Cho H, Shan SO. Annu. Rev. Cell Dev. Biol. 33 417-438 (2017)
  7. A structural perspective on tail-anchored protein biogenesis by the GET pathway. Mateja A, Keenan RJ. Curr. Opin. Struct. Biol. 51 195-202 (2018)
  8. Guiding tail-anchored membrane proteins to the endoplasmic reticulum in a chaperone cascade. Shan SO. J. Biol. Chem. 294 16577-16586 (2019)

Articles - 2woj mentioned but not cited (20)

  1. The structural basis of tail-anchored membrane protein recognition by Get3. Mateja A, Szlachcic A, Downing ME, Dobosz M, Mariappan M, Hegde RS, Keenan RJ. Nature 461 361-366 (2009)
  2. The mechanism of membrane-associated steps in tail-anchored protein insertion. Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ. Nature 477 61-66 (2011)
  3. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Stefer S, Reitz S, Wang F, Wild K, Pang YY, Schwarz D, Bomke J, Hein C, Löhr F, Bernhard F, Denic V, Dötsch V, Sinning I. Science 333 758-762 (2011)
  4. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Bozkurt G, Stjepanovic G, Vilardi F, Amlacher S, Wild K, Bange G, Favaloro V, Rippe K, Hurt E, Dobberstein B, Sinning I. Proc. Natl. Acad. Sci. U.S.A. 106 21131-21136 (2009)
  5. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Chartron JW, Suloway CJ, Zaslaver M, Clemons WM. Proc. Natl. Acad. Sci. U.S.A. 107 12127-12132 (2010)
  6. Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Mateja A, Paduch M, Chang HY, Szydlowska A, Kossiakoff AA, Hegde RS, Keenan RJ. Science 347 1152-1155 (2015)
  7. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. Hu J, Li J, Qian X, Denic V, Sha B. PLoS ONE 4 e8061 (2009)
  8. Nucleotide-dependent mechanism of Get3 as elucidated from free energy calculations. Wereszczynski J, McCammon JA. Proc. Natl. Acad. Sci. U.S.A. 109 7759-7764 (2012)
  9. A biochemical analysis of the constraints of tail-anchored protein biogenesis. Leznicki P, Warwicker J, High S. Biochem. J. 436 719-727 (2011)
  10. Mechanism of the asymmetric activation of the MinD ATPase by MinE. Park KT, Wu W, Lovell S, Lutkenhaus J. Mol. Microbiol. 85 271-281 (2012)
  11. Crystal structure of ATP-bound Get3-Get4-Get5 complex reveals regulation of Get3 by Get4. Gristick HB, Rao M, Chartron JW, Rome ME, Shan SO, Clemons WM. Nat. Struct. Mol. Biol. 21 437-442 (2014)
  12. A conserved archaeal pathway for tail-anchored membrane protein insertion. Sherrill J, Mariappan M, Dominik P, Hegde RS, Keenan RJ. Traffic 12 1119-1123 (2011)
  13. A protean clamp guides membrane targeting of tail-anchored proteins. Chio US, Chung S, Weiss S, Shan SO. Proc. Natl. Acad. Sci. U.S.A. 114 E8585-E8594 (2017)
  14. In search of tail-anchored protein machinery in plants: reevaluating the role of arsenite transporters. Maestre-Reyna M, Wu SM, Chang YC, Chen CC, Maestre-Reyna A, Wang AH, Chang HY. Sci Rep 7 46022 (2017)
  15. A conserved guided entry of tail-anchored pathway is involved in the trafficking of a subset of membrane proteins in Plasmodium falciparum. Kumar T, Maitra S, Rahman A, Bhattacharjee S. PLoS Pathog 17 e1009595 (2021)
  16. A trap mutant reveals the physiological client spectrum of TRC40. Coy-Vergara J, Rivera-Monroy J, Urlaub H, Lenz C, Schwappach B. J. Cell. Sci. 132 (2019)
  17. Characterization of Guided Entry of Tail-Anchored Proteins 3 Homologues in Mycobacterium tuberculosis. Hu K, Jordan AT, Zhang S, Dhabaria A, Kovach A, Rangel MV, Ueberheide B, Li H, Darwin KH. J. Bacteriol. 201 (2019)
  18. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Biomolecules 12 1345 (2022)
  19. Structural insights into metazoan pretargeting GET complexes. Keszei AFA, Yip MCJ, Hsieh TC, Shao S. Nat Struct Mol Biol 28 1029-1037 (2021)
  20. Structures of Get3d reveal a distinct architecture associated with the emergence of photosynthesis. Barlow AN, Manu MS, Saladi SM, Tarr PT, Yadav Y, Thinn AMM, Zhu Y, Laganowsky AD, Clemons WM, Ramasamy S. J Biol Chem 299 104752 (2023)


Reviews citing this publication (29)

  1. Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Starr DA, Fridolfsson HN. Annu. Rev. Cell Dev. Biol. 26 421-444 (2010)
  2. Membrane protein insertion at the endoplasmic reticulum. Shao S, Hegde RS. Annu. Rev. Cell Dev. Biol. 27 25-56 (2011)
  3. Protein folding and quality control in the ER. Araki K, Nagata K. Cold Spring Harb Perspect Biol 3 a007526 (2011)
  4. Chemistry of the retinoid (visual) cycle. Kiser PD, Golczak M, Palczewski K. Chem. Rev. 114 194-232 (2014)
  5. Biogenesis of tail-anchored proteins: the beginning for the end? Rabu C, Schmid V, Schwappach B, High S. J. Cell. Sci. 122 3605-3612 (2009)
  6. The ParA/MinD family puts things in their place. Lutkenhaus J. Trends Microbiol. 20 411-418 (2012)
  7. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Kiser PD, Golczak M, Maeda A, Palczewski K. Biochim. Biophys. Acta 1821 137-151 (2012)
  8. Post-translational translocation into the endoplasmic reticulum. Johnson N, Powis K, High S. Biochim. Biophys. Acta 1833 2403-2409 (2013)
  9. The Ways of Tails: the GET Pathway and more. Borgese N, Coy-Vergara J, Colombo SF, Schwappach B. Protein J 38 289-305 (2019)
  10. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. Lee JG, Ye Y. Bioessays 35 377-385 (2013)
  11. A portrait of the GET pathway as a surprisingly complicated young man. Denic V. Trends Biochem. Sci. 37 411-417 (2012)
  12. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Denic V, Dötsch V, Sinning I. Cold Spring Harb Perspect Biol 5 a013334 (2013)
  13. Design principles of protein biosynthesis-coupled quality control. Rodrigo-Brenni MC, Hegde RS. Dev. Cell 23 896-907 (2012)
  14. The evolution of protein targeting and translocation systems. Bohnsack MT, Schleiff E. Biochim. Biophys. Acta 1803 1115-1130 (2010)
  15. Metals in protein-protein interfaces. Song WJ, Sontz PA, Ambroggio XI, Tezcan FA. Annu Rev Biophys 43 409-431 (2014)
  16. Tail-anchored membrane proteins: exploring the complex diversity of tail-anchored-protein targeting in plant cells. Abell BM, Mullen RT. Plant Cell Rep. 30 137-151 (2011)
  17. All roads lead to Rome (but some may be harder to travel): SRP-independent translocation into the endoplasmic reticulum. Ast T, Schuldiner M. Crit. Rev. Biochem. Mol. Biol. 48 273-288 (2013)
  18. Structural and molecular mechanisms for membrane protein biogenesis by the Oxa1 superfamily. McDowell MA, Heimes M, Sinning I. Nat Struct Mol Biol 28 234-239 (2021)
  19. Maintaining a Healthy Proteome during Oxidative Stress. Reichmann D, Voth W, Jakob U. Mol. Cell 69 203-213 (2018)
  20. The mechanisms of integral membrane protein biogenesis. Hegde RS, Keenan RJ. Nat Rev Mol Cell Biol 23 107-124 (2022)
  21. Capture and delivery of tail-anchored proteins to the endoplasmic reticulum. Farkas Á, Bohnsack KE. J Cell Biol 220 e202105004 (2021)
  22. Stress-Activated Chaperones: A First Line of Defense. Voth W, Jakob U. Trends Biochem. Sci. 42 899-913 (2017)
  23. The emerging role of calcium-modulating cyclophilin ligand in posttranslational insertion of tail-anchored proteins into the endoplasmic reticulum membrane. Yamamoto Y, Sakisaka T. J. Biochem. 157 419-429 (2015)
  24. The natural history of Get3-like chaperones. Farkas Á, De Laurentiis EI, Schwappach B. Traffic 20 311-324 (2019)
  25. The roles of cytosolic quality control proteins, SGTA and the BAG6 complex, in disease. Benarroch R, Austin JM, Ahmed F, Isaacson RL. Adv Protein Chem Struct Biol 114 265-313 (2019)
  26. Looking for a safe haven: tail-anchored proteins and their membrane insertion pathways. Mehlhorn DG, Asseck LY, Grefen C. Plant Physiol 187 1916-1928 (2021)
  27. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Shan SO. Int J Mol Sci 24 1170 (2023)
  28. Targeting of Proteins for Translocation at the Endoplasmic Reticulum. Pool MR. Int J Mol Sci 23 3773 (2022)
  29. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. Int J Mol Sci 23 143 (2021)

Articles citing this publication (63)

  1. A ribosome-associating factor chaperones tail-anchored membrane proteins. Mariappan M, Li X, Stefanovic S, Sharma A, Mateja A, Keenan RJ, Hegde RS. Nature 466 1120-1124 (2010)
  2. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Wang F, Brown EC, Mak G, Zhuang J, Denic V. Mol. Cell 40 159-171 (2010)
  3. Bat3 promotes the membrane integration of tail-anchored proteins. Leznicki P, Clancy A, Schwappach B, High S. J. Cell. Sci. 123 2170-2178 (2010)
  4. WRB is the receptor for TRC40/Asna1-mediated insertion of tail-anchored proteins into the ER membrane. Vilardi F, Lorenz H, Dobberstein B. J. Cell. Sci. 124 1301-1307 (2011)
  5. A calmodulin-dependent translocation pathway for small secretory proteins. Shao S, Hegde RS. Cell 147 1576-1588 (2011)
  6. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Yamamoto Y, Sakisaka T. Mol. Cell 48 387-397 (2012)
  7. Ubiquilins Chaperone and Triage Mitochondrial Membrane Proteins for Degradation. Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS. Mol. Cell 63 21-33 (2016)
  8. Distinct pathways mediate the sorting of tail-anchored proteins to the plastid outer envelope. Dhanoa PK, Richardson LG, Smith MD, Gidda SK, Henderson MP, Andrews DW, Mullen RT. PLoS ONE 5 e10098 (2010)
  9. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Yamagata A, Mimura H, Sato Y, Yamashita M, Yoshikawa A, Fukai S. Genes Cells 15 29-41 (2010)
  10. Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins. Golczak M, Kiser PD, Sears AE, Lodowski DT, Blaner WS, Palczewski K. J. Biol. Chem. 287 23790-23807 (2012)
  11. Pathways of arsenic uptake and efflux. Yang HC, Fu HL, Lin YF, Rosen BP. Curr Top Membr 69 325-358 (2012)
  12. Remote origins of tail-anchored proteins. Borgese N, Righi M. Traffic 11 877-885 (2010)
  13. Precise timing of ATPase activation drives targeting of tail-anchored proteins. Rome ME, Rao M, Clemons WM, Shan SO. Proc. Natl. Acad. Sci. U.S.A. 110 7666-7671 (2013)
  14. SIMIBI twins in protein targeting and localization. Bange G, Sinning I. Nat. Struct. Mol. Biol. 20 776-780 (2013)
  15. The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions. Voth W, Schick M, Gates S, Li S, Vilardi F, Gostimskaya I, Southworth DR, Schwappach B, Jakob U. Mol. Cell 56 116-127 (2014)
  16. Structures of the scanning and engaged states of the mammalian SRP-ribosome complex. Voorhees RM, Hegde RS. Elife 4 (2015)
  17. Hydrophobic handoff for direct delivery of peroxisome tail-anchored proteins. Chen Y, Pieuchot L, Loh RA, Yang J, Kari TM, Wong JY, Jedd G. Nat Commun 5 5790 (2014)
  18. Mechanistic basis for a molecular triage reaction. Shao S, Rodrigo-Brenni MC, Kivlen MH, Hegde RS. Science 355 298-302 (2017)
  19. The transmembrane segment of a tail-anchored protein determines its degradative fate through dislocation from the endoplasmic reticulum. Claessen JH, Mueller B, Spooner E, Pivorunas VL, Ploegh HL. J. Biol. Chem. 285 20732-20739 (2010)
  20. Tail-anchor targeting by a Get3 tetramer: the structure of an archaeal homologue. Suloway CJ, Rome ME, Clemons WM. EMBO J. 31 707-719 (2012)
  21. Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases. Jeoung JH, Giese T, Grünwald M, Dobbek H. J. Mol. Biol. 396 1165-1179 (2010)
  22. Tryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing. Vogl C, Panou I, Yamanbaeva G, Wichmann C, Mangosing SJ, Vilardi F, Indzhykulian AA, Pangršič T, Santarelli R, Rodriguez-Ballesteros M, Weber T, Jung S, Cardenas E, Wu X, Wojcik SM, Kwan KY, Del Castillo I, Schwappach B, Strenzke N, Corey DP, Lin SY, Moser T. EMBO J. 35 2536-2552 (2016)
  23. Post-translational membrane insertion of tail-anchored transmembrane EF-hand Ca2+ sensor calneurons requires the TRC40/Asna1 protein chaperone. Hradsky J, Raghuram V, Reddy PP, Navarro G, Hupe M, Casado V, McCormick PJ, Sharma Y, Kreutz MR, Mikhaylova M. J. Biol. Chem. 286 36762-36776 (2011)
  24. The structure of Get4 reveals an alpha-solenoid fold adapted for multiple interactions in tail-anchored protein biogenesis. Bozkurt G, Wild K, Amlacher S, Hurt E, Dobberstein B, Sinning I. FEBS Lett. 584 1509-1514 (2010)
  25. Redox metabolism in Trypanosoma cruzi: functional characterization of tryparedoxins revisited. Arias DG, Marquez VE, Chiribao ML, Gadelha FR, Robello C, Iglesias AA, Guerrero SA. Free Radic. Biol. Med. 63 65-77 (2013)
  26. Differential gradients of interaction affinities drive efficient targeting and recycling in the GET pathway. Rome ME, Chio US, Rao M, Gristick H, Shan SO. Proc. Natl. Acad. Sci. U.S.A. 111 E4929-35 (2014)
  27. Get1 stabilizes an open dimer conformation of get3 ATPase by binding two distinct interfaces. Kubota K, Yamagata A, Sato Y, Goto-Ito S, Fukai S. J. Mol. Biol. 422 366-375 (2012)
  28. The ArsD As(III) metallochaperone. Ajees AA, Yang J, Rosen BP. Biometals 24 391-399 (2011)
  29. Interaction surface and topology of Get3-Get4-Get5 protein complex, involved in targeting tail-anchored proteins to endoplasmic reticulum. Chang YW, Lin TW, Li YC, Huang YS, Sun YJ, Hsiao CD. J. Biol. Chem. 287 4783-4789 (2012)
  30. The 1.4 A crystal structure of the ArsD arsenic metallochaperone provides insights into its interaction with the ArsA ATPase. Ye J, Ajees AA, Yang J, Rosen BP. Biochemistry 49 5206-5212 (2010)
  31. Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance. Xing S, Mehlhorn DG, Wallmeroth N, Asseck LY, Kar R, Voss A, Denninger P, Schmidt VA, Schwarzländer M, Stierhof YD, Grossmann G, Grefen C. Proc. Natl. Acad. Sci. U.S.A. 114 E1544-E1553 (2017)
  32. Tail-anchored Protein Insertion in Mammals: FUNCTION AND RECIPROCAL INTERACTIONS OF THE TWO SUBUNITS OF THE TRC40 RECEPTOR. Colombo SF, Cardani S, Maroli A, Vitiello A, Soffientini P, Crespi A, Bram RF, Benfante R, Borgese N. J. Biol. Chem. 291 15292-15306 (2016)
  33. GET two for one. Girstmair H, Buchner J. Mol. Cell 56 1-2 (2014)
  34. Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting. Gristick HB, Rome ME, Chartron JW, Rao M, Hess S, Shan SO, Clemons WM. J. Biol. Chem. 290 30006-30017 (2015)
  35. The GET System Inserts the Tail-Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes. Srivastava R, Zalisko BE, Keenan RJ, Howell SH. Plant Physiol. 173 1137-1145 (2017)
  36. Intracellular periodontal pathogen exploits recycling pathway to exit from infected cells. Takeuchi H, Takada A, Kuboniwa M, Amano A. Cell. Microbiol. 18 928-948 (2016)
  37. The Yeast Nbp35-Cfd1 Cytosolic Iron-Sulfur Cluster Scaffold Is an ATPase. Camire EJ, Grossman JD, Thole GJ, Fleischman NM, Perlstein DL. J. Biol. Chem. 290 23793-23802 (2015)
  38. A homolog of GuidedEntry of Tail-anchored proteins3 functions in membrane-specific protein targeting in chloroplasts of Arabidopsis. Anderson SA, Satyanarayan MB, Wessendorf RL, Lu Y, Fernandez DE. Plant Cell 33 2812-2833 (2021)
  39. Regulated targeting of the monotopic hairpin membrane protein Erg1 requires the GET pathway. Farkas Á, Urlaub H, Bohnsack KE, Schwappach B. J Cell Biol 221 e202201036 (2022)
  40. The STI1-domain is a flexible alpha-helical fold with a hydrophobic groove. Fry MY, Saladi SM, Clemons WM. Protein Sci 30 882-898 (2021)
  41. It takes two to Get3. Sinning I, Bange G, Wild K. Structure 19 1353-1355 (2011)
  42. A Chaperone Lid Ensures Efficient and Privileged Client Transfer during Tail-Anchored Protein Targeting. Chio US, Chung S, Weiss S, Shan SO. Cell Rep 26 37-44.e7 (2019)
  43. Alternative redox forms of ASNA-1 separate insulin signaling from tail-anchored protein targeting and cisplatin resistance in C. elegans. Raj D, Billing O, Podraza-Farhanieh A, Kraish B, Hemmingsson O, Kao G, Naredi P. Sci Rep 11 8678 (2021)
  44. Doa10 is a membrane protein retrotranslocase in ER-associated protein degradation. Schmidt CC, Vasic V, Stein A. Elife 9 (2020)
  45. The ATPase activity of Asna1/TRC40 is required for pancreatic progenitor cell survival. Norlin S, Parekh V, Edlund H. Development 145 (2018)
  46. A proinsulin-dependent interaction between ENPL-1 and ASNA-1 in neurons is required to maintain insulin secretion in C. elegans. Podraza-Farhanieh A, Raj D, Kao G, Naredi P. Development 150 dev201035 (2023)
  47. Analysis of tail-anchored protein translocation pathway in plants. Manu MS, Ghosh D, Chaudhari BP, Ramasamy S. Biochem Biophys Rep 14 161-167 (2018)
  48. Biallelic Variants in ASNA1, Encoding a Cytosolic Targeting Factor of Tail-Anchored Proteins, Cause Rapidly Progressive Pediatric Cardiomyopathy. Verhagen JMA, van den Born M, van der Linde HC, G J Nikkels P, Verdijk RM, Kivlen MH, van Unen LMA, Baas AF, Ter Heide H, van Osch-Gevers L, Hoogeveen-Westerveld M, Herkert JC, Bertoli-Avella AM, van Slegtenhorst MA, Wessels MW, Verheijen FW, Hassel D, Hofstra RMW, Hegde RS, van Hasselt PM, van Ham TJ, van de Laar IMBH. Circ Genom Precis Med 12 397-406 (2019)
  49. Clearance of yeast eRF-3 prion [PSI+] by amyloid enlargement due to the imbalance between chaperone Ssa1 and cochaperone Sgt2. Arai C, Kurahashi H, Pack CG, Sako Y, Nakamura Y. Translation (Austin) 1 e26574 (2013)
  50. Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. Dederer V, Khmelinskii A, Huhn AG, Okreglak V, Knop M, Lemberg MK. Elife 8 (2019)
  51. Deciphering the molecular organization of GET pathway chaperones through native mass spectrometry. Giska F, Mariappan M, Bhattacharyya M, Gupta K. Biophys J 121 1289-1298 (2022)
  52. Endoplasmic reticulum membrane receptors of the GET pathway are conserved throughout eukaryotes. Asseck LY, Mehlhorn DG, Monroy JR, Ricardi MM, Breuninger H, Wallmeroth N, Berendzen KW, Nowrousian M, Xing S, Schwappach B, Bayer M, Grefen C. Proc Natl Acad Sci U S A 118 (2021)
  53. Identification of C. elegans ASNA-1 domains and tissue requirements that differentially influence platinum sensitivity and growth control. Raj D, Podraza-Farhanieh A, Gallego P, Kao G, Naredi P. PLoS Genet 18 e1010538 (2022)
  54. Implications of Membrane Binding by the Fe-S Cluster-Containing N-Terminal Domain in the Drosophila Mitochondrial Replicative DNA Helicase. So M, Stiban J, Ciesielski GL, Hovde SL, Kaguni LS. Front Genet 12 790521 (2021)
  55. Mechanism of an intramembrane chaperone for multipass membrane proteins. Smalinskaitė L, Kim MK, Lewis AJO, Keenan RJ, Hegde RS. Nature 611 161-166 (2022)
  56. Mutations in the ArsA ATPase that restore interaction with the ArsD metallochaperone. Pillai JK, Venkadesh S, Ajees AA, Rosen BP, Bhattacharjee H. Biometals 27 1263-1275 (2014)
  57. Retro-2 protects cells from ricin toxicity by inhibiting ASNA1-mediated ER targeting and insertion of tail-anchored proteins. Morgens DW, Chan C, Kane AJ, Weir NR, Li A, Dubreuil MM, Tsui CK, Hess GT, Lavertu A, Han K, Polyakov N, Zhou J, Handy EL, Alabi P, Dombroski A, Yao D, Altman RB, Sello JK, Denic V, Bassik MC. Elife 8 (2019)
  58. Structurally derived universal mechanism for the catalytic cycle of the tail-anchored targeting factor Get3. Fry MY, Najdrová V, Maggiolo AO, Saladi SM, Doležal P, Clemons WM. Nat Struct Mol Biol 29 820-830 (2022)
  59. Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion. Chio US, Liu Y, Chung S, Shim WJ, Chandrasekar S, Weiss S, Shan SO. J Cell Biol 220 e202103079 (2021)
  60. Tail-Anchored Protein Insertion by a Single Get1/2 Heterodimer. Zalisko BE, Chan C, Denic V, Rock RS, Keenan RJ. Cell Rep 20 2287-2293 (2017)
  61. The GET insertase exhibits conformational plasticity and induces membrane thinning. McDowell MA, Heimes M, Enkavi G, Farkas Á, Saar D, Wild K, Schwappach B, Vattulainen I, Sinning I. Nat Commun 14 7355 (2023)
  62. The GET pathway serves to activate Atg32-mediated mitophagy by ER targeting of the Ppg1-Far complex. Onishi M, Kubota M, Duan L, Tian Y, Okamoto K. Life Sci Alliance 6 e202201640 (2023)
  63. The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER. Heo P, Culver JA, Miao J, Pincet F, Mariappan M. Cell Rep 42 111921 (2023)