2whv Citations

Structural determinants of cadherin-23 function in hearing and deafness.

Neuron 66 85-100 (2010)
Related entries: 2wbx, 2wcp, 2wd0

Cited: 84 times
EuropePMC logo PMID: 20399731

Abstract

The hair-cell tip link, a fine filament directly conveying force to mechanosensitive transduction channels, is composed of two proteins, protocadherin-15 and cadherin-23, whose mutation causes deafness. However, their molecular structure, elasticity, and deafness-related structural defects are unknown. We present crystal structures of the first and second extracellular cadherin repeats of cadherin-23. Overall, structures show typical cadherin folds, but reveal an elongated N terminus that precludes classical cadherin interactions and contributes to an N-terminal Ca(2+)-binding site. The deafness mutation D101G, in the linker region between the repeats, causes a slight bend between repeats and decreases Ca(2+) affinity. Molecular dynamics simulations suggest that cadherin-23 repeats are stiff and that either removing Ca(2+) or mutating Ca(2+)-binding residues reduces rigidity and unfolding strength. The structures define an uncharacterized cadherin family and, with simulations, suggest mechanisms underlying inherited deafness and how cadherin-23 may bind with itself and with protocadherin-15 to form the tip link.

Reviews - 2whv mentioned but not cited (1)

  1. Thinking outside the cell: how cadherins drive adhesion. Brasch J, Harrison OJ, Honig B, Shapiro L. Trends Cell Biol 22 299-310 (2012)

Articles - 2whv mentioned but not cited (6)

  1. Structural determinants of cadherin-23 function in hearing and deafness. Sotomayor M, Weihofen WA, Gaudet R, Corey DP. Neuron 66 85-100 (2010)
  2. Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas. Zhang Q, Peng C, Song J, Zhang Y, Chen J, Song Z, Shou X, Ma Z, Peng H, Jian X, He W, Ye Z, Li Z, Wang Y, Ye H, Zhang Z, Shen M, Tang F, Chen H, Shi Z, Chen C, Chen Z, Shen Y, Wang Y, Lu S, Zhang J, Li Y, Li S, Mao Y, Zhou L, Yan H, Shi Y, Huang C, Zhao Y. Am J Hum Genet 100 817-823 (2017)
  3. Zooming in on Cadherin-23: Structural Diversity and Potential Mechanisms of Inherited Deafness. Jaiganesh A, De-la-Torre P, Patel AA, Termine DJ, Velez-Cortes F, Chen C, Sotomayor M. Structure 26 1210-1225.e4 (2018)
  4. Heterophilic and homophilic cadherin interactions in intestinal intermicrovillar links are species dependent. Gray ME, Johnson ZR, Modak D, Tamilselvan E, Tyska MJ, Sotomayor M. PLoS Biol 19 e3001463 (2021)
  5. Structural basis of the strong cell-cell junction formed by cadherin-23. Singaraju GS, Sagar A, Kumar A, Samuel JS, Hazra JP, Sannigrahi MK, Yennamalli RM, Ashish F, Rakshit S. FEBS J 287 2328-2347 (2019)
  6. Interpreting the Evolutionary Echoes of a Protein Complex Essential for Inner-Ear Mechanosensation. Nisler CR, Narui Y, Scheib E, Choudhary D, Bowman JD, Mandayam Bharathi H, Lynch VJ, Sotomayor M. Mol Biol Evol 40 msad057 (2023)


Reviews citing this publication (23)

  1. Cadherins in brain morphogenesis and wiring. Hirano S, Takeichi M. Physiol Rev 92 597-634 (2012)
  2. Integrating the active process of hair cells with cochlear function. Hudspeth AJ. Nat Rev Neurosci 15 600-614 (2014)
  3. How the genetics of deafness illuminates auditory physiology. Richardson GP, de Monvel JB, Petit C. Annu Rev Physiol 73 311-334 (2011)
  4. Usher protein functions in hair cells and photoreceptors. Cosgrove D, Zallocchi M. Int J Biochem Cell Biol 46 80-89 (2014)
  5. Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Peng AW, Salles FT, Pan B, Ricci AJ. Nat Commun 2 523 (2011)
  6. Stiffened lipid platforms at molecular force foci. Anishkin A, Kung C. Proc Natl Acad Sci U S A 110 4886-4892 (2013)
  7. Sorting out a promiscuous superfamily: towards cadherin connectomics. Sotomayor M, Gaudet R, Corey DP. Trends Cell Biol 24 524-536 (2014)
  8. Sensing sound: molecules that orchestrate mechanotransduction by hair cells. Kazmierczak P, Müller U. Trends Neurosci 35 220-229 (2012)
  9. Hair-Bundle Links: Genetics as the Gateway to Function. Richardson GP, Petit C. Cold Spring Harb Perspect Med 9 a033142 (2019)
  10. Structures of usher syndrome 1 proteins and their complexes. Pan L, Zhang M. Physiology (Bethesda) 27 25-42 (2012)
  11. The elusive mechanotransduction machinery of hair cells. Zhao B, Müller U. Curr Opin Neurobiol 34 172-179 (2015)
  12. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Jaiganesh A, Narui Y, Araya-Secchi R, Sotomayor M. Cold Spring Harb Perspect Biol 10 a029280 (2018)
  13. The Mechanosensory Transduction Machinery in Inner Ear Hair Cells. Zheng W, Holt JR. Annu Rev Biophys 50 31-51 (2021)
  14. Ca2+ homeostasis defects and hereditary hearing loss. Mammano F. Biofactors 37 182-188 (2011)
  15. The plasma membrane calcium pump in the hearing process: physiology and pathology. Carafoli E. Sci China Life Sci 54 686-690 (2011)
  16. Auditory and vestibular hair cell stereocilia: relationship between functionality and inner ear disease. Ciuman RR. J Laryngol Otol 125 991-1003 (2011)
  17. Hearing Function, Degeneration, and Disease: Spotlight on the Stria Vascularis. Thulasiram MR, Ogier JM, Dabdoub A. Front Cell Dev Biol 10 841708 (2022)
  18. The molecules that mediate sensory transduction in the mammalian inner ear. Pan B, Holt JR. Curr Opin Neurobiol 34 165-171 (2015)
  19. Noise-induced hearing loss: new animal models. Christie KW, Eberl DF. Curr Opin Otolaryngol Head Neck Surg 22 374-383 (2014)
  20. Sensing sound: Cellular specializations and molecular force sensors. Qiu X, Müller U. Neuron 110 3667-3687 (2022)
  21. Active Biomechanics of Sensory Hair Bundles. Bozovic D. Cold Spring Harb Perspect Med 9 a035014 (2019)
  22. Mechanisms in cochlear hair cell mechano-electrical transduction for acquisition of sound frequency and intensity. Liu S, Wang S, Zou L, Xiong W. Cell Mol Life Sci 78 5083-5094 (2021)
  23. Cochlear Proteins Associated with Noise-induced Hearing Loss: An Update. Jain RK, Pingle SK, Tumane RG, Thakkar LR, Jawade AA, Barapatre A, Trivedi M. Indian J Occup Environ Med 22 60-73 (2018)

Articles citing this publication (54)

  1. Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion. Crawley SW, Shifrin DA, Grega-Larson NE, McConnell RE, Benesh AE, Mao S, Zheng Y, Zheng QY, Nam KT, Millis BA, Kachar B, Tyska MJ. Cell 157 433-446 (2014)
  2. Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Sotomayor M, Weihofen WA, Gaudet R, Corey DP. Nature 492 128-132 (2012)
  3. Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A, Perfettini I, Pepermans E, Estivalet A, Carette D, Aghaie A, Ebermann I, Lelli A, Iribarne M, Hardelin JP, Weil D, Sahel JA, El-Amraoui A, Petit C. J Cell Biol 199 381-399 (2012)
  4. Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. Alagramam KN, Goodyear RJ, Geng R, Furness DN, van Aken AF, Marcotti W, Kros CJ, Richardson GP. PLoS One 6 e19183 (2011)
  5. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. Indzhykulian AA, Stepanyan R, Nelina A, Spinelli KJ, Ahmed ZM, Belyantseva IA, Friedman TB, Barr-Gillespie PG, Frolenkov GI. PLoS Biol 11 e1001583 (2013)
  6. Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis. Bonnet C, Grati M, Marlin S, Levilliers J, Hardelin JP, Parodi M, Niasme-Grare M, Zelenika D, Délépine M, Feldmann D, Jonard L, El-Amraoui A, Weil D, Delobel B, Vincent C, Dollfus H, Eliot MM, David A, Calais C, Vigneron J, Montaut-Verient B, Bonneau D, Dubin J, Thauvin C, Duvillard A, Francannet C, Mom T, Lacombe D, Duriez F, Drouin-Garraud V, Thuillier-Obstoy MF, Sigaudy S, Frances AM, Collignon P, Challe G, Couderc R, Lathrop M, Sahel JA, Weissenbach J, Petit C, Denoyelle F. Orphanet J Rare Dis 6 21 (2011)
  7. Parallel evolution of auditory genes for echolocation in bats and toothed whales. Shen YY, Liang L, Li GS, Murphy RW, Zhang YP. PLoS Genet 8 e1002788 (2012)
  8. Resolving the molecular mechanism of cadherin catch bond formation. Manibog K, Li H, Rakshit S, Sivasankar S. Nat Commun 5 3941 (2014)
  9. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity. Nicoludis JM, Lau SY, Schärfe CP, Marks DS, Weihofen WA, Gaudet R. Structure 23 2087-2098 (2015)
  10. Sliding adhesion confers coherent motion to hair cell stereocilia and parallel gating to transduction channels. Karavitaki KD, Corey DP. J Neurosci 30 9051-9063 (2010)
  11. Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy. Cooper SR, Jontes JD, Sotomayor M. Elife 5 e18529 (2016)
  12. Development and regeneration of sensory transduction in auditory hair cells requires functional interaction between cadherin-23 and protocadherin-15. Lelli A, Kazmierczak P, Kawashima Y, Müller U, Holt JR. J Neurosci 30 11259-11269 (2010)
  13. The novel PMCA2 pump mutation Tommy impairs cytosolic calcium clearance in hair cells and links to deafness in mice. Bortolozzi M, Brini M, Parkinson N, Crispino G, Scimemi P, De Siati RD, Di Leva F, Parker A, Ortolano S, Arslan E, Brown SD, Carafoli E, Mammano F. J Biol Chem 285 37693-37703 (2010)
  14. Elasticity of individual protocadherin 15 molecules implicates tip links as the gating springs for hearing. Bartsch TF, Hengel FE, Oswald A, Dionne G, Chipendo IV, Mangat SS, El Shatanofy M, Shapiro L, Müller U, Hudspeth AJ. Proc Natl Acad Sci U S A 116 11048-11056 (2019)
  15. Stereocilia membrane deformation: implications for the gating spring and mechanotransduction channel. Powers RJ, Roy S, Atilgan E, Brownell WE, Sun SX, Gillespie PG, Spector AA. Biophys J 102 201-210 (2012)
  16. Stiffness and tension gradients of the hair cell's tip-link complex in the mammalian cochlea. Tobin M, Chaiyasitdhi A, Michel V, Michalski N, Martin P. Elife 8 e43473 (2019)
  17. Cadherin-23 mediates heterotypic cell-cell adhesion between breast cancer epithelial cells and fibroblasts. Apostolopoulou M, Ligon L. PLoS One 7 e33289 (2012)
  18. Calcium signaling in the cochlea - Molecular mechanisms and physiopathological implications. Ceriani F, Mammano F. Cell Commun Signal 10 20 (2012)
  19. An elastic element in the protocadherin-15 tip link of the inner ear. Araya-Secchi R, Neel BL, Sotomayor M. Nat Commun 7 13458 (2016)
  20. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. Pirolli D, Sciandra F, Bozzi M, Giardina B, Brancaccio A, De Rosa MC. PLoS One 9 e103866 (2014)
  21. Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture. Dionne G, Qiu X, Rapp M, Liang X, Zhao B, Peng G, Katsamba PS, Ahlsen G, Rubinstein R, Potter CS, Carragher B, Honig B, Müller U, Shapiro L. Neuron 99 480-492.e5 (2018)
  22. Nanomechanics of the cadherin ectodomain: "canalization" by Ca2+ binding results in a new mechanical element. Oroz J, Valbuena A, Vera AM, Mendieta J, Mendieta J, Gómez-Puertas P, Carrión-Vázquez M. J Biol Chem 286 9405-9418 (2011)
  23. Large protein assemblies formed by multivalent interactions between cadherin23 and harmonin suggest a stable anchorage structure at the tip link of stereocilia. Wu L, Pan L, Zhang C, Zhang M. J Biol Chem 287 33460-33471 (2012)
  24. Noddy, a mouse harboring a missense mutation in protocadherin-15, reveals the impact of disrupting a critical interaction site between tip-link cadherins in inner ear hair cells. Geng R, Sotomayor M, Kinder KJ, Gopal SR, Gerka-Stuyt J, Chen DH, Hardisty-Hughes RE, Ball G, Parker A, Gaudet R, Furness D, Brown SD, Corey DP, Alagramam KN. J Neurosci 33 4395-4404 (2013)
  25. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures. Koussa MA, Sotomayor M, Wong WP. Methods 67 134-141 (2014)
  26. An ENU-induced mutation of Cdh23 causes congenital hearing loss, but no vestibular dysfunction, in mice. Manji SS, Miller KA, Williams LH, Andreasen L, Siboe M, Rose E, Bahlo M, Kuiper M, Dahl HH. Am J Pathol 179 903-914 (2011)
  27. Structural determinants of protocadherin-15 mechanics and function in hearing and balance perception. Choudhary D, Narui Y, Neel BL, Wimalasena LN, Klanseck CF, De-la-Torre P, Chen C, Araya-Secchi R, Tamilselvan E, Sotomayor M. Proc Natl Acad Sci U S A 117 24837-24848 (2020)
  28. The local forces acting on the mechanotransduction channel in hair cell stereocilia. Powers RJ, Kulason S, Atilgan E, Brownell WE, Sun SX, Barr-Gillespie PG, Spector AA. Biophys J 106 2519-2528 (2014)
  29. A Partial Calcium-Free Linker Confers Flexibility to Inner-Ear Protocadherin-15. Powers RE, Gaudet R, Sotomayor M. Structure 25 482-495 (2017)
  30. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis. Herget M, Scheibinger M, Guo Z, Jan TA, Adams CM, Cheng AG, Heller S. PLoS One 8 e66026 (2013)
  31. A Mechanically Weak Extracellular Membrane-Adjacent Domain Induces Dimerization of Protocadherin-15. De-la-Torre P, Choudhary D, Araya-Secchi R, Narui Y, Sotomayor M. Biophys J 115 2368-2385 (2018)
  32. Anomalous Brownian motion discloses viscoelasticity in the ear's mechanoelectrical-transduction apparatus. Kozlov AS, Andor-Ardó D, Hudspeth AJ. Proc Natl Acad Sci U S A 109 2896-2901 (2012)
  33. Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction. Selvakumar D, Drescher MJ, Drescher DG. J Biol Chem 288 7215-7229 (2013)
  34. A Genomic and Protein-Protein Interaction Analyses of Nonsyndromic Hearing Impairment in Cameroon Using Targeted Genomic Enrichment and Massively Parallel Sequencing. Lebeko K, Manyisa N, Chimusa ER, Mulder N, Dandara C, Wonkam A. OMICS 21 90-99 (2017)
  35. Resolving the genetic heterogeneity of prelingual hearing loss within one family: Performance comparison and application of two targeted next generation sequencing approaches. Lu Y, Zhou X, Jin Z, Cheng J, Shen W, Ji F, Liu L, Zhang X, Zhang M, Cao Y, Han D, Choy K, Yuan H. J Hum Genet 59 599-607 (2014)
  36. Single-molecule force spectroscopy reveals the dynamic strength of the hair-cell tip-link connection. Mulhall EM, Ward A, Yang D, Koussa MA, Corey DP, Wong WP. Nat Commun 12 849 (2021)
  37. Study of protein structural deformations under external mechanical perturbations by a coarse-grained simulation method. Chen J, Xie ZR, Wu Y. Biomech Model Mechanobiol 15 317-329 (2016)
  38. A mutation in the cdh23 gene causes age-related hearing loss in Cdh23(nmf308/nmf308) mice. Liu S, Li S, Zhu H, Cheng S, Zheng QY. Gene 499 309-317 (2012)
  39. Nanomechanical properties of MscL α helices: A steered molecular dynamics study. Bavi N, Bavi O, Vossoughi M, Naghdabadi R, Hill AP, Martinac B, Jamali Y. Channels (Austin) 11 209-223 (2017)
  40. Genetic variations in protocadherin 15 and their interactions with noise exposure associated with noise-induced hearing loss in Chinese population. Zhang X, Liu Y, Zhang L, Yang Z, Shao Y, Jiang C, Wang Q, Fang X, Xu Y, Wang H, Zhang S, Zhu Y. Environ Res 135 247-252 (2014)
  41. Nanomechanics of tip-link cadherins. Oroz J, Galera-Prat A, Hervás R, Valbuena A, Fernández-Bravo D, Carrión-Vázquez M. Sci Rep 9 13306 (2019)
  42. Using thermal scanning assays to test protein-protein interactions of inner-ear cadherins. Choudhary D, Kumar A, Magliery TJ, Sotomayor M. PLoS One 12 e0189546 (2017)
  43. Conditional deletion of calcium-modulating cyclophilin ligand causes deafness in mice. Bryda EC, Johnson NT, Ohlemiller KK, Besch-Williford CL, Moore E, Bram RJ. Mamm Genome 23 270-276 (2012)
  44. Broken force dispersal network in tip-links by the mutations at the Ca2+-binding residues induces hearing-loss. Hazra JP, Sagar A, Arora N, Deb D, Kaur S, Rakshit S. Biochem J 476 2411-2425 (2019)
  45. Anisotropy in mechanical unfolding of protein upon partner-assisted pulling and handle-assisted pulling. Arora N, Hazra JP, Rakshit S. Commun Biol 4 925 (2021)
  46. Proteomic identification of hair cell repair proteins in the model sea anemone Nematostella vectensis. Tang PC, Watson GM. Hear Res 327 245-256 (2015)
  47. Remarkable disparity in mechanical response among the extracellular domains of type I and II cadherins. Liu R, Wu F, Thiery JP. J Biomol Struct Dyn 31 1137-1149 (2013)
  48. Striatin Is Required for Hearing and Affects Inner Hair Cells and Ribbon Synapses. Nadar-Ponniah PT, Taiber S, Caspi M, Koffler-Brill T, Dror AA, Siman-Tov R, Rubinstein M, Padmanabhan K, Luxenburg C, Lang RA, Avraham KB, Rosin-Arbesfeld R. Front Cell Dev Biol 8 615 (2020)
  49. The association of genetic polymorphisms in protocadherin 15 with sudden sensorineural hearing loss in a Chinese population. Lan Y, Hou T, Peng L, Li Y, Yin S. J Clin Lab Anal 37 e24896 (2023)
  50. cAMP and voltage modulate rat auditory mechanotransduction by decreasing the stiffness of gating springs. Mecca AA, Caprara GA, Peng AW. Proc Natl Acad Sci U S A 119 e2107567119 (2022)
  51. Identification of four novel variants in the CDH23 gene from four affected families with hearing loss. Kang B, Lu X, Xiong J, Li Y, Zhu J, Cai T. Front Genet 13 1027396 (2022)
  52. Malformation of the Posterior Cerebellar Vermis Is a Common Neuroanatomical Phenotype of Genetically Engineered Mice on the C57BL/6 Background. Cuoco JA, Esposito AW, Moriarty S, Tang Y, Seth S, Toia AR, Kampton EB, Mayr Y, Khan M, Khan MB, Mullen BR, Ackman JB, Siddiqi F, Wolfe JH, Savinova OV, Ramos RL. Cerebellum 17 173-190 (2018)
  53. The Piezo channel is a mechano-sensitive complex component in the mammalian inner ear hair cell. Lee JH, Perez-Flores MC, Park S, Kim HJ, Chen Y, Kang M, Kersigo J, Choi J, Thai PN, Woltz RL, Perez-Flores DC, Perkins G, Sihn CR, Trinh P, Zhang XD, Sirish P, Dong Y, Feng WW, Pessah IN, Dixon RE, Sokolowski B, Fritzsch B, Chiamvimonvat N, Yamoah EN. Nat Commun 15 526 (2024)
  54. Transient interactions drive the lateral clustering of cadherin-23 on membrane. Srinivas CS, Singaraju GS, Kaur V, Das S, Ghosh SK, Sagar A, Kumar A, Bhatia T, Rakshit S. Commun Biol 6 293 (2023)