2vtp Citations

Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design.

Abstract

The application of fragment-based screening techniques to cyclin dependent kinase 2 (CDK2) identified multiple (>30) efficient, synthetically tractable small molecule hits for further optimization. Structure-based design approaches led to the identification of multiple lead series, which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site. The majority of this paper details the structure-guided optimization of indazole (6) using information gained from multiple ligand-CDK2 cocrystal structures. Identification of key binding features for this class of compounds resulted in a series of molecules with low nM affinity for CDK2. Optimisation of cellular activity and characterization of pharmacokinetic properties led to the identification of 33 (AT7519), which is currently being evaluated in clinical trials for the treatment of human cancers.

Reviews - 2vtp mentioned but not cited (1)

  1. Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery. Hall DR, Kozakov D, Whitty A, Vajda S. Trends Pharmacol. Sci. 36 724-736 (2015)

Articles - 2vtp mentioned but not cited (8)

  1. Prediction of cyclin-dependent kinase 2 inhibitor potency using the fragment molecular orbital method. Mazanetz MP, Ichihara O, Law RJ, Whittaker M. J Cheminform 3 2 (2011)
  2. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Brown NR, Korolchuk S, Martin MP, Stanley WA, Moukhametzianov R, Noble MEM, Endicott JA. Nat Commun 6 6769 (2015)
  3. Structure-based predictions of activity cliffs. Husby J, Bottegoni G, Kufareva I, Abagyan R, Cavalli A. J Chem Inf Model 55 1062-1076 (2015)
  4. Pharmacophore-based virtual screening, synthesis, biological evaluation, and molecular docking study of novel pyrrolizines bearing urea/thiourea moieties with potential cytotoxicity and CDK inhibitory activities. Shawky AM, Ibrahim NA, Abourehab MAS, Abdalla AN, Gouda AM. J Enzyme Inhib Med Chem 36 15-33 (2021)
  5. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Bioorg. Med. Chem. 22 6409-6421 (2014)
  6. Benchmark Sets for Binding Hot Spot Identification in Fragment-Based Ligand Discovery. Wakefield AE, Yueh C, Beglov D, Castilho MS, Kozakov D, Keserű GM, Whitty A, Vajda S. J Chem Inf Model 60 6612-6623 (2020)
  7. In Silico Approach Using Free Software to Optimize the Antiproliferative Activity and Predict the Potential Mechanism of Action of Pyrrolizine-Based Schiff Bases. Almalki FA, Abdalla AN, Shawky AM, El Hassab MA, Gouda AM. Molecules 26 4002 (2021)
  8. A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells. Hegde M, Vartak SV, Kavitha CV, Ananda H, Prasanna DS, Gopalakrishnan V, Choudhary B, Rangappa KS, Raghavan SC. Sci Rep 7 2533 (2017)


Reviews citing this publication (32)

  1. Targeting cancer with small molecule kinase inhibitors. Zhang J, Yang PL, Gray NS. Nat. Rev. Cancer 9 28-39 (2009)
  2. The Halogen Bond. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 116 2478-2601 (2016)
  3. The rise of fragment-based drug discovery. Murray CW, Rees DC. Nat Chem 1 187-192 (2009)
  4. Cell cycle proteins as promising targets in cancer therapy. Otto T, Sicinski P. Nat. Rev. Cancer 17 93-115 (2017)
  5. Protein kinase inhibitors: contributions from structure to clinical compounds. Johnson LN. Q. Rev. Biophys. 42 1-40 (2009)
  6. Structural biology in fragment-based drug design. Murray CW, Blundell TL. Curr. Opin. Struct. Biol. 20 497-507 (2010)
  7. Halogen bonding (X-bonding): a biological perspective. Scholfield MR, Zanden CM, Carter M, Ho PS. Protein Sci. 22 139-152 (2013)
  8. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C, Pestell RG. Expert Opin Investig Drugs 23 295-304 (2014)
  9. From fragment to clinical candidate--a historical perspective. Chessari G, Woodhead AJ. Drug Discov. Today 14 668-675 (2009)
  10. Cyclin dependent kinases in cancer: potential for therapeutic intervention. Canavese M, Santo L, Raje N. Cancer Biol. Ther. 13 451-457 (2012)
  11. The influence of lipophilicity in drug discovery and design. Arnott JA, Planey SL. Expert Opin Drug Discov 7 863-875 (2012)
  12. Transforming fragments into candidates: small becomes big in medicinal chemistry. de Kloe GE, Bailey D, Leurs R, de Esch IJ. Drug Discov. Today 14 630-646 (2009)
  13. The influence of the 'organizational factor' on compound quality in drug discovery. Leeson PD, St-Gallay SA. Nat Rev Drug Discov 10 749-765 (2011)
  14. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Peyressatre M, Prével C, Pellerano M, Morris MC. Cancers (Basel) 7 179-237 (2015)
  15. Cyclin-dependent kinase inhibitors: a survey of recent patent literature. Galons H, Oumata N, Meijer L. Expert Opin Ther Pat 20 377-404 (2010)
  16. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Whittaker SR, Mallinger A, Workman P, Clarke PA. Pharmacol. Ther. 173 83-105 (2017)
  17. Library screening by fragment-based docking. Huang D, Caflisch A. J Mol Recognit 23 183-193 (2010)
  18. NMR as a "Gold Standard" Method in Drug Design and Discovery. Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. Molecules 25 E4597 (2020)
  19. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of central nervous system diseases. Liu DZ, Ander BP, Sharp FR. Neurobiol. Dis. 37 549-557 (2010)
  20. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Sharma S, Singh J, Ojha R, Singh H, Kaur M, Bedi PMS, Nepali K. Eur J Med Chem 112 298-346 (2016)
  21. X-ray crystallography over the past decade for novel drug discovery - where are we heading next? Zheng H, Handing KB, Zimmerman MD, Shabalin IG, Almo SC, Minor W. Expert Opin Drug Discov 10 975-989 (2015)
  22. Cell cycle inhibition without disruption of neurogenesis is a strategy for treatment of aberrant cell cycle diseases: an update. Liu DZ, Ander BP. ScientificWorldJournal 2012 491737 (2012)
  23. Targeting CDK9 for Anti-Cancer Therapeutics. Mandal R, Becker S, Strebhardt K. Cancers (Basel) 13 2181 (2021)
  24. The role of protein structural analysis in the next generation sequencing era. Yue WW, Froese DS, Brennan PE. Top Curr Chem 336 67-98 (2014)
  25. Biased and unbiased strategies to identify biologically active small molecules. Abet V, Mariani A, Truscott FR, Britton S, Rodriguez R. Bioorg. Med. Chem. 22 4474-4489 (2014)
  26. Cyclin Dependent Kinase-1 (CDK-1) Inhibition as a Novel Therapeutic Strategy against Pancreatic Ductal Adenocarcinoma (PDAC). Wijnen R, Pecoraro C, Carbone D, Fiuji H, Avan A, Peters GJ, Giovannetti E, Diana P. Cancers (Basel) 13 4389 (2021)
  27. NMR-Fragment Based Virtual Screening: A Brief Overview. Singh M, Tam B, Akabayov B. Molecules 23 (2018)
  28. Recent advances on CDK inhibitors: An insight by means of in silico methods. Tutone M, Almerico AM. Eur J Med Chem 142 300-315 (2017)
  29. [Fragment-based drug discovery: concept and aim]. Tanaka D. Yakugaku Zasshi 130 315-323 (2010)
  30. CDK9 inhibitors in cancer research. Huang Z, Wang T, Wang C, Fan Y. RSC Med Chem 13 688-710 (2022)
  31. Maintaining Genome Stability in Defiance of Mitotic DNA Damage. Ferrari S, Gentili C. Front Genet 7 128 (2016)
  32. The Role of CDK5 in Tumours and Tumour Microenvironments. Do PA, Lee CH. Cancers (Basel) 13 (2020)

Articles citing this publication (82)

  1. Activation pathway of Src kinase reveals intermediate states as targets for drug design. Shukla D, Meng Y, Roux B, Pande VS. Nat Commun 5 3397 (2014)
  2. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Günther S, Reinke PYA, Fernández-García Y, Lieske J, Lane TJ, Ginn HM, Koua FHM, Ehrt C, Ewert W, Oberthuer D, Yefanov O, Meier S, Lorenzen K, Krichel B, Kopicki JD, Gelisio L, Brehm W, Dunkel I, Seychell B, Gieseler H, Norton-Baker B, Escudero-Pérez B, Domaracky M, Saouane S, Tolstikova A, White TA, Hänle A, Groessler M, Fleckenstein H, Trost F, Galchenkova M, Gevorkov Y, Li C, Awel S, Peck A, Barthelmess M, Schlünzen F, Lourdu Xavier P, Werner N, Andaleeb H, Ullah N, Falke S, Srinivasan V, França BA, Schwinzer M, Brognaro H, Rogers C, Melo D, Zaitseva-Doyle JJ, Knoska J, Peña-Murillo GE, Mashhour AR, Hennicke V, Fischer P, Hakanpää J, Meyer J, Gribbon P, Ellinger B, Kuzikov M, Wolf M, Beccari AR, Bourenkov G, von Stetten D, Pompidor G, Bento I, Panneerselvam S, Karpics I, Schneider TR, Garcia-Alai MM, Niebling S, Günther C, Schmidt C, Schubert R, Han H, Boger J, Monteiro DCF, Zhang L, Sun X, Pletzer-Zelgert J, Wollenhaupt J, Feiler CG, Weiss MS, Schulz EC, Mehrabi P, Karničar K, Usenik A, Loboda J, Tidow H, Chari A, Hilgenfeld R, Uetrecht C, Cox R, Zaliani A, Beck T, Rarey M, Günther S, Turk D, Hinrichs W, Chapman HN, Pearson AR, Betzel C, Meents A. Science 372 642-646 (2021)
  3. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition. Santo L, Vallet S, Hideshima T, Cirstea D, Ikeda H, Pozzi S, Patel K, Okawa Y, Gorgun G, Perrone G, Calabrese E, Yule M, Squires M, Ladetto M, Boccadoro M, Richardson PG, Munshi NC, Anderson KC, Raje N. Oncogene 29 2325-2336 (2010)
  4. Using a fragment-based approach to target protein-protein interactions. Scott DE, Ehebauer MT, Pukala T, Marsh M, Blundell TL, Venkitaraman AR, Abell C, Hyvönen M. Chembiochem 14 332-342 (2013)
  5. Discovery of Dinaciclib (SCH 727965): A Potent and Selective Inhibitor of Cyclin-Dependent Kinases. Paruch K, Dwyer MP, Alvarez C, Brown C, Chan TY, Doll RJ, Keertikar K, Knutson C, McKittrick B, Rivera J, Rossman R, Tucker G, Fischmann T, Hruza A, Madison V, Nomeir AA, Wang Y, Kirschmeier P, Lees E, Parry D, Sgambellone N, Seghezzi W, Schultz L, Shanahan F, Wiswell D, Xu X, Zhou Q, James RA, Paradkar VM, Park H, Rokosz LR, Stauffer TM, Guzi TJ. ACS Med Chem Lett 1 204-208 (2010)
  6. Docking for fragment inhibitors of AmpC beta-lactamase. Teotico DG, Babaoglu K, Rocklin GJ, Ferreira RS, Giannetti AM, Shoichet BK. Proc. Natl. Acad. Sci. U.S.A. 106 7455-7460 (2009)
  7. A phase I pharmacokinetic and pharmacodynamic study of AT7519, a cyclin-dependent kinase inhibitor in patients with refractory solid tumors. Mahadevan D, Plummer R, Squires MS, Rensvold D, Kurtin S, Pretzinger C, Dragovich T, Adams J, Lock V, Smith DM, Von Hoff D, Calvert H. Ann. Oncol. 22 2137-2143 (2011)
  8. Substituted 4-(thiazol-5-yl)-2-(phenylamino)pyrimidines are highly active CDK9 inhibitors: synthesis, X-ray crystal structures, structure-activity relationship, and anticancer activities. Shao H, Shi S, Huang S, Hole AJ, Abbas AY, Baumli S, Liu X, Lam F, Foley DW, Fischer PM, Noble M, Endicott JA, Pepper C, Wang S. J. Med. Chem. 56 640-659 (2013)
  9. The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Vella P, Hussein WM, Leung EW, Clayton D, Ollis DL, Mitić N, Schenk G, McGeary RP. Bioorg. Med. Chem. Lett. 21 3282-3285 (2011)
  10. Induction of eosinophil apoptosis by the cyclin-dependent kinase inhibitor AT7519 promotes the resolution of eosinophil-dominant allergic inflammation. Alessandri AL, Duffin R, Leitch AE, Lucas CD, Sheldrake TA, Dorward DA, Hirani N, Pinho V, de Sousa LP, Teixeira MM, Lyons JF, Haslett C, Rossi AG. PLoS ONE 6 e25683 (2011)
  11. Opportunity Knocks: Organic Chemistry for Fragment-Based Drug Discovery (FBDD). Murray CW, Rees DC. Angew. Chem. Int. Ed. Engl. 55 488-492 (2016)
  12. Targeting RNA transcription and translation in ovarian cancer cells with pharmacological inhibitor CDKI-73. Lam F, Abbas AY, Shao H, Teo T, Adams J, Li P, Bradshaw TD, Fischer PM, Walsby E, Pepper C, Chen Y, Ding J, Wang S. Oncotarget 5 7691-7704 (2014)
  13. Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. Sonawane YA, Taylor MA, Napoleon JV, Rana S, Contreras JI, Natarajan A. J. Med. Chem. 59 8667-8684 (2016)
  14. Identification of a hydrophobic cleft in the LytTR domain of AgrA as a locus for small molecule interactions that inhibit DNA binding. Leonard PG, Bezar IF, Sidote DJ, Stock AM. Biochemistry 51 10035-10043 (2012)
  15. Fragment-based screening by X-ray crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine N-methyltransferase) inhibitors. Drinkwater N, Vu H, Lovell KM, Criscione KR, Collins BM, Prisinzano TE, Poulsen SA, McLeish MJ, Grunewald GL, Martin JL. Biochem. J. 431 51-61 (2010)
  16. The multiple roles of computational chemistry in fragment-based drug design. Law R, Barker O, Barker JJ, Hesterkamp T, Godemann R, Andersen O, Fryatt T, Courtney S, Hallett D, Whittaker M. J. Comput. Aided Mol. Des. 23 459-473 (2009)
  17. Molecular and cellular effects of multi-targeted cyclin-dependent kinase inhibition in myeloma: biological and clinical implications. McMillin DW, Delmore J, Negri J, Buon L, Jacobs HM, Laubach J, Jakubikova J, Ooi M, Hayden P, Schlossman R, Munshi NC, Lengauer C, Richardson PG, Anderson KC, Mitsiades CS. Br. J. Haematol. 152 420-432 (2011)
  18. A Phase I study of cyclin-dependent kinase inhibitor, AT7519, in patients with advanced cancer: NCIC Clinical Trials Group IND 177. Chen EX, Hotte S, Hirte H, Siu LL, Lyons J, Squires M, Lovell S, Turner S, McIntosh L, Seymour L. Br. J. Cancer 111 2262-2267 (2014)
  19. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, Gonçalves WA, Shwartz Y, Fast EM, Su Y, Zon LI, Regev A, Buenrostro JD, Cunha TM, Chiu IM, Fisher DE, Hsu YC. Nature 577 676-681 (2020)
  20. Synthesis of novel pyrazole carboxamide derivatives and discovery of modulators for apoptosis or autophagy in A549 lung cancer cells. Ding XL, Zhang HY, Qi L, Zhao BX, Lian S, Lv HS, Miao JY. Bioorg. Med. Chem. Lett. 19 5325-5328 (2009)
  21. Missing fragments: detecting cooperative binding in fragment-based drug design. Nair PC, Malde AK, Drinkwater N, Mark AE. ACS Med Chem Lett 3 322-326 (2012)
  22. New potential antitumor pyrazole derivatives: synthesis and cytotoxic evaluation. Nitulescu GM, Draghici C, Olaru OT. Int J Mol Sci 14 21805-21818 (2013)
  23. Cyclin-Dependent Kinase Inhibitor AT7519 as a Potential Drug for MYCN-Dependent Neuroblastoma. Dolman ME, Poon E, Ebus ME, den Hartog IJ, van Noesel CJ, Jamin Y, Hallsworth A, Robinson SP, Petrie K, Sparidans RW, Kok RJ, Versteeg R, Caron HN, Chesler L, Molenaar JJ. Clin. Cancer Res. 21 5100-5109 (2015)
  24. Fragment-Based Discovery of Potent and Selective DDR1/2 Inhibitors. Murray CW, Berdini V, Buck IM, Carr ME, Cleasby A, Coyle JE, Curry JE, Day JE, Day PJ, Hearn K, Iqbal A, Lee LY, Martins V, Mortenson PN, Munck JM, Page LW, Patel S, Roomans S, Smith K, Tamanini E, Saxty G. ACS Med Chem Lett 6 798-803 (2015)
  25. Novel Pieces for the Emerging Picture of Sulfoximines in Drug Discovery: Synthesis and Evaluation of Sulfoximine Analogues of Marketed Drugs and Advanced Clinical Candidates. Sirvent JA, Lücking U. ChemMedChem 12 487-501 (2017)
  26. The design and synthesis of potent and selective inhibitors of Trypanosoma brucei glycogen synthase kinase 3 for the treatment of human african trypanosomiasis. Urich R, Grimaldi R, Luksch T, Frearson JA, Brenk R, Wyatt PG. J. Med. Chem. 57 7536-7549 (2014)
  27. Design, synthesis and biological evaluation of 6-pyridylmethylaminopurines as CDK inhibitors. Wilson SC, Atrash B, Barlow C, Eccles S, Fischer PM, Hayes A, Kelland L, Jackson W, Jarman M, Mirza A, Moreno J, Nutley BP, Raynaud FI, Sheldrake P, Walton M, Westwood R, Whittaker S, Workman P, McDonald E. Bioorg. Med. Chem. 19 6949-6965 (2011)
  28. Fragment-based lead discovery: screening and optimizing fragments for thermolysin inhibition. Englert L, Silber K, Steuber H, Brass S, Over B, Gerber HD, Heine A, Diederich WE, Klebe G. ChemMedChem 5 930-940 (2010)
  29. Creating novel activated factor XI inhibitors through fragment based lead generation and structure aided drug design. Fjellström O, Akkaya S, Beisel HG, Eriksson PO, Erixon K, Gustafsson D, Jurva U, Kang D, Karis D, Knecht W, Nerme V, Nilsson I, Olsson T, Redzic A, Roth R, Sandmark J, Tigerström A, Öster L. PLoS ONE 10 e0113705 (2015)
  30. Radiosynthesis and radiopharmacological evaluation of cyclin-dependent kinase 4 (Cdk4) inhibitors. Koehler L, Graf F, Bergmann R, Steinbach J, Pietzsch J, Wuest F. Eur J Med Chem 45 727-737 (2010)
  31. Strategies of multi-objective optimization in drug discovery and development. Nicolotti O, Giangreco I, Introcaso A, Leonetti F, Stefanachi A, Carotti A. Expert Opin Drug Discov 6 871-884 (2011)
  32. Domino reaction involving the Bestmann-Ohira reagent and α,β-unsaturated aldehydes: efficient synthesis of functionalized pyrazoles. Ahamad S, Gupta AK, Kant R, Mohanan K. Org. Biomol. Chem. 13 1492-1499 (2015)
  33. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP) Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest. Cho HJ, Lim DY, Kwon GT, Kim JH, Huang Z, Song H, Oh YS, Kang YH, Lee KW, Dong Z, Park JH. Int J Mol Sci 17 264 (2016)
  34. A theoretical study on the mechanisms of the reactions between 1,3-dialkynes and ammonia derivatives for the formation of five-membered N-heterocycles. Wang Y, Wei D, Zhang W, Wang Y, Zhu Y, Jia Y, Tang M. Org. Biomol. Chem. 12 7503-7514 (2014)
  35. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils. Odemuyiwa SO, Ilarraza R, Davoine F, Logan MR, Shayeganpour A, Wu Y, Majaesic C, Adamko DJ, Moqbel R, Lacy P. Immunology 144 641-648 (2015)
  36. Global Phosphoproteomics Reveal CDK Suppression as a Vulnerability to KRas Addiction in Pancreatic Cancer. Kazi A, Chen L, Xiang S, Vangipurapu R, Yang H, Beato F, Fang B, Williams TM, Husain K, Underwood P, Fleming JB, Malafa M, Welsh EA, Koomen J, Trevino J, Sebti SM. Clin Cancer Res 27 4012-4024 (2021)
  37. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening. Amano Y, Tanabe E, Yamaguchi T. Bioorg. Med. Chem. 23 2310-2317 (2015)
  38. Evaluating the enthalpic contribution to ligand binding using QM calculations: effect of methodology on geometries and interaction energies. Gleeson D, Tehan B, Gleeson MP, Limtrakul J. Org. Biomol. Chem. 10 7053-7061 (2012)
  39. Fragment-based strategy for structural optimization in combination with 3D-QSAR. Yuan H, Tai W, Hu S, Liu H, Zhang Y, Yao S, Ran T, Lu S, Ke Z, Xiong X, Xu J, Chen Y, Lu T. J. Comput. Aided Mol. Des. 27 897-915 (2013)
  40. In silico design and biological evaluation of a dual specificity kinase inhibitor targeting cell cycle progression and angiogenesis. Latham AM, Kankanala J, Fearnley GW, Gage MC, Kearney MT, Homer-Vanniasinkam S, Wheatcroft SB, Fishwick CW, Ponnambalam S. PLoS ONE 9 e110997 (2014)
  41. NMR quality control of fragment libraries for screening. Sreeramulu S, Richter C, Kuehn T, Azzaoui K, Blommers MJJ, Del Conte R, Fragai M, Trieloff N, Schmieder P, Nazaré M, Specker E, Ivanov V, Oschkinat H, Banci L, Schwalbe H. J Biomol NMR 74 555-563 (2020)
  42. Synthesis of sulfonamide-based kinase inhibitors from sulfonates by exploiting the abrogated SN2 reactivity of 2,2,2-trifluoroethoxysulfonates. Wong C, Griffin RJ, Hardcastle IR, Northen JS, Wang LZ, Golding BT. Org. Biomol. Chem. 8 2457-2464 (2010)
  43. Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence. Collin G, Huna A, Warnier M, Flaman JM, Bernard D. Cell Death Dis 9 259 (2018)
  44. Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling. Deng H, Min E, Baeyens N, Coon BG, Hu R, Zhuang ZW, Chen M, Huang B, Afolabi T, Zarkada G, Acheampong A, McEntee K, Eichmann A, Liu F, Su B, Simons M, Schwartz MA. Proc Natl Acad Sci U S A 118 e2105339118 (2021)
  45. Algorithms for the automated selection of fragment-like molecules using single-point surface plasmon resonance measurements. Kreatsoulas C, Narayan K. Anal. Biochem. 402 179-184 (2010)
  46. An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors. Li Y, Gao W, Li F, Wang J, Zhang J, Yang Y, Zhang S, Yang L. Mol Biosyst 9 2266-2281 (2013)
  47. Design, synthesis and anticancer activity of 1-acyl-3-amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole derivatives. Bai XG, Yu DK, Wang JX, Zhang H, He HW, Shao RG, Li XM, Wang YC. Bioorg. Med. Chem. Lett. 22 6947-6951 (2012)
  48. Discovery of Covalent CDK14 Inhibitors with Pan-TAIRE Family Specificity. Ferguson FM, Doctor ZM, Ficarro SB, Browne CM, Marto JA, Johnson JL, Yaron TM, Cantley LC, Kim ND, Sim T, Berberich MJ, Kalocsay M, Sorger PK, Gray NS. Cell Chem Biol 26 804-817.e12 (2019)
  49. Fragment-based screening maps inhibitor interactions in the ATP-binding site of checkpoint kinase 2. Silva-Santisteban MC, Westwood IM, Boxall K, Brown N, Peacock S, McAndrew C, Barrie E, Richards M, Mirza A, Oliver AW, Burke R, Hoelder S, Jones K, Aherne GW, Blagg J, Collins I, Garrett MD, van Montfort RL. PLoS ONE 8 e65689 (2013)
  50. Hit clustering can improve virtual fragment screening: CDK2 and PARP1 case studies. Zeifman AA, Stroylov VS, Novikov FN, Stroganov OV, Zakharenko AL, Khodyreva SN, Lavrik OI, Chilov GG. J Mol Model 18 2553-2566 (2012)
  51. Hydrazine-mediated cyclization of Ugi products to synthesize novel 3-hydroxypyrazoles. Shaw AY, McLaren JA, Nichol GS, Hulme C. Tetrahedron Lett. 53 2592-2594 (2012)
  52. Identify potential drugs for cardiovascular diseases caused by stress-induced genes in vascular smooth muscle cells. Huang CH, Ciou JS, Chen ST, Kok VC, Chung Y, Tsai JJ, Kurubanjerdjit N, Huang CF, Ng KL. PeerJ 4 e2478 (2016)
  53. Molecular dynamics and QM/MM-based 3D interaction analyses of cyclin-E inhibitors. Pasha FA, Neaz MM. J Mol Model 19 879-891 (2013)
  54. Phase 1 study of the HSP90 inhibitor onalespib in combination with AT7519, a pan-CDK inhibitor, in patients with advanced solid tumors. Do KT, O'Sullivan Coyne G, Hays JL, Supko JG, Liu SV, Beebe K, Neckers L, Trepel JB, Lee MJ, Smyth T, Gannon C, Hedglin J, Muzikansky A, Campos S, Lyons J, Ivy P, Doroshow JH, Chen AP, Shapiro GI. Cancer Chemother Pharmacol 86 815-827 (2020)
  55. Phosphoproteomic-based kinase profiling early in influenza virus infection identifies GRK2 as antiviral drug target. Yángüez E, Hunziker A, Dobay MP, Yildiz S, Schading S, Elshina E, Karakus U, Gehrig P, Grossmann J, Dijkman R, Schmolke M, Stertz S. Nat Commun 9 3679 (2018)
  56. Cdk2 suppresses IL-23 expression and the onset of severe acute pancreatitis. Ma Y, Liu L, Li B, Wang W, Zhao T. Immun Inflamm Dis 10 e631 (2022)
  57. Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Robb CM, Kour S, Contreras JI, Agarwal E, Barger CJ, Rana S, Sonawane Y, Neilsen BK, Taylor M, Kizhake S, Thakare RN, Chowdhury S, Wang J, Black JD, Hollingsworth MA, Brattain MG, Natarajan A. Oncotarget 9 5216-5232 (2018)
  58. Demonstration of AutoDock as an Educational Tool for Drug Discovery. Helgren TR, Hagen TJ. J Chem Educ 94 345-349 (2017)
  59. Design, synthesis and anticancer activity evaluation of some novel pyrrolo[1,2-a]azepine derivatives. Belal A. Arch. Pharm. (Weinheim) 347 515-522 (2014)
  60. Direct N-heterocyclization of hydrazines to access styrylated pyrazoles: synthesis of 1,3,5-trisubstituted pyrazoles and dihydropyrazoles. Venkateswarlu V, Kour J, Kumar KAA, Verma PK, Reddy GL, Hussain Y, Tabassum A, Balgotra S, Gupta S, Hudwekar AD, Vishwakarma RA, Sawant SD. RSC Adv 8 26523-26527 (2018)
  61. O-GlcNAc transferase maintains metabolic homeostasis in response to CDK9 inhibition. Gondane A, Poulose N, Walker S, Mills IG, Itkonen HM. Glycobiology 32 751-759 (2022)
  62. Synthesis and discovery of novel pyrazole carboxamide derivatives as potential osteogenesis inducers. Lv HS, Han QQ, Ding XL, Zhou JL, Yang PS, Miao JY, Zhao BX. Arch. Pharm. (Weinheim) 345 870-877 (2012)
  63. Application of Native ESI-MS to Characterize Interactions between Compounds Derived from Fragment-Based Discovery Campaigns and Two Pharmaceutically Relevant Proteins. Gavriilidou AFM, Holding FP, Coyle JE, Zenobi R. SLAS Discov 23 951-959 (2018)
  64. CDK Blockade Using AT7519 Suppresses Acute Myeloid Leukemia Cell Survival through the Inhibition of Autophagy and Intensifies the Anti-leukemic Effect of Arsenic Trioxide. Zabihi M, Safaroghli-Azar A, Gharehbaghian A, Allahbakhshian Farsani M, Bashash D. Iran J Pharm Res 18 119-131 (2019)
  65. Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics. Badaoui M, Buigues PJ, Berta D, Mandana GM, Gu H, Földes T, Dickson CJ, Hornak V, Kato M, Molteni C, Parsons S, Rosta E. J Chem Theory Comput 18 2543-2555 (2022)
  66. Design, synthesis and anticancer evaluation of polymethoxy aurones as potential cell cycle inhibitors. Wu Z, Han Y, Li X, Zhang Q, Deng R, Ren H, He W, Wu X, Guo H, Zhu D. Heliyon 9 e21054 (2023)
  67. Development of Second-Generation CDK2 Inhibitors for the Prevention of Cisplatin-Induced Hearing Loss. Hazlitt RA, Teitz T, Bonga JD, Fang J, Diao S, Iconaru L, Yang L, Goktug AN, Currier DG, Chen T, Rankovic Z, Min J, Zuo J. J. Med. Chem. 61 7700-7709 (2018)
  68. Discovery of N,4-Di(1H-pyrazol-4-yl)pyrimidin-2-amine-Derived CDK2 Inhibitors as Potential Anticancer Agents: Design, Synthesis, and Evaluation. Fanta BS, Lenjisa J, Teo T, Kou L, Mekonnen L, Yang Y, Basnet SKC, Hassankhani R, Sykes MJ, Yu M, Wang S. Molecules 28 2951 (2023)
  69. Discovery of a Potent and Selective CDKL5/GSK3 Chemical Probe That Is Neuroprotective. Ong HW, Liang Y, Richardson W, Lowry ER, Wells CI, Chen X, Silvestre M, Dempster K, Silvaroli JA, Smith JL, Wichterle H, Pabla NS, Ultanir SK, Bullock AN, Drewry DH, Axtman AD. ACS Chem Neurosci 14 1672-1685 (2023)
  70. Emerging approaches to CDK inhibitor development, a structural perspective. Hope I, Endicott JA, Watt JE. RSC Chem Biol 4 146-164 (2023)
  71. Fluorinated derivatives of tetrahydroaltersolanol molecule on COVID-19, HIV, and HTLV protease by DFT and molecular docking approaches. Azadparvar M, Kheirabadi M, Aliabad HAR. J Mol Model 28 350 (2022)
  72. Identified Isosteric Replacements of Ligands' Glycosyl Domain by Data Mining. Zhang T, Jiang S, Li T, Liu Y, Zhang Y. ACS Omega 8 25165-25184 (2023)
  73. In silico fragment-mapping method: a new tool for fragment-based/structure-based drug discovery. Yamaotsu N, Hirono S. J. Comput. Aided Mol. Des. 32 1229-1245 (2018)
  74. Inhibition of Cyclin-Dependent Kinase 9 Downregulates Cytokine Production Without Detrimentally Affecting Human Monocyte-Derived Macrophage Viability. McHugh BJ, Stephen J, Robb CT, Fox S, Kipari T, Cartwright JA, Haslett C, Duffin R, Lucas CD, Rossi AG. Front Cell Dev Biol 10 905315 (2022)
  75. Inhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519. Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Shanaki M, Yousefi AM, Anjam Najmedini A, Bashash D. Iran J Pharm Res 19 144-155 (2020)
  76. Molecular docking of 1H-pyrazole derivatives to receptor tyrosine kinase and protein kinase for screening potential inhibitors. Chandra, Javaregowda VG, Doreswamy BH, Ningaiah S, Bhadraiah UK, Kemparaju K, Madegowda M. Bioinformation 10 413-418 (2014)
  77. Quantifying CDK inhibitor selectivity in live cells. Wells CI, Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Ingold MR, Pickett JE, Drewry DH, Pugh KM, Schwinn MK, Hwang BB, Zegzouti H, Huber KVM, Cong M, Meisenheimer PL, Willson TM, Robers MB. Nat Commun 11 2743 (2020)
  78. Selective Cdk9 inhibition resolves neutrophilic inflammation and enhances cardiac regeneration in larval zebrafish. Kaveh A, Bruton FA, Oremek MEM, Tucker CS, Taylor JM, Mullins JJ, Rossi AG, Denvir MA. Development 149 dev199636 (2022)
  79. Synthesis and structure activity relationships of a series of 4-amino-1H-pyrazoles as covalent inhibitors of CDK14. Ferguson FM, Doctor ZM, Ficarro SB, Marto JA, Kim ND, Sim T, Gray NS. Bioorg. Med. Chem. Lett. 29 1985-1993 (2019)
  80. Synthesis of spiro-4H-pyrazole-oxindoles and fused 1H-pyrazoles via divergent, thermally induced tandem cyclization/migration of alkyne-tethered diazo compounds. Zhang C, Dong S, Zheng Y, He C, Chen J, Zhen J, Qiu L, Xu X. Org. Biomol. Chem. 16 688-692 (2018)
  81. Targeting the N-Terminus Domain of the Coronavirus Nucleocapsid Protein Induces Abnormal Oligomerization via Allosteric Modulation. Hsu JN, Chen JS, Lin SM, Hong JY, Chen YJ, Jeng US, Luo SY, Hou MH. Front Mol Biosci 9 871499 (2022)
  82. Tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-based CDK inhibitor. Opoku-Temeng C, Dayal N, Hernandez DE, Naganna N, Sintim HO. Chem. Commun. (Camb.) 54 4521-4524 (2018)