2vpj Citations

Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases.

Abstract

Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein "3-box" motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design.

Reviews - 2vpj mentioned but not cited (1)

  1. Drug resistance genomics of the antimalarial drug artemisinin. Winzeler EA, Manary MJ. Genome Biol 15 544 (2014)

Articles - 2vpj mentioned but not cited (11)

  1. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D. Nature 505 50-55 (2014)
  2. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Canning P, Cooper CDO, Krojer T, Murray JW, Pike ACW, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN. J Biol Chem 288 7803-7814 (2013)
  3. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. Yu HC, Sloan JL, Scharer G, Brebner A, Quintana AM, Achilly NP, Manoli I, Coughlin CR, Geiger EA, Schneck U, Watkins D, Suormala T, Van Hove JL, Fowler B, Baumgartner MR, Rosenblatt DS, Venditti CP, Shaikh TH. Am J Hum Genet 93 506-514 (2013)
  4. Recognition of the Diglycine C-End Degron by CRL2KLHDC2 Ubiquitin Ligase. Rusnac DV, Lin HC, Canzani D, Tien KX, Hinds TR, Tsue AF, Bush MF, Yen HS, Zheng N. Mol Cell 72 813-822.e4 (2018)
  5. Characterization of the genome, proteome, and structure of yersiniophage ϕR1-37. Skurnik M, Hyytiäinen HJ, Happonen LJ, Kiljunen S, Datta N, Mattinen L, Williamson K, Kristo P, Szeliga M, Kalin-Mänttäri L, Ahola-Iivarinen E, Kalkkinen N, Butcher SJ. J Virol 86 12625-12642 (2012)
  6. Novel beta-propeller of the BTB-Kelch protein Krp1 provides a binding site for Lasp-1 that is necessary for pseudopodial extension. Gray CH, McGarry LC, Spence HJ, Riboldi-Tunnicliffe A, Ozanne BW. J Biol Chem 284 30498-30507 (2009)
  7. Comparative structural and evolutionary analyses predict functional sites in the artemisinin resistance malaria protein K13. Coppée R, Jeffares DC, Miteva MA, Sabbagh A, Clain J. Sci Rep 9 10675 (2019)
  8. Identifying potential drug targets and candidate drugs for COVID-19: biological networks and structural modeling approaches. Selvaraj G, Kaliamurthi S, Peslherbe GH, Wei DQ. F1000Res 10 127 (2021)
  9. Structural Basis for Recruitment of DAPK1 to the KLHL20 E3 Ligase. Chen Z, Picaud S, Filippakopoulos P, D'Angiolella V, Bullock AN. Structure 27 1395-1404.e4 (2019)
  10. Identification of a PGXPP degron motif in dishevelled and structural basis for its binding to the E3 ligase KLHL12. Chen Z, Wasney GA, Picaud S, Filippakopoulos P, Vedadi M, D'Angiolella V, Bullock AN. Open Biol 10 200041 (2020)
  11. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (45)

  1. The KEAP1-NRF2 System: a Thiol-Based Sensor-Effector Apparatus for Maintaining Redox Homeostasis. Yamamoto M, Kensler TW, Motohashi H. Physiol Rev 98 1169-1203 (2018)
  2. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Free Radic Biol Med 88 108-146 (2015)
  3. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Baird L, Yamamoto M. Mol Cell Biol 40 e00099-20 (2020)
  4. Structural basis of Keap1 interactions with Nrf2. Canning P, Sorrell FJ, Bullock AN. Free Radic Biol Med 88 101-107 (2015)
  5. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. Suzuki T, Yamamoto M. J Biol Chem 292 16817-16824 (2017)
  6. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications. Genschik P, Sumara I, Lechner E. EMBO J 32 2307-2320 (2013)
  7. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B. Biophys Rev 9 41-56 (2017)
  8. Drug resistance in Plasmodium. Haldar K, Bhattacharjee S, Safeukui I. Nat Rev Microbiol 16 156-170 (2018)
  9. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Dinkova-Kostova AT, Kostov RV, Canning P. Arch Biochem Biophys 617 84-93 (2017)
  10. Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Bulatov E, Ciulli A. Biochem J 467 365-386 (2015)
  11. Medulloblastomics revisited: biological and clinical insights from thousands of patients. Hovestadt V, Ayrault O, Swartling FJ, Robinson GW, Pfister SM, Northcott PA. Nat Rev Cancer 20 42-56 (2020)
  12. Kelch proteins: emerging roles in skeletal muscle development and diseases. Gupta VA, Beggs AH. Skelet Muscle 4 11 (2014)
  13. Dysregulation of Nrf2 in Hepatocellular Carcinoma: Role in Cancer Progression and Chemoresistance. Raghunath A, Sundarraj K, Arfuso F, Sethi G, Perumal E. Cancers (Basel) 10 E481 (2018)
  14. Potential Applications of NRF2 Modulators in Cancer Therapy. Panieri E, Buha A, Telkoparan-Akillilar P, Cevik D, Kouretas D, Veskoukis A, Skaperda Z, Tsatsakis A, Wallace D, Suzen S, Saso L. Antioxidants (Basel) 9 E193 (2020)
  15. COPII-mediated trafficking at the ER/ERGIC interface. Peotter J, Kasberg W, Pustova I, Audhya A. Traffic 20 491-503 (2019)
  16. Redox toxicology of environmental chemicals causing oxidative stress. Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox Biol 34 101475 (2020)
  17. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. Ravenscroft G, Laing NG, Bönnemann CG. Brain 138 246-268 (2015)
  18. The role of natural products in revealing NRF2 function. Zhang DD, Chapman E. Nat Prod Rep 37 797-826 (2020)
  19. Cullin 3 as a novel target in diverse pathologies. Andérica-Romero AC, González-Herrera IG, Santamaría A, Pedraza-Chaverri J. Redox Biol 1 366-372 (2013)
  20. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT, Rocha JBT. Metallomics 9 1703-1734 (2017)
  21. Non-electrophilic modulators of the canonical Keap1/Nrf2 pathway. Richardson BG, Jain AD, Speltz TE, Moore TW. Bioorg Med Chem Lett 25 2261-2268 (2015)
  22. Cullin 3-Based Ubiquitin Ligases as Master Regulators of Mammalian Cell Differentiation. Dubiel W, Dubiel D, Wolf DA, Naumann M. Trends Biochem Sci 43 95-107 (2018)
  23. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Ngo V, Duennwald ML. Antioxidants (Basel) 11 2345 (2022)
  24. Revisiting the NaCl cotransporter regulation by with-no-lysine kinases. Bazúa-Valenti S, Gamba G. Am J Physiol Cell Physiol 308 C779-91 (2015)
  25. Medulloblastoma genomics in the modern molecular era. Kumar R, Liu APY, Northcott PA. Brain Pathol 30 679-690 (2020)
  26. Nrf2 and Notch Signaling in Lung Cancer: Near the Crossroad. Sparaneo A, Fabrizio FP, Muscarella LA. Oxid Med Cell Longev 2016 7316492 (2016)
  27. Protein Degradation Systems as Antimalarial Therapeutic Targets. Ng CL, Fidock DA, Bogyo M. Trends Parasitol 33 731-743 (2017)
  28. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. Furniss JJ, Spoel SH. Front Plant Sci 6 154 (2015)
  29. Cullin-RING E3 Ubiquitin Ligases: Bridges to Destruction. Nguyen HC, Wang W, Xiong Y. Subcell Biochem 83 323-347 (2017)
  30. KEAP1-NRF2 protein-protein interaction inhibitors: Design, pharmacological properties and therapeutic potential. Crisman E, Duarte P, Dauden E, Cuadrado A, Rodríguez-Franco MI, López MG, León R. Med Res Rev 43 237-287 (2023)
  31. Paradoxical cellular effects and biological role of the multifaceted compound nordihydroguaiaretic acid. Hernández-Damián J, Andérica-Romero AC, Pedraza-Chaverri J. Arch Pharm (Weinheim) 347 685-697 (2014)
  32. Cul3-KLHL20 ubiquitin ligase: physiological functions, stress responses, and disease implications. Chen HY, Liu CC, Chen RH. Cell Div 11 5 (2016)
  33. Impaired antioxidant KEAP1-NRF2 system in amyotrophic lateral sclerosis: NRF2 activation as a potential therapeutic strategy. Bono S, Feligioni M, Corbo M. Mol Neurodegener 16 71 (2021)
  34. Challenges and Limitations of Targeting the Keap1-Nrf2 Pathway for Neurotherapeutics: Bach1 De-Repression to the Rescue. Hushpulian DM, Ammal Kaidery N, Ahuja M, Poloznikov AA, Sharma SM, Gazaryan IG, Thomas B. Front Aging Neurosci 13 673205 (2021)
  35. Control of craniofacial and brain development by Cullin3-RING ubiquitin ligases: Lessons from human disease genetics. Asmar AJ, Beck DB, Werner A. Exp Cell Res 396 112300 (2020)
  36. Cullin-3: Renal and Vascular Mechanisms Regulating Blood Pressure. Wu J, McCormick JA, Sigmund CD. Curr Hypertens Rep 22 61 (2020)
  37. Insights in cullin 3/WNK4 and its relationship to blood pressure regulation and electrolyte homeostasis. Andérica-Romero AC, Escobar L, Padilla-Flores T, Pedraza-Chaverri J. Cell Signal 26 1166-1172 (2014)
  38. Regulation of E3 ubiquitin ligases by homotypic and heterotypic assembly. Balaji V, Hoppe T. F1000Res 9 F1000 Faculty Rev-88 (2020)
  39. The KEAP1-NRF2 pathway: Targets for therapy and role in cancer. Adinolfi S, Patinen T, Jawahar Deen A, Pitkänen S, Härkönen J, Kansanen E, Küblbeck J, Levonen AL. Redox Biol 63 102726 (2023)
  40. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Blondelle J, Biju A, Lange S. Int J Mol Sci 21 E7936 (2020)
  41. Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases. Diaz S, Wang K, Sjögren B, Liu X. Biomolecules 12 416 (2022)
  42. Counting Degrons: Lessons From Multivalent Substrates for Targeted Protein Degradation. Okoye CN, Rowling PJE, Itzhaki LS, Lindon C. Front Physiol 13 913063 (2022)
  43. Kelch-like proteins in the gastrointestinal tumors. Fu AB, Xiang SF, He QJ, Ying MD. Acta Pharmacol Sin 44 931-939 (2023)
  44. Update on Congenital Myopathies in Adulthood. Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Int J Mol Sci 21 E3694 (2020)
  45. Cullin 3 and Blood Pressure Regulation: Insights From Familial Hyperkalemic Hypertension. Maeoka Y, Cornelius RJ, McCormick JA. Hypertension 80 912-923 (2023)

Articles citing this publication (88)

  1. The whole-genome landscape of medulloblastoma subtypes. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J, Ehrenberger T, Gröbner S, Segura-Wang M, Zichner T, Rudneva VA, Warnatz HJ, Sidiropoulos N, Phillips AH, Schumacher S, Kleinheinz K, Waszak SM, Erkek S, Jones DTW, Worst BC, Kool M, Zapatka M, Jäger N, Chavez L, Hutter B, Bieg M, Paramasivam N, Heinold M, Gu Z, Ishaque N, Jäger-Schmidt C, Imbusch CD, Jugold A, Hübschmann D, Risch T, Amstislavskiy V, Gonzalez FGR, Weber UD, Wolf S, Robinson GW, Zhou X, Wu G, Finkelstein D, Liu Y, Cavalli FMG, Luu B, Ramaswamy V, Wu X, Koster J, Ryzhova M, Cho YJ, Pomeroy SL, Herold-Mende C, Schuhmann M, Ebinger M, Liau LM, Mora J, McLendon RE, Jabado N, Kumabe T, Chuah E, Ma Y, Moore RA, Mungall AJ, Mungall KL, Thiessen N, Tse K, Wong T, Jones SJM, Witt O, Milde T, Von Deimling A, Capper D, Korshunov A, Yaspo ML, Kriwacki R, Gajjar A, Zhang J, Beroukhim R, Fraenkel E, Korbel JO, Brors B, Schlesner M, Eils R, Marra MA, Pfister SM, Taylor MD, Lichter P. Nature 547 311-317 (2017)
  2. The integrated landscape of driver genomic alterations in glioblastoma. Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia DJ, Canoll P, Bruce JN, McLendon RE, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Privé GG, Bigner DD, Lasorella A, Rabadan R, Iavarone A. Nat Genet 45 1141-1149 (2013)
  3. Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas. Piotrowski A, Xie J, Liu YF, Poplawski AB, Gomes AR, Madanecki P, Fu C, Crowley MR, Crossman DK, Armstrong L, Babovic-Vuksanovic D, Bergner A, Blakeley JO, Blumenthal AL, Daniels MS, Feit H, Gardner K, Hurst S, Kobelka C, Lee C, Nagy R, Rauen KA, Slopis JM, Suwannarat P, Westman JA, Zanko A, Korf BR, Messiaen LM. Nat Genet 46 182-187 (2014)
  4. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Ravenscroft G, Miyatake S, Lehtokari VL, Todd EJ, Vornanen P, Yau KS, Hayashi YK, Miyake N, Tsurusaki Y, Doi H, Saitsu H, Osaka H, Yamashita S, Ohya T, Sakamoto Y, Koshimizu E, Imamura S, Yamashita M, Ogata K, Shiina M, Bryson-Richardson RJ, Vaz R, Ceyhan O, Brownstein CA, Swanson LC, Monnot S, Romero NB, Amthor H, Kresoje N, Sivadorai P, Kiraly-Borri C, Haliloglu G, Talim B, Orhan D, Kale G, Charles AK, Fabian VA, Davis MR, Lammens M, Sewry CA, Manzur A, Muntoni F, Clarke NF, North KN, Bertini E, Nevo Y, Willichowski E, Silberg IE, Topaloglu H, Beggs AH, Allcock RJ, Nishino I, Wallgren-Pettersson C, Matsumoto N, Laing NG. Am J Hum Genet 93 6-18 (2013)
  5. Characterizations of Three Major Cysteine Sensors of Keap1 in Stress Response. Saito R, Suzuki T, Hiramoto K, Asami S, Naganuma E, Suda H, Iso T, Yamamoto H, Morita M, Baird L, Furusawa Y, Negishi T, Ichinose M, Yamamoto M. Mol Cell Biol 36 271-284 (2016)
  6. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, Callahan JF, Carr R, Concha N, Kerns JK, Qi H, Sweitzer T, Ward P, Davies TG. PLoS One 9 e98896 (2014)
  7. Identification of KLHL41 Mutations Implicates BTB-Kelch-Mediated Ubiquitination as an Alternate Pathway to Myofibrillar Disruption in Nemaline Myopathy. Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke NF, Darras BT, Farrar MA, Hashem A, Manton ND, Muntoni F, North KN, Sandaradura SA, Nishino I, Hayashi YK, Sewry CA, Thompson EM, Yau KS, Brownstein CA, Yu TW, Allcock RJ, Davis MR, Wallgren-Pettersson C, Matsumoto N, Alkuraya FS, Laing NG, Beggs AH. Am J Hum Genet 93 1108-1117 (2013)
  8. Hyperkalemic hypertension-associated cullin 3 promotes WNK signaling by degrading KLHL3. McCormick JA, Yang CL, Zhang C, Davidge B, Blankenstein KI, Terker AS, Yarbrough B, Meermeier NP, Park HJ, McCully B, West M, Borschewski A, Himmerkus N, Bleich M, Bachmann S, Mutig K, Argaiz ER, Gamba G, Singer JD, Ellison DH. J Clin Invest 124 4723-4736 (2014)
  9. LZTR1 is a regulator of RAS ubiquitination and signaling. Bigenzahn JW, Collu GM, Kartnig F, Pieraks M, Vladimer GI, Heinz LX, Sedlyarov V, Schischlik F, Fauster A, Rebsamen M, Parapatics K, Blomen VA, Müller AC, Winter GE, Kralovics R, Brummelkamp TR, Mlodzik M, Superti-Furga G. Science 362 1171-1177 (2018)
  10. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. Garg A, O'Rourke J, Long C, Doering J, Ravenscroft G, Bezprozvannaya S, Nelson BR, Beetz N, Li L, Chen S, Laing NG, Grange RW, Bassel-Duby R, Olson EN. J Clin Invest 124 3529-3539 (2014)
  11. Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex. Cardote TAF, Gadd MS, Ciulli A. Structure 25 901-911.e3 (2017)
  12. Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Lin Z, Li S, Feng C, Yang S, Wang H, Ma D, Zhang J, Gou M, Bu D, Zhang T, Kong X, Wang X, Sarig O, Ren Y, Dai L, Liu H, Zhang J, Li F, Hu Y, Padalon-Brauch G, Vodo D, Zhou F, Chen T, Deng H, Sprecher E, Yang Y, Tan X. Nat Genet 48 1508-1516 (2016)
  13. Bardoxolone conjugation enables targeted protein degradation of BRD4. Tong B, Luo M, Xie Y, Spradlin JN, Tallarico JA, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Sci Rep 10 15543 (2020)
  14. Structural and biochemical characterization of the KLHL3-WNK kinase interaction important in blood pressure regulation. Schumacher FR, Sorrell FJ, Alessi DR, Bullock AN, Kurz T. Biochem J 460 237-246 (2014)
  15. Absolute Amounts and Status of the Nrf2-Keap1-Cul3 Complex within Cells. Iso T, Suzuki T, Baird L, Yamamoto M. Mol Cell Biol 36 3100-3112 (2016)
  16. Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, Doutch J, Bullock AN. Biochem J 474 3747-3761 (2017)
  17. The Nitrate-Responsive Protein MdBT2 Regulates Anthocyanin Biosynthesis by Interacting with the MdMYB1 Transcription Factor. Wang XF, An JP, Liu X, Su L, You CX, Hao YJ. Plant Physiol 178 890-906 (2018)
  18. Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study. Li BK, Vasiljevic A, Dufour C, Yao F, Ho BLB, Lu M, Hwang EI, Gururangan S, Hansford JR, Fouladi M, Nobusawa S, Laquerriere A, Delisle MB, Fangusaro J, Forest F, Toledano H, Solano-Paez P, Leary S, Birks D, Hoffman LM, Szathmari A, Faure-Conter C, Fan X, Catchpoole D, Zhou L, Schultz KAP, Ichimura K, Gauchotte G, Jabado N, Jones C, Loussouarn D, Mokhtari K, Rousseau A, Ziegler DS, Tanaka S, Pomeroy SL, Gajjar A, Ramaswamy V, Hawkins C, Grundy RG, Hill DA, Bouffet E, Huang A, Jouvet A. Acta Neuropathol 139 223-241 (2020)
  19. Cullin3-KLHL15 ubiquitin ligase mediates CtIP protein turnover to fine-tune DNA-end resection. Ferretti LP, Himmels SF, Trenner A, Walker C, von Aesch C, Eggenschwiler A, Murina O, Enchev RI, Peter M, Freire R, Porro A, Sartori AA. Nat Commun 7 12628 (2016)
  20. Cullin 3 Recognition Is Not a Universal Property among KCTD Proteins. Smaldone G, Pirone L, Balasco N, Di Gaetano S, Pedone EM, Vitagliano L. PLoS One 10 e0126808 (2015)
  21. Missense Variants in RHOBTB2 Cause a Developmental and Epileptic Encephalopathy in Humans, and Altered Levels Cause Neurological Defects in Drosophila. Straub J, Konrad EDH, Grüner J, Toutain A, Bok LA, Cho MT, Crawford HP, Dubbs H, Douglas G, Jobling R, Johnson D, Krock B, Mikati MA, Nesbitt A, Nicolai J, Phillips M, Poduri A, Ortiz-Gonzalez XR, Powis Z, Santani A, Smith L, Stegmann APA, Stumpel C, Vreeburg M, Deciphering Developmental Disorders Study, Fliedner A, Gregor A, Sticht H, Zweier C. Am J Hum Genet 102 44-57 (2018)
  22. Inducible LGALS3BP/90K activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. Xu G, Xia Z, Deng F, Liu L, Wang Q, Yu Y, Wang F, Zhu C, Liu W, Cheng Z, Zhu Y, Zhou L, Zhang Y, Lu M, Liu S. PLoS Pathog 15 e1008002 (2019)
  23. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity. Adams EHG, Spoel SH. J Exp Bot 69 4529-4537 (2018)
  24. Proximity labeling reveals novel interactomes in live Drosophila tissue. Mannix KM, Starble RM, Kaufman RS, Cooley L. Development 146 dev176644 (2019)
  25. Letter Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Lee JC, Mazor T, Lao R, Wan E, Diallo AB, Hill NS, Thangaraj N, Wendelsdorf K, Samuel D, Kline CN, Banerjee A, Auguste K, Raffel C, Gupta N, Berger M, Raleigh DR, Shai A, Phillips JJ, Bollen AW, Tihan T, Perry A, Costello J, Solomon DA. Acta Neuropathol 137 851-854 (2019)
  26. Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases. Muniz JR, Guo K, Kershaw NJ, Ayinampudi V, von Delft F, Babon JJ, Bullock AN. J Mol Biol 425 3166-3177 (2013)
  27. Structural basis of high-order oligomerization of the cullin-3 adaptor SPOP. van Geersdaele LK, Stead MA, Harrison CM, Carr SB, Close HJ, Rosbrook GO, Connell SD, Wright SC. Acta Crystallogr D Biol Crystallogr 69 1677-1684 (2013)
  28. Structural basis of NPR1 in activating plant immunity. Kumar S, Zavaliev R, Wu Q, Zhou Y, Cheng J, Dillard L, Powers J, Withers J, Zhao J, Guan Z, Borgnia MJ, Bartesaghi A, Dong X, Zhou P. Nature 605 561-566 (2022)
  29. Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus study. Liu APY, Li BK, Pfaff E, Gudenas B, Vasiljevic A, Orr BA, Dufour C, Snuderl M, Karajannis MA, Rosenblum MK, Hwang EI, Ng HK, Hansford JR, Szathmari A, Faure-Conter C, Merchant TE, Levine M, Bouvier N, von Hoff K, Mynarek M, Rutkowski S, Sahm F, Kool M, Hawkins C, Onar-Thomas A, Robinson GW, Gajjar A, Pfister SM, Bouffet E, Northcott PA, Jones DTW, Huang A. Acta Neuropathol 141 771-785 (2021)
  30. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase. Hudson AM, Mannix KM, Cooley L. Genetics 201 1117-1131 (2015)
  31. Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase: suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2). Bulatov E, Martin EM, Chatterjee S, Knebel A, Shimamura S, Konijnenberg A, Johnson C, Zinn N, Grandi P, Sobott F, Ciulli A. J Biol Chem 290 4178-4191 (2015)
  32. GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK. Pae J, Cinalli RM, Marzio A, Pagano M, Lehmann R. Dev Cell 42 130-142.e7 (2017)
  33. KLHL39 suppresses colon cancer metastasis by blocking KLHL20-mediated PML and DAPK ubiquitination. Chen HY, Hu JY, Chen TH, Lin YC, Liu X, Lin MY, Lang YD, Yen Y, Chen RH. Oncogene 34 5141-5151 (2015)
  34. Cullin3-BTB interface: a novel target for stapled peptides. de Paola I, Pirone L, Palmieri M, Balasco N, Esposito L, Russo L, Mazzà D, Di Marcotullio L, Di Gaetano S, Malgieri G, Vitagliano L, Pedone E, Zaccaro L. PLoS One 10 e0121149 (2015)
  35. Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice. Papizan JB, Garry GA, Brezprozvannaya S, McAnally JR, Bassel-Duby R, Liu N, Olson EN. J Clin Invest 127 3730-3740 (2017)
  36. New insights into the function of Cullin 3 in trophoblast invasion and migration. Zhang Q, Yu S, Huang X, Tan Y, Zhu C, Wang YL, Wang H, Lin HY, Fu J, Wang H. Reproduction 150 139-149 (2015)
  37. The instability of the BTB-KELCH protein Gigaxonin causes Giant Axonal Neuropathy and constitutes a new penetrant and specific diagnostic test. Boizot A, Talmat-Amar Y, Morrogh D, Kuntz NL, Halbert C, Chabrol B, Houlden H, Stojkovic T, Schulman BA, Rautenstrauss B, Bomont P. Acta Neuropathol Commun 2 47 (2014)
  38. H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression. Li XH, Xue WL, Wang MJ, Zhou Y, Zhang CC, Sun C, Zhu L, Liang K, Chen Y, Tao BB, Tan B, Yu B, Zhu YC. Sci Rep 7 44807 (2017)
  39. Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Thomas JC, Matak-Vinkovic D, Van Molle I, Ciulli A. Biochemistry 52 5236-5246 (2013)
  40. New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases. Canning P, Bullock AN. Biochem Soc Trans 42 103-107 (2014)
  41. The olfactomedin domain from gliomedin is a β-propeller with unique structural properties. Han H, Kursula P. J Biol Chem 290 3612-3621 (2015)
  42. CUL3 and protein kinases: insights from PLK1/KLHL22 interaction. Metzger T, Kleiss C, Sumara I. Cell Cycle 12 2291-2296 (2013)
  43. KBTBD11, a novel BTB-Kelch protein, is a negative regulator of osteoclastogenesis through controlling Cullin3-mediated ubiquitination of NFATc1. Narahara S, Sakai E, Kadowaki T, Yamaguchi Y, Narahara H, Okamoto K, Asahina I, Tsukuba T. Sci Rep 9 3523 (2019)
  44. Structural-functional interactions of NS1-BP protein with the splicing and mRNA export machineries for viral and host gene expression. Zhang K, Shang G, Padavannil A, Wang J, Sakthivel R, Chen X, Kim M, Thompson MG, García-Sastre A, Lynch KW, Chen ZJ, Chook YM, Fontoura BMA. Proc Natl Acad Sci U S A 115 E12218-E12227 (2018)
  45. Multiple binding modes of a small molecule to human Keap1 revealed by X-ray crystallography and molecular dynamics simulation. Satoh M, Saburi H, Tanaka T, Matsuura Y, Naitow H, Shimozono R, Yamamoto N, Inoue H, Nakamura N, Yoshizawa Y, Aoki T, Tanimura R, Kunishima N. FEBS Open Bio 5 557-570 (2015)
  46. Molecular basis of cullin-3 (Cul3) ubiquitin ligase subversion by vaccinia virus protein A55. Gao C, Pallett MA, Croll TI, Smith GL, Graham SC. J Biol Chem 294 6416-6429 (2019)
  47. SPOP negatively regulates Toll-like receptor-induced inflammation by disrupting MyD88 self-association. Hu YH, Wang Y, Wang F, Dong YM, Jiang WL, Wang YP, Zhong X, Ma LX. Cell Mol Immunol 18 1708-1717 (2021)
  48. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Li J, Su X, Wang Y, Yang W, Pan Y, Su C, Zhang X. Genes Genomics 40 1-15 (2018)
  49. Kelch Repeat and BTB Domain Containing Protein 5 (Kbtbd5) Regulates Skeletal Muscle Myogenesis through the E2F1-DP1 Complex. Gong W, Gohla RM, Bowlin KM, Koyano-Nakagawa N, Garry DJ, Shi X. J Biol Chem 290 15350-15361 (2015)
  50. Analysis of dimerization of BTB-IVR domains of Keap1 and its interaction with Cul3, by molecular modeling. Chauhan N, Chaunsali L, Deshmukh P, Padmanabhan B. Bioinformation 9 450-455 (2013)
  51. Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing. Voutetakis K, Chatziioannou A, Gonos ES, Trougakos IP. Oxid Med Cell Longev 2015 732914 (2015)
  52. Research Support, Non-U.S. Gov't Cullin 3 targets methionine adenosyltransferase IIα for ubiquitylation-mediated degradation and regulates colorectal cancer cell proliferation. Wang J, Zhu ZH, Yang HB, Zhang Y, Zhao XN, Zhang M, Liu YB, Xu YY, Lei QY. FEBS J 283 2390-2402 (2016)
  53. Phosphorylation of KLHL3 at serine 433 impairs its interaction with the acidic motif of WNK4: a molecular dynamics study. Wang L, Peng JB. Protein Sci 26 163-173 (2017)
  54. Structural mapping of Kelch13 mutations associated with artemisinin resistance in malaria. Singh GP, Goel P, Sharma A. J Struct Funct Genomics 17 51-56 (2016)
  55. Monitoring the Antioxidant Mediated Chemosensitization and ARE-Signaling in Triple Negative Breast Cancer Therapy. Foygel K, Sekar TV, Paulmurugan R. PLoS One 10 e0141913 (2015)
  56. Novel KLHL26 variant associated with a familial case of Ebstein's anomaly and left ventricular noncompaction. Samudrala SSK, North LM, Stamm KD, Earing MG, Frommelt MA, Willes R, Tripathi S, Dsouza NR, Zimmermann MT, Mahnke DK, Liang HL, Lund M, Lin CW, Geddes GC, Mitchell ME, Tomita-Mitchell A. Mol Genet Genomic Med 8 e1152 (2020)
  57. Design and characterization of a heterobifunctional degrader of KEAP1. Chen H, Nguyen NH, Magtoto CM, Cobbold SA, Bidgood GM, Meza Guzman LG, Richardson LW, Corbin J, Au AE, Lechtenberg BC, Feltham R, Sutherland KD, Grohmann C, Nicholson SE, Sleebs BE. Redox Biol 59 102552 (2023)
  58. Genetic alterations of Keap1 confers chemotherapeutic resistance through functional activation of Nrf2 and Notch pathway in head and neck squamous cell carcinoma. Islam SS, Qassem K, Islam S, Parag RR, Rahman MZ, Farhat WA, Yeger H, Aboussekhra A, Karakas B, Noman ASM. Cell Death Dis 13 696 (2022)
  59. KLHL18 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by inhibiting PI3K/PD-L1 axis activity. Jiang X, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, Guan J, Su H, Zhang Y, Zhang B, Guo Y, Hu Y, Jiang L, Liu Z, Wang H, Cheng Y, Sun L, Qiu X. Cell Biosci 10 139 (2020)
  60. Kbtbd11 gene expression in adipose tissue increases in response to feeding and affects adipocyte differentiation. Watanabe K, Yoshida K, Iwamoto S. J Diabetes Investig 10 925-932 (2019)
  61. Klhl6 Deficiency Impairs Transitional B Cell Survival and Differentiation. Bertocci B, Lecoeuche D, Sterlin D, Kühn J, Gaillard B, De Smet A, Lembo F, Bole-Feysot C, Cagnard N, Fadeev T, Dahan A, Weill JC, Reynaud CA. J Immunol 199 2408-2420 (2017)
  62. Mutation in the Plasmodium falciparum BTB/POZ Domain of K13 Protein Confers Artemisinin Resistance. Paloque L, Coppée R, Stokes BH, Gnädig NF, Niaré K, Augereau JM, Fidock DA, Clain J, Benoit-Vical F. Antimicrob Agents Chemother 66 e0132021 (2022)
  63. Ubiquitin ligase KLHL2 promotes the degradation and ubiquitination of ARHGEF7 protein to suppress renal cell carcinoma progression. Zhang E, Dong X, Chen S, Shao J, Zhang P, Wang Y, Wang X. Am J Cancer Res 10 3345-3357 (2020)
  64. A functionally defined high-density NRF2 interactome reveals new conditional regulators of ARE transactivation. Poh J, Ponsford AH, Boyd J, Woodsmith J, Stelzl U, Wanker E, Harper N, MacEwan D, Sanderson CM. Redox Biol 37 101686 (2020)
  65. Andrographolide Derivatives Target the KEAP1/NRF2 Axis and Possess Potent Anti-SARS-CoV-2 Activity. Schulte B, König M, Escher BI, Wittenburg S, Proj M, Wolf V, Lemke C, Schnakenburg G, Sosič I, Streeck H, Müller CE, Gütschow M, Steinebach C. ChemMedChem 17 e202100732 (2022)
  66. Mechanisms of CP190 Interaction with Architectural Proteins in Drosophila Melanogaster. Sabirov M, Popovich A, Boyko K, Nikolaeva A, Kyrchanova O, Maksimenko O, Popov V, Georgiev P, Bonchuk A. Int J Mol Sci 22 12400 (2021)
  67. Unveiling the Distinct Mechanisms by which Disease-Causing Mutations in the Kelch Domain of KLHL3 Disrupt the Interaction with the Acidic Motif of WNK4 through Molecular Dynamics Simulation. Wang L, Jiang C, Cai R, Chen XZ, Peng JB. Biochemistry 58 2105-2115 (2019)
  68. A novel long non-coding RNA, lncKBTBD10, involved in bovine skeletal muscle myogenesis. Chen M, Li X, Zhang X, Li Y, Zhang J, Liu M, Zhang L, Ding X, Liu X, Guo H. In Vitro Cell Dev Biol Anim 55 25-35 (2019)
  69. Kctd9 Deficiency Impairs Natural Killer Cell Development and Effector Function. Zhang X, Wang P, Chen T, Yan W, Guan X, Shen G, Luo X, Wan X, Ning Q. Front Immunol 10 744 (2019)
  70. Klotho gene improves oxidative stress injury after myocardial infarction. Xu Z, Zheng S, Feng X, Cai C, Ye X, Liu P. Exp Ther Med 21 52 (2021)
  71. Novel mutations in the 3-box motif of the BACK domain of KLHL7 associated with nonsyndromic autosomal dominant retinitis pigmentosa. Oh JK, Lima de Carvalho JR, Sun YJ, Ragi S, Yang J, Levi SR, Ryu J, Bassuk AG, Mahajan VB, Tsang SH. Orphanet J Rare Dis 14 295 (2019)
  72. A synthetic KLHL20 ligand to validate CUL3KLHL20 as a potent E3 ligase for targeted protein degradation. Farrell BM, Gerth F, Yang CR, Yeh JT. Genes Dev 36 1031-1042 (2022)
  73. Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. Chen Z, Ioris RM, Richardson S, Van Ess AN, Vendrell I, Kessler BM, Buffa FM, Busino L, Clifford SC, Bullock AN, D'Angiolella V. Cell Death Differ 29 1955-1969 (2022)
  74. Protein degradation machinery is present broadly during early development in the sea urchin. Zazueta-Novoa V, Wessel GM. Gene Expr Patterns 15 135-141 (2014)
  75. Structure-activity relationships of 1,4-bis(arylsulfonamido)-benzene or naphthalene-N,N'-diacetic acids with varying C2-substituents as inhibitors of Keap1-Nrf2 protein-protein interaction. Lee S, Abed DA, Nguyen MU, Verzi MP, Hu L. Eur J Med Chem 237 114380 (2022)
  76. Role of proliferative marker index and KBTBD4 mutation in the pathological diagnosis of pineal parenchymal tumors. Uchida E, Sasaki A, Shirahata M, Suzuki T, Adachi JI, Mishima K, Yasuda M, Fujimaki T, Ichimura K, Nishikawa R. Brain Tumor Pathol 39 130-138 (2022)
  77. Transcriptional regulation and ubiquitination-dependent regulation of HnRNPK oncogenic function in prostate tumorigenesis. Wu HL, Li SM, Huang YC, Xia QD, Zhou P, Li XM, Yu X, Wang SG, Ye ZQ, Hu J. Cancer Cell Int 21 641 (2021)
  78. Altered contractility, Ca2+ transients, and cell morphology seen in a patient-specific iPSC-CM model of Ebstein's anomaly with left ventricular noncompaction. Thareja SK, Anfinson M, Cavanaugh M, Kim MS, Lamberton P, Radandt J, Brown R, Liang HL, Stamm K, Afzal MZ, Strande J, Frommelt MA, Lough JW, Fitts RH, Mitchell ME, Tomita-Mitchell A. Am J Physiol Heart Circ Physiol 325 H149-H162 (2023)
  79. Comparative Genomic Hybridization and Transcriptome Sequencing Reveal Genes with Gain in Acute Lymphoblastic Leukemia: JUP Expression Emerges as a Survival-Related Gene. Zapata-García JA, Riveros-Magaña AR, Ortiz-Lazareno PC, Hernández-Flores G, Jave-Suárez LF, Aguilar-Lemarroy A. Diagnostics (Basel) 12 2788 (2022)
  80. Comparative genomics revealed drastic gene difference in two small Chinese perches, Siniperca undulata and S. obscura. Lu L, Jiang J, Zhao J, Li C. G3 (Bethesda) 13 jkad101 (2023)
  81. KBTBD11, encoding a novel PPARγ target gene, is involved in NFATc1 proteolysis by interacting with HSC70 and HSP60. Watanabe K, Matsumoto A, Tsuda H, Iwamoto S. Sci Rep 12 20273 (2022)
  82. Molecular evolution of Keap1 was essential for adaptation of vertebrates to terrestrial life. Yumimoto K, Sugiyama S, Motomura S, Takahashi D, Nakayama KI. Sci Adv 9 eadg2379 (2023)
  83. Profiling ubiquitin signalling with UBIMAX reveals DNA damage- and SCFβ-Trcp1-dependent ubiquitylation of the actin-organizing protein Dbn1. Colding-Christensen CS, Kakulidis ES, Arroyo-Gomez J, Hendriks IA, Arkinson C, Fábián Z, Gambus A, Mailand N, Duxin JP, Nielsen ML. Nat Commun 14 8293 (2023)
  84. Regulation of Cell Proliferation and Nrf2-Mediated Antioxidant Defense: Conservation of Keap1 Cysteines and Nrf2 Binding Site in the Context of the Evolution of KLHL Family. Shilovsky GA, Dibrova DV. Life (Basel) 13 1045 (2023)
  85. Structural Model for Recruitment of RIT1 to the LZTR1 E3 Ligase: Evidences from an Integrated Computational Approach. Paladino A, D'Angelo F, Noviello TMR, Iavarone A, Ceccarelli M. J Chem Inf Model 61 1875-1888 (2021)
  86. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly. Adamson RJ, Payne NC, Bartual SG, Mazitschek R, Bullock AN. Free Radic Biol Med 204 215-225 (2023)
  87. Structural basis for the ubiquitination of G protein βγ subunits by KCTD5/Cullin3 E3 ligase. Jiang W, Wang W, Kong Y, Zheng S. Sci Adv 9 eadg8369 (2023)
  88. The CRL3gigaxonin ubiquitin ligase-USP15 pathway governs the destruction of neurofilament proteins. Park HM, Le L, Nguyen TT, Nam KH, Ordureau A, Lee JE, Nguyen TV. Proc Natl Acad Sci U S A 120 e2306395120 (2023)