2vda Citations

Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR.

Abstract

Recognition of signal sequences by cognate receptors controls the entry of virtually all proteins to export pathways. Despite its importance, this process remains poorly understood. Here, we present the solution structure of a signal peptide bound to SecA, the 204 kDa ATPase motor of the Sec translocase. Upon encounter, the signal peptide forms an alpha-helix that inserts into a flexible and elongated groove in SecA. The mode of binding is bimodal, with both hydrophobic and electrostatic interactions mediating recognition. The same groove is used by SecA to recognize a diverse set of signal sequences. Impairment of the signal-peptide binding to SecA results in significant translocation defects. The C-terminal tail of SecA occludes the groove and inhibits signal-peptide binding, but autoinhibition is relieved by the SecB chaperone. Finally, it is shown that SecA interconverts between two conformations in solution, suggesting a simple mechanism for polypeptide translocation.

Reviews - 2vda mentioned but not cited (4)

Articles - 2vda mentioned but not cited (15)

  1. Mapping of the signal peptide-binding domain of Escherichia coli SecA using Förster resonance energy transfer. Auclair SM, Moses JP, Musial-Siwek M, Kendall DA, Oliver DB, Mukerji I. Biochemistry 49 782-792 (2010)
  2. Energetics of SecA dimerization. Wowor AJ, Yu D, Kendall DA, Cole JL. J. Mol. Biol. 408 87-98 (2011)
  3. Defining the solution state dimer structure of Escherichia coli SecA using Förster resonance energy transfer. Auclair SM, Oliver DB, Mukerji I. Biochemistry 52 2388-2401 (2013)
  4. Characterization of the Escherichia coli SecA signal peptide-binding site. Grady LM, Michtavy J, Oliver DB. J. Bacteriol. 194 307-316 (2012)
  5. Defining the Escherichia coli SecA dimer interface residues through in vivo site-specific photo-cross-linking. Yu D, Wowor AJ, Cole JL, Kendall DA. J. Bacteriol. 195 2817-2825 (2013)
  6. The role of structural bioinformatics resources in the era of integrative structural biology. Gutmanas A, Oldfield TJ, Patwardhan A, Sen S, Velankar S, Kleywegt GJ. Acta Crystallogr. D Biol. Crystallogr. 69 710-721 (2013)
  7. Using a low denaturant model to explore the conformational features of translocation-active SecA. Maki JL, Krishnan B, Gierasch LM. Biochemistry 51 1369-1379 (2012)
  8. Mapping of the SecA signal peptide binding site and dimeric interface by using the substituted cysteine accessibility method. Bhanu MK, Zhao P, Kendall DA. J. Bacteriol. 195 4709-4715 (2013)
  9. Analysis of SecA dimerization in solution. Wowor AJ, Yan Y, Auclair SM, Yu D, Zhang J, May ER, Gross ML, Kendall DA, Cole JL. Biochemistry 53 3248-3260 (2014)
  10. Conserved SecA Signal Peptide-Binding Site Revealed by Engineered Protein Chimeras and Förster Resonance Energy Transfer. Zhang Q, Li Y, Olson R, Mukerji I, Oliver D. Biochemistry 55 1291-1300 (2016)
  11. Structural insights into the mechanism of a novel protein targeting pathway in Gram-negative bacteria. Jin F. FEBS Open Bio 10 561-579 (2020)
  12. Molecular Mimicry of SecA and Signal Recognition Particle Binding to the Bacterial Ribosome. Knüpffer L, Fehrenbach C, Denks K, Erichsen V, Petriman NA, Koch HG. MBio 10 (2019)
  13. Nuclear magnetic resonance captures the elusive. Van Doren SR. F1000 Biol Rep 1 24 (2009)
  14. The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity. Jamshad M, Knowles TJ, White SA, Ward DG, Mohammed F, Rahman KF, Wynne M, Hughes GW, Kramer G, Bukau B, Huber D. Elife 8 (2019)
  15. The molecular mechanism of cotranslational membrane protein recognition and targeting by SecA. Wang S, Jomaa A, Jaskolowski M, Yang CI, Ban N, Shan SO. Nat. Struct. Mol. Biol. 26 919-929 (2019)


Reviews citing this publication (58)

  1. Using chemical shift perturbation to characterise ligand binding. Williamson MP. Prog Nucl Magn Reson Spectrosc 73 1-16 (2013)
  2. Protein dynamics and allostery: an NMR view. Tzeng SR, Kalodimos CG. Curr. Opin. Struct. Biol. 21 62-67 (2011)
  3. Methyl groups as probes of supra-molecular structure, dynamics and function. Ruschak AM, Kay LE. J. Biomol. NMR 46 75-87 (2010)
  4. Protein export through the bacterial Sec pathway. Tsirigotaki A, De Geyter J, Šoštaric N, Economou A, Karamanou S. Nat. Rev. Microbiol. 15 21-36 (2017)
  5. The bacterial Sec-translocase: structure and mechanism. Lycklama A Nijeholt JA, Driessen AJ. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 1016-1028 (2012)
  6. Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Rosenzweig R, Kay LE. Annu. Rev. Biochem. 83 291-315 (2014)
  7. Inserting proteins into the bacterial cytoplasmic membrane using the Sec and YidC translocases. Xie K, Dalbey RE. Nat. Rev. Microbiol. 6 234-244 (2008)
  8. Protein secretion and outer membrane assembly in Alphaproteobacteria. Gatsos X, Perry AJ, Anwari K, Dolezal P, Wolynec PP, Likić VA, Purcell AW, Buchanan SK, Lithgow T. FEMS Microbiol. Rev. 32 995-1009 (2008)
  9. NMR approaches for structural analysis of multidomain proteins and complexes in solution. Göbl C, Madl T, Simon B, Sattler M. Prog Nucl Magn Reson Spectrosc 80 26-63 (2014)
  10. The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Denks K, Vogt A, Sachelaru I, Petriman NA, Kudva R, Koch HG. Mol. Membr. Biol. 31 58-84 (2014)
  11. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Jakob U, Kriwacki R, Uversky VN. Chem. Rev. 114 6779-6805 (2014)
  12. Breaking on through to the other side: protein export through the bacterial Sec system. Chatzi KE, Sardis MF, Karamanou S, Economou A. Biochem. J. 449 25-37 (2013)
  13. SecA: a tale of two protomers. Sardis MF, Economou A. Mol. Microbiol. 76 1070-1081 (2010)
  14. Methyl-specific isotopic labeling: a molecular tool box for solution NMR studies of large proteins. Kerfah R, Plevin MJ, Sounier R, Gans P, Boisbouvier J. Curr. Opin. Struct. Biol. 32 113-122 (2015)
  15. New Views of Functionally Dynamic Proteins by Solution NMR Spectroscopy. Kay LE. J. Mol. Biol. 428 323-331 (2016)
  16. Emerging themes in SecA2-mediated protein export. Feltcher ME, Braunstein M. Nat. Rev. Microbiol. 10 779-789 (2012)
  17. Protein dynamics and function from solution state NMR spectroscopy. Kovermann M, Rogne P, Wolf-Watz M. Q Rev Biophys 49 e6 (2016)
  18. SecA, a remarkable nanomachine. Kusters I, Driessen AJ. Cell. Mol. Life Sci. 68 2053-2066 (2011)
  19. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Low KO, Muhammad Mahadi N, Md Illias R. Appl. Microbiol. Biotechnol. 97 3811-3826 (2013)
  20. SecA-mediated targeting and translocation of secretory proteins. Chatzi KE, Sardis MF, Economou A, Karamanou S. Biochim. Biophys. Acta 1843 1466-1474 (2014)
  21. Translocation of proteins through the Sec61 and SecYEG channels. Mandon EC, Trueman SF, Gilmore R. Curr. Opin. Cell Biol. 21 501-507 (2009)
  22. NMR reveals novel mechanisms of protein activity regulation. Kalodimos CG. Protein Sci. 20 773-782 (2011)
  23. A survey of the year 2007 literature on applications of isothermal titration calorimetry. Bjelić S, Jelesarov I. J. Mol. Recognit. 21 289-312 (2008)
  24. Selective transport by SecA2: an expanding family of customized motor proteins. Bensing BA, Seepersaud R, Yen YT, Sullam PM. Biochim. Biophys. Acta 1843 1674-1686 (2014)
  25. The structural analysis of protein-protein interactions by NMR spectroscopy. O'Connell MR, Gamsjaeger R, Mackay JP. Proteomics 9 5224-5232 (2009)
  26. Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. Segers K, Anné J. Chem. Biol. 18 685-698 (2011)
  27. Antibiotic targeting of the bacterial secretory pathway. Rao C V S, De Waelheyns E, Economou A, Anné J. Biochim. Biophys. Acta 1843 1762-1783 (2014)
  28. Protein Transport Across the Bacterial Plasma Membrane by the Sec Pathway. Smets D, Loos MS, Karamanou S, Economou A. Protein J 38 262-273 (2019)
  29. Mechanisms of amyloid formation revealed by solution NMR. Karamanos TK, Kalverda AP, Thompson GS, Radford SE. Prog Nucl Magn Reson Spectrosc 88-89 86-104 (2015)
  30. Enlightening molecular mechanisms through study of protein interactions. Rizo J, Rosen MK, Gardner KH. J Mol Cell Biol 4 270-283 (2012)
  31. NMR methods for structural studies of large monomeric and multimeric proteins. Frueh DP, Goodrich AC, Mishra SH, Nichols SR. Curr. Opin. Struct. Biol. 23 734-739 (2013)
  32. Practical aspects of NMR signal assignment in larger and challenging proteins. Frueh DP. Prog Nucl Magn Reson Spectrosc 78 47-75 (2014)
  33. Structures of Large Protein Complexes Determined by Nuclear Magnetic Resonance Spectroscopy. Huang C, Kalodimos CG. Annu Rev Biophys 46 317-336 (2017)
  34. The quiet renaissance of protein nuclear magnetic resonance. Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z, Mathew S, Peng D, Song Y, Van Horn WD, Zhuang T, Sönnichsen FD, Sanders CR. Biochemistry 52 1303-1320 (2013)
  35. Chaperones and chaperone-substrate complexes: Dynamic playgrounds for NMR spectroscopists. Burmann BM, Hiller S. Prog Nucl Magn Reson Spectrosc 86-87 41-64 (2015)
  36. Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Ban D, Smith CA, de Groot BL, Griesinger C, Lee D. Arch. Biochem. Biophys. 628 81-91 (2017)
  37. Information-driven modeling of large macromolecular assemblies using NMR data. van Ingen H, Bonvin AM. J. Magn. Reson. 241 103-114 (2014)
  38. SecA: a potential antimicrobial target. Chaudhary AS, Chen W, Jin J, Tai PC, Wang B. Future Med Chem 7 989-1007 (2015)
  39. The mechanisms of integral membrane protein biogenesis. Hegde RS, Keenan RJ. Nat Rev Mol Cell Biol 23 107-124 (2022)
  40. Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function. Lisi GP, Loria JP. Prog Nucl Magn Reson Spectrosc 92-93 1-17 (2016)
  41. Recent advances in protein NMR spectroscopy and their implications in protein therapeutics research. Wang G, Zhang ZT, Jiang B, Zhang X, Li C, Liu M. Anal Bioanal Chem 406 2279-2288 (2014)
  42. From the Sec complex to the membrane insertase YidC. Kuhn A. Biol. Chem. 390 701-706 (2009)
  43. The Dynamic SecYEG Translocon. Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. Front Mol Biosci 8 664241 (2021)
  44. The Sec System: Protein Export in Escherichia coli. Crane JM, Randall LL. EcoSal Plus 7 (2017)
  45. Protein folding by NMR. Zhuravleva A, Korzhnev DM. Prog Nucl Magn Reson Spectrosc 100 52-77 (2017)
  46. Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. Lacabanne D, Meier BH, Böckmann A. J. Biomol. NMR 71 141-150 (2018)
  47. Tracking Proteins Secreted by Bacteria: What's in the Toolbox? Maffei B, Francetic O, Subtil A. Front Cell Infect Microbiol 7 221 (2017)
  48. Invited review: GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Cohen LS, Fracchiolla KE, Becker J, Naider F. Biopolymers 102 223-243 (2014)
  49. NMR Studies of Large Proteins. Jiang Y, Kalodimos CG. J. Mol. Biol. 429 2667-2676 (2017)
  50. Current NMR Techniques for Structure-Based Drug Discovery. Sugiki T, Furuita K, Fujiwara T, Kojima C. Molecules 23 (2018)
  51. How Quality Control Systems AID Sec-Dependent Protein Translocation. Jiang C, Wynne M, Huber D. Front Mol Biosci 8 669376 (2021)
  52. Nuclear magnetic resonance spectroscopy of the circadian clock of cyanobacteria. Chang YG, Tseng R, Kuo NW, LiWang A. Integr. Comp. Biol. 53 93-102 (2013)
  53. Single-Molecule Studies on the Protein Translocon. Seinen AB, Driessen AJM. Annu Rev Biophys 48 185-207 (2019)
  54. Specific isotopic labelling and reverse labelling for protein NMR spectroscopy: using metabolic precursors in sample preparation. Rowlinson B, Crublet E, Kerfah R, Plevin MJ. Biochem Soc Trans 50 1555-1567 (2022)
  55. A unifying mechanism for protein transport through the core bacterial Sec machinery. Allen WJ, Collinson I. Open Biol 13 230166 (2023)
  56. Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA. Nichols PJ, Born A, Henen MA, Strotz D, Celestine CN, Güntert P, Vögeli B. Chembiochem (2018)
  57. Large Multidomain Protein NMR: HIV-1 Reverse Transcriptase Precursor in Solution. Ilina TV, Xi Z, Brosenitsch T, Sluis-Cremer N, Ishima R. Int J Mol Sci 21 E9545 (2020)
  58. β-Barrel Assembly Machinery (BAM) Complex as Novel Antibacterial Drug Target. Xu Q, Guo M, Yu F. Molecules 28 3758 (2023)

Articles citing this publication (174)

  1. Structure of a complex of the ATPase SecA and the protein-translocation channel. Zimmer J, Nam Y, Rapoport TA. Nature 455 936-943 (2008)
  2. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Zhuravleva A, Clerico EM, Gierasch LM. Cell 151 1296-1307 (2012)
  3. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG. Proc. Natl. Acad. Sci. U.S.A. 106 6927-6932 (2009)
  4. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Religa TL, Sprangers R, Kay LE. Science 328 98-102 (2010)
  5. Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Rosenzweig R, Moradi S, Zarrine-Afsar A, Glover JR, Kay LE. Science 339 1080-1083 (2013)
  6. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee HW, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT, Baker D. Proc. Natl. Acad. Sci. U.S.A. 109 10873-10878 (2012)
  7. Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Kato H, van Ingen H, Zhou BR, Feng H, Bustin M, Kay LE, Bai Y. Proc. Natl. Acad. Sci. U.S.A. 108 12283-12288 (2011)
  8. Signal peptides are allosteric activators of the protein translocase. Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A. Nature 462 363-367 (2009)
  9. Structural basis for protein antiaggregation activity of the trigger factor chaperone. Saio T, Guan X, Rossi P, Economou A, Kalodimos CG. Science 344 1250494 (2014)
  10. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli. Minty JJ, Lesnefsky AA, Lin F, Chen Y, Zaroff TA, Veloso AB, Xie B, McConnell CA, Ward RJ, Schwartz DR, Rouillard JM, Gao Y, Gulari E, Lin XN. Microb. Cell Fact. 10 18 (2011)
  11. Molecular chaperone function of Mia40 triggers consecutive induced folding steps of the substrate in mitochondrial protein import. Banci L, Bertini I, Cefaro C, Cenacchi L, Ciofi-Baffoni S, Felli IC, Gallo A, Gonnelli L, Luchinat E, Sideris D, Tokatlidis K. Proc. Natl. Acad. Sci. U.S.A. 107 20190-20195 (2010)
  12. A unified conformational selection and induced fit approach to protein-peptide docking. Trellet M, Melquiond AS, Bonvin AM. PLoS ONE 8 e58769 (2013)
  13. N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Karagöz GE, Duarte AM, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJ, Boelens R, Rüdiger SG. Proc. Natl. Acad. Sci. U.S.A. 108 580-585 (2011)
  14. Allosteric inhibition through suppression of transient conformational states. Tzeng SR, Kalodimos CG. Nat. Chem. Biol. 9 462-465 (2013)
  15. SecA interacts with ribosomes in order to facilitate posttranslational translocation in bacteria. Huber D, Rajagopalan N, Preissler S, Rocco MA, Merz F, Kramer G, Bukau B. Mol. Cell 41 343-353 (2011)
  16. The oligomeric state and arrangement of the active bacterial translocon. Deville K, Gold VA, Robson A, Whitehouse S, Sessions RB, Baldwin SA, Radford SE, Collinson I. J. Biol. Chem. 286 4659-4669 (2011)
  17. Structure of the SecY complex unlocked by a preprotein mimic. Hizlan D, Robson A, Whitehouse S, Gold VA, Vonck J, Mills D, Kühlbrandt W, Collinson I. Cell Rep 1 21-28 (2012)
  18. Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria. Chang YG, Kuo NW, Tseng R, LiWang A. Proc. Natl. Acad. Sci. U.S.A. 108 14431-14436 (2011)
  19. Conformational flexibility and peptide interaction of the translocation ATPase SecA. Zimmer J, Rapoport TA. J. Mol. Biol. 394 606-612 (2009)
  20. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. Cooper DB, Smith VF, Crane JM, Roth HC, Lilly AA, Randall LL. J. Mol. Biol. 382 74-87 (2008)
  21. Tracing an allosteric pathway regulating the activity of the HslV protease. Shi L, Kay LE. Proc. Natl. Acad. Sci. U.S.A. 111 2140-2145 (2014)
  22. Energy transduction in protein transport and the ATP hydrolytic cycle of SecA. Robson A, Gold VA, Hodson S, Clarke AR, Collinson I. Proc. Natl. Acad. Sci. U.S.A. 106 5111-5116 (2009)
  23. Mapping of the SecA·SecY and SecA·SecG interfaces by site-directed in vivo photocross-linking. Das S, Oliver DB. J. Biol. Chem. 286 12371-12380 (2011)
  24. An economical method for production of (2)H, (13)CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome. Velyvis A, Ruschak AM, Kay LE. PLoS ONE 7 e43725 (2012)
  25. Mapping polypeptide interactions of the SecA ATPase during translocation. Bauer BW, Rapoport TA. Proc. Natl. Acad. Sci. U.S.A. 106 20800-20805 (2009)
  26. Structural basis for the antifolding activity of a molecular chaperone. Huang C, Rossi P, Saio T, Kalodimos CG. Nature 537 202-206 (2016)
  27. CheA-receptor interaction sites in bacterial chemotaxis. Wang X, Vu A, Lee K, Dahlquist FW. J. Mol. Biol. 422 282-290 (2012)
  28. Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion. Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A, Finer-Moore J, Holton J, Cheng Y, Stroud RM, Cox JS. Cell 161 501-512 (2015)
  29. A simple strategy for ¹³C, ¹H labeling at the Ile-γ2 methyl position in highly deuterated proteins. Ruschak AM, Velyvis A, Kay LE. J. Biomol. NMR 48 129-135 (2010)
  30. Solution NMR spectroscopy of supra-molecular systems, why bother? A methyl-TROSY view. Kay LE. J. Magn. Reson. 210 159-170 (2011)
  31. Structure-based prediction of methyl chemical shifts in proteins. Sahakyan AB, Vranken WF, Cavalli A, Vendruscolo M. J. Biomol. NMR 50 331-346 (2011)
  32. NMR-assisted prediction of RNA secondary structure: identification of a probable pseudoknot in the coding region of an R2 retrotransposon. Hart JM, Kennedy SD, Mathews DH, Turner DH. J. Am. Chem. Soc. 130 10233-10239 (2008)
  33. A systematic mutagenesis-driven strategy for site-resolved NMR studies of supramolecular assemblies. Amero C, Asunción Durá M, Noirclerc-Savoye M, Perollier A, Gallet B, Plevin MJ, Vernet T, Franzetti B, Boisbouvier J. J. Biomol. NMR 50 229-236 (2011)
  34. NMR spectroscopy of soluble protein complexes at one mega-dalton and beyond. Mainz A, Religa TL, Sprangers R, Linser R, Kay LE, Reif B. Angew. Chem. Int. Ed. Engl. 52 8746-8751 (2013)
  35. Mobility of the SecA 2-helix-finger is not essential for polypeptide translocation via the SecYEG complex. Whitehouse S, Gold VA, Robson A, Allen WJ, Sessions RB, Collinson I. J. Cell Biol. 199 919-929 (2012)
  36. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). Otten R, Villali J, Kern D, Mulder FA. J. Am. Chem. Soc. 132 17004-17014 (2010)
  37. Substrate-activated conformational switch on chaperones encodes a targeting signal in type III secretion. Chen L, Ai X, Portaliou AG, Minetti CA, Remeta DP, Economou A, Kalodimos CG. Cell Rep 3 709-715 (2013)
  38. Characterization of Streptococcus gordonii SecA2 as a paralogue of SecA. Bensing BA, Sullam PM. J. Bacteriol. 191 3482-3491 (2009)
  39. Fast methionine-based solution structure determination of calcium-calmodulin complexes. Gifford JL, Ishida H, Vogel HJ. J. Biomol. NMR 50 71-81 (2011)
  40. Protein export by the mycobacterial SecA2 system is determined by the preprotein mature domain. Feltcher ME, Gibbons HS, Ligon LS, Braunstein M. J. Bacteriol. 195 672-681 (2013)
  41. Quaternary dynamics of the SecA motor drive translocase catalysis. Gouridis G, Karamanou S, Sardis MF, Schärer MA, Capitani G, Economou A. Mol. Cell 52 655-666 (2013)
  42. The dynamic action of SecA during the initiation of protein translocation. Gold VA, Whitehouse S, Robson A, Collinson I. Biochem. J. 449 695-705 (2013)
  43. An optimized isotopic labelling strategy of isoleucine-γ2 methyl groups for solution NMR studies of high molecular weight proteins. Ayala I, Hamelin O, Amero C, Pessey O, Plevin MJ, Gans P, Boisbouvier J. Chem Commun (Camb) 48 1434-1436 (2012)
  44. Automated sequence- and stereo-specific assignment of methyl-labeled proteins by paramagnetic relaxation and methyl-methyl nuclear Overhauser enhancement spectroscopy. Venditti V, Fawzi NL, Clore GM. J. Biomol. NMR 51 319-328 (2011)
  45. Protein function and allostery: a dynamic relationship. Kalodimos CG. Ann. N. Y. Acad. Sci. 1260 81-86 (2012)
  46. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Rosenzweig R, Farber P, Velyvis A, Rennella E, Latham MP, Kay LE. Proc. Natl. Acad. Sci. U.S.A. 112 E6872-81 (2015)
  47. Basis of recognition between the NarJ chaperone and the N-terminus of the NarG subunit from Escherichia coli nitrate reductase. Zakian S, Lafitte D, Vergnes A, Pimentel C, Sebban-Kreuzer C, Toci R, Claude JB, Guerlesquin F, Magalon A. FEBS J. 277 1886-1895 (2010)
  48. Application of methyl-TROSY NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase. Velyvis A, Schachman HK, Kay LE. J. Mol. Biol. 387 540-547 (2009)
  49. Assembly of the translocase motor onto the preprotein-conducting channel. Karamanou S, Bariami V, Papanikou E, Kalodimos CG, Economou A. Mol. Microbiol. 70 311-322 (2008)
  50. Cryo-electron microscopic structure of SecA protein bound to the 70S ribosome. Singh R, Kraft C, Jaiswal R, Sejwal K, Kasaragod VB, Kuper J, Bürger J, Mielke T, Luirink J, Bhushan S. J. Biol. Chem. 289 7190-7199 (2014)
  51. Delicate conformational balance of the redox enzyme cytochrome P450cam. Skinner SP, Liu WM, Hiruma Y, Timmer M, Blok A, Hass MA, Ubbink M. Proc. Natl. Acad. Sci. U.S.A. 112 9022-9027 (2015)
  52. Methionine scanning as an NMR tool for detecting and analyzing biomolecular interaction surfaces. Stoffregen MC, Schwer MM, Renschler FA, Wiesner S. Structure 20 573-581 (2012)
  53. A Dynamic molecular basis for malfunction in disease mutants of p97/VCP. Schuetz AK, Kay LE. Elife 5 (2016)
  54. Automated assignment in selectively methyl-labeled proteins. Xu Y, Liu M, Simpson PJ, Isaacson R, Cota E, Marchant J, Yang D, Zhang X, Freemont P, Matthews S. J. Am. Chem. Soc. 131 9480-9481 (2009)
  55. Full-length Escherichia coli SecA dimerizes in a closed conformation in solution as determined by cryo-electron microscopy. Chen Y, Pan X, Tang Y, Quan S, Tai PC, Sui SF. J. Biol. Chem. 283 28783-28787 (2008)
  56. NMR studies of large protein systems. Tzeng SR, Pai MT, Kalodimos CG. Methods Mol. Biol. 831 133-140 (2012)
  57. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins. Mas G, Crublet E, Hamelin O, Gans P, Boisbouvier J. J. Biomol. NMR 57 251-262 (2013)
  58. NMR structure of the transmembrane domain of the n-acetylcholine receptor beta2 subunit. Bondarenko V, Tillman T, Xu Y, Tang P. Biochim. Biophys. Acta 1798 1608-1614 (2010)
  59. Preprotein mature domains contain translocase targeting signals that are essential for secretion. Chatzi KE, Sardis MF, Tsirigotaki A, Koukaki M, Šoštarić N, Konijnenberg A, Sobott F, Kalodimos CG, Karamanou S, Economou A. J. Cell Biol. 216 1357-1369 (2017)
  60. Differential isotope-labeling for Leu and Val residues in a protein by E. coli cellular expression using stereo-specifically methyl labeled amino acids. Miyanoiri Y, Takeda M, Okuma K, Ono AM, Terauchi T, Kainosho M. J. Biomol. NMR 57 237-249 (2013)
  61. MAP-XSII: an improved program for the automatic assignment of methyl resonances in large proteins. Xu Y, Matthews S. J. Biomol. NMR 55 179-187 (2013)
  62. Optimal methyl labeling for studies of supra-molecular systems. Religa TL, Kay LE. J. Biomol. NMR 47 163-169 (2010)
  63. Probing arginine side-chains and their dynamics with carbon-detected NMR spectroscopy: application to the 42 kDa human histone deacetylase 8 at high pH. Werbeck ND, Kirkpatrick J, Hansen DF. Angew. Chem. Int. Ed. Engl. 52 3145-3147 (2013)
  64. Rapid prediction of multi-dimensional NMR data sets. Gradmann S, Ader C, Heinrich I, Nand D, Dittmann M, Cukkemane A, van Dijk M, Bonvin AM, Engelhard M, Baldus M. J. Biomol. NMR 54 377-387 (2012)
  65. The archaeal exosome: identification and quantification of site-specific motions that correlate with cap and RNA binding. Audin MJ, Dorn G, Fromm SA, Reiss K, Schütz S, Vorländer MK, Sprangers R. Angew. Chem. Int. Ed. Engl. 52 8312-8316 (2013)
  66. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations. Markin CJ, Spyracopoulos L. J. Biomol. NMR 54 355-376 (2012)
  67. Design, syntheses and evaluation of 4-oxo-5-cyano thiouracils as SecA inhibitors. Chaudhary AS, Jin J, Chen W, Tai PC, Wang B. Bioorg. Med. Chem. 23 105-117 (2015)
  68. Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? Yuwen T, Post CB, Skrynnikov NR. J. Biomol. NMR 51 131-150 (2011)
  69. (13)CHD2-CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins. Rennella E, Huang R, Velyvis A, Kay LE. J. Biomol. NMR 63 187-199 (2015)
  70. 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Didenko T, Boelens R, Rüdiger SG. Protein Eng. Des. Sel. 24 99-103 (2011)
  71. A systematic proteomic analysis of Listeria monocytogenes house-keeping protein secretion systems. Halbedel S, Reiss S, Hahn B, Albrecht D, Mannala GK, Chakraborty T, Hain T, Engelmann S, Flieger A. Mol. Cell Proteomics 13 3063-3081 (2014)
  72. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. J. Biomol. NMR 48 31-47 (2010)
  73. FLAMEnGO: a fuzzy logic approach for methyl group assignment using NOESY and paramagnetic relaxation enhancement data. Chao FA, Shi L, Masterson LR, Veglia G. J. Magn. Reson. 214 103-110 (2012)
  74. Scrambling free combinatorial labeling of alanine-β, isoleucine-δ1, leucine-proS and valine-proS methyl groups for the detection of long range NOEs. Kerfah R, Plevin MJ, Pessey O, Hamelin O, Gans P, Boisbouvier J. J. Biomol. NMR 61 73-82 (2015)
  75. SecA is required for membrane targeting of the cell division protein DivIVA in vivo. Halbedel S, Kawai M, Breitling R, Hamoen LW. Front Microbiol 5 58 (2014)
  76. Selective editing of Val and Leu methyl groups in high molecular weight protein NMR. Hu W, Namanja AT, Wong S, Chen Y. J. Biomol. NMR 53 113-124 (2012)
  77. 15N and 13C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [1H,13C]-labeled proteins. Rossi P, Xia Y, Khanra N, Veglia G, Kalodimos CG. J. Biomol. NMR 66 259-271 (2016)
  78. A Specific interaction between SecA2 and a region of the preprotein adjacent to the signal peptide occurs during transport via the accessory Sec system. Bensing BA, Yen YT, Seepersaud R, Sullam PM. J. Biol. Chem. 287 24438-24447 (2012)
  79. Analysis of the isolated SecA DEAD motor suggests a mechanism for chemical-mechanical coupling. Nithianantham S, Shilton BH. J. Mol. Biol. 383 380-389 (2008)
  80. Identification of small molecule inhibitors against SecA of Candidatus Liberibacter asiaticus by structure based design. Akula N, Trivedi P, Han FQ, Wang N. Eur J Med Chem 54 919-924 (2012)
  81. Independent valine and leucine isotope labeling in Escherichia coli protein overexpression systems. Lichtenecker RJ, Weinhäupl K, Reuther L, Schörghuber J, Schmid W, Konrat R. J. Biomol. NMR 57 205-209 (2013)
  82. Internal motions prime cIAP1 for rapid activation. Phillips AH, Schoeffler AJ, Matsui T, Weiss TM, Blankenship JW, Zobel K, Giannetti AM, Dueber EC, Fairbrother WJ. Nat. Struct. Mol. Biol. 21 1068-1074 (2014)
  83. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. Rosenzweig R, Sekhar A, Nagesh J, Kay LE. Elife 6 (2017)
  84. The RNF168 paralog RNF169 defines a new class of ubiquitylated histone reader involved in the response to DNA damage. Kitevski-LeBlanc J, Fradet-Turcotte A, Kukic P, Wilson MD, Portella G, Yuwen T, Panier S, Duan S, Canny MD, van Ingen H, Arrowsmith CH, Rubinstein JL, Vendruscolo M, Durocher D, Kay LE. Elife 6 (2017)
  85. Dimeric SecA couples the preprotein translocation in an asymmetric manner. Tang Y, Pan X, Chen Y, Tai PC, Sui SF. PLoS ONE 6 e16498 (2011)
  86. Expression and efficient secretion of a functional chitinase from Chromobacterium violaceum in Escherichia coli. Lobo MD, Silva FD, Landim PG, da Cruz PR, de Brito TL, de Medeiros SC, Oliveira JT, Vasconcelos IM, Pereira HD, Grangeiro TB. BMC Biotechnol. 13 46 (2013)
  87. Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556. Zheng X, Mueller GA, DeRose EF, London RE. Nucleic Acids Res. 40 10543-10553 (2012)
  88. Optimization of a Fragment-Based Screening Hit toward Potent DOT1L Inhibitors Interacting in an Induced Binding Pocket. Scheufler C, Möbitz H, Gaul C, Ragot C, Be C, Fernández C, Beyer KS, Tiedt R, Stauffer F. ACS Med Chem Lett 7 730-734 (2016)
  89. Structural basis for client recognition and activity of Hsp40 chaperones. Jiang Y, Rossi P, Kalodimos CG. Science 365 1313-1319 (2019)
  90. Structural mapping of a chaperone-substrate interaction surface. Callon M, Burmann BM, Hiller S. Angew. Chem. Int. Ed. Engl. 53 5069-5072 (2014)
  91. Using nanoelectrospray ion mobility spectrometry (GEMMA) to determine the size and relative molecular mass of proteins and protein assemblies: a comparison with MALLS and QELS. Kapellios EA, Karamanou S, Sardis MF, Aivaliotis M, Economou A, Pergantis SA. Anal Bioanal Chem 399 2421-2433 (2011)
  92. ADP-dependent conformational changes distinguish Mycobacterium tuberculosis SecA2 from SecA1. D'Lima NG, Teschke CM. J. Biol. Chem. 289 2307-2317 (2014)
  93. An excess of catalytically required motions inhibits the scavenger decapping enzyme. Neu A, Neu U, Fuchs AL, Schlager B, Sprangers R. Nat. Chem. Biol. 11 697-704 (2015)
  94. Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multiple-Quantum Spectroscopy. Yuwen T, Vallurupalli P, Kay LE. Angew. Chem. Int. Ed. Engl. 55 11490-11494 (2016)
  95. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes. Mund M, Overbeck JH, Ullmann J, Sprangers R. Angew. Chem. Int. Ed. Engl. 52 11401-11405 (2013)
  96. Ligand-driven conformational changes of MurD visualized by paramagnetic NMR. Saio T, Ogura K, Kumeta H, Kobashigawa Y, Shimizu K, Yokochi M, Kodama K, Yamaguchi H, Tsujishita H, Inagaki F. Sci Rep 5 16685 (2015)
  97. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence. Vo U, Vajpai N, Flavell L, Bobby R, Breeze AL, Embrey KJ, Golovanov AP. J. Biol. Chem. 291 1703-1718 (2016)
  98. (19)F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins. Matei E, Gronenborn AM. Angew. Chem. Int. Ed. Engl. 55 150-154 (2016)
  99. A NMR experiment for simultaneous correlations of valine and leucine/isoleucine methyls with carbonyl chemical shifts in proteins. Tugarinov V, Venditti V, Marius Clore G. J. Biomol. NMR 58 1-8 (2014)
  100. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase. Csizmok V, Orlicky S, Cheng J, Song J, Bah A, Delgoshaie N, Lin H, Mittag T, Sicheri F, Chan HS, Tyers M, Forman-Kay JD. Nat Commun 8 13943 (2017)
  101. Development of a Microemulsion Formulation for Antimicrobial SecA Inhibitors. Hu J, Akula N, Wang N. PLoS ONE 11 e0150433 (2016)
  102. Phosphorylation induced cochaperone unfolding promotes kinase recruitment and client class-specific Hsp90 phosphorylation. Bachman AB, Keramisanou D, Xu W, Beebe K, Moses MA, Vasantha Kumar MV, Gray G, Noor RE, van der Vaart A, Neckers L, Gelis I. Nat Commun 9 265 (2018)
  103. Structure and pro-toxic mechanism of the human Hsp90/PPIase/Tau complex. Oroz J, Chang BJ, Wysoczanski P, Lee CT, Pérez-Lara Á, Chakraborty P, Hofele RV, Baker JD, Blair LJ, Biernat J, Urlaub H, Mandelkow E, Dickey CA, Zweckstetter M. Nat Commun 9 4532 (2018)
  104. The variable subdomain of Escherichia coli SecA functions to regulate SecA ATPase activity and ADP release. Das S, Grady LM, Michtavy J, Zhou Y, Cohan FM, Hingorani MM, Oliver DB. J. Bacteriol. 194 2205-2213 (2012)
  105. Trigger factor is a bona fide secretory pathway chaperone that interacts with SecB and the translocase. De Geyter J, Portaliou AG, Srinivasu B, Krishnamurthy S, Economou A, Karamanou S. EMBO Rep 21 e49054 (2020)
  106. Exploiting E. coli auxotrophs for leucine, valine, and threonine specific methyl labeling of large proteins for NMR applications. Monneau YR, Ishida Y, Rossi P, Saio T, Tzeng SR, Inouye M, Kalodimos CG. J. Biomol. NMR 65 99-108 (2016)
  107. Selective backbone labelling of ILV methyl labelled proteins. Sibille N, Hanoulle X, Bonachera F, Verdegem D, Landrieu I, Wieruszeski JM, Lippens G. J. Biomol. NMR 43 219-227 (2009)
  108. Active-Site-Directed Inhibitors of Prolyl Oligopeptidase Abolish Its Conformational Dynamics. López A, Herranz-Trillo F, Kotev M, Gairí M, Guallar V, Bernadó P, Millet O, Tarragó T, Giralt E. Chembiochem 17 913-917 (2016)
  109. Allosteric fine-tuning of the conformational equilibrium poises the chaperone BiP for post-translational regulation. Wieteska L, Shahidi S, Zhuravleva A. Elife 6 (2017)
  110. Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps. Mishra SH, Frueh DP. J. Biomol. NMR 62 281-290 (2015)
  111. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE. Elife 7 (2018)
  112. Protein-Inhibitor Interaction Studies Using NMR. Ishima R. Appl NMR Spectrosc 1 143-181 (2015)
  113. SecA mediates cotranslational targeting and translocation of an inner membrane protein. Wang S, Yang CI, Shan SO. J. Cell Biol. 216 3639-3653 (2017)
  114. A 3D time-shared NOESY experiment designed to provide optimal resolution for accurate assignment of NMR distance restraints in large proteins. Mishra SH, Harden BJ, Frueh DP. J. Biomol. NMR 60 265-274 (2014)
  115. Allosteric Communication across STAT3 Domains Associated with STAT3 Function and Disease-Causing Mutation. Namanja AT, Wang J, Buettner R, Colson L, Chen Y. J. Mol. Biol. 428 579-589 (2016)
  116. Flexible stoichiometry and asymmetry of the PIDDosome core complex by heteronuclear NMR spectroscopy and mass spectrometry. Nematollahi LA, Garza-Garcia A, Bechara C, Esposito D, Morgner N, Robinson CV, Driscoll PC. J. Mol. Biol. 427 737-752 (2015)
  117. Methyl fingerprinting of the nucleosome reveals the molecular mechanism of high-mobility group nucleosomal-2 (HMGN2) association. Musselman CA, Kutateladze TG. Proc. Natl. Acad. Sci. U.S.A. 108 12189-12190 (2011)
  118. Mitosis-specific acetylation tunes Ran effector binding for chromosome segregation. Bao X, Liu H, Liu X, Ruan K, Zhang Y, Zhang Z, Hu Q, Liu Y, Akram S, Zhang J, Gong Q, Wang W, Yuan X, Li J, Zhao L, Dou Z, Tian R, Yao X, Wu J, Shi Y. J Mol Cell Biol 10 18-32 (2018)
  119. Novel semisynthetic method for generating full length beta-amyloid peptides. Bockhorn JJ, Lazar KL, Gasser AJ, Luther LM, Qahwash IM, Chopra N, Meredith SC. Biopolymers 94 511-520 (2010)
  120. Preprotein Conformational Dynamics Drive Bivalent Translocase Docking and Secretion. Sardis MF, Tsirigotaki A, Chatzi KE, Portaliou AG, Gouridis G, Karamanou S, Economou A. Structure 25 1056-1067.e6 (2017)
  121. Structure-Based Assignment of Ile, Leu, and Val Methyl Groups in the Active and Inactive Forms of the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 2. Xiao Y, Warner LR, Latham MP, Ahn NG, Pardi A. Biochemistry 54 4307-4319 (2015)
  122. Utilization of paramagnetic relaxation enhancements for structural analysis of actin-binding proteins in complex with actin. Huang S, Umemoto R, Tamura Y, Kofuku Y, Uyeda TQ, Nishida N, Shimada I. Sci Rep 6 33690 (2016)
  123. Alignment of the protein substrate hairpin along the SecA two-helix finger primes protein transport in Escherichia coli. Zhang Q, Lahiri S, Banerjee T, Sun Z, Oliver D, Mukerji I. Proc. Natl. Acad. Sci. U.S.A. 114 9343-9348 (2017)
  124. An alternate mode of oligomerization for E. coli SecA. Yazdi AK, Vezina GC, Shilton BH. Sci Rep 7 11747 (2017)
  125. Assigning methyl resonances for protein solution-state NMR studies. Gorman SD, Sahu D, O'Rourke KF, Boehr DD. Methods 148 88-99 (2018)
  126. Automatic methyl assignment in large proteins by the MAGIC algorithm. Monneau YR, Rossi P, Bhaumik A, Huang C, Jiang Y, Saleh T, Xie T, Xing Q, Kalodimos CG. J. Biomol. NMR 69 215-227 (2017)
  127. Cotranslocational processing of the protein substrate calmodulin by an AAA+ unfoldase occurs via unfolding and refolding intermediates. Augustyniak R, Kay LE. Proc. Natl. Acad. Sci. U.S.A. 115 E4786-E4795 (2018)
  128. Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids. Proudfoot A, Frank AO, Ruggiu F, Mamo M, Lingel A. J. Biomol. NMR 65 15-27 (2016)
  129. HIV-1 Tat Binding to PCAF Bromodomain: Structural Determinants from Computational Methods. Quy VC, Pantano S, Rossetti G, Giacca M, Carloni P. Biology (Basel) 1 277-296 (2012)
  130. Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2. Piserchio A, Warthaka M, Kaoud TS, Callaway K, Dalby KN, Ghose R. Proc. Natl. Acad. Sci. U.S.A. 114 E6287-E6296 (2017)
  131. Methyl group assignment using pseudocontact shifts with PARAssign. Lescanne M, Skinner SP, Blok A, Timmer M, Cerofolini L, Fragai M, Luchinat C, Ubbink M. J. Biomol. NMR 69 183-195 (2017)
  132. Methyl-selective isotope labeling using α-ketoisovalerate for the yeast Pichia pastoris recombinant protein expression system. Suzuki R, Sakakura M, Mori M, Fujii M, Akashi S, Takahashi H. J. Biomol. NMR 71 213-223 (2018)
  133. Specific 13C labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies. Fasshuber HK, Demers JP, Chevelkov V, Giller K, Becker S, Lange A. J. Magn. Reson. 252 10-19 (2015)
  134. Structural Similarities and Differences between Two Functionally Distinct SecA Proteins, Mycobacterium tuberculosis SecA1 and SecA2. Swanson S, Ioerger TR, Rigel NW, Miller BK, Braunstein M, Sacchettini JC. J. Bacteriol. 198 720-730 (2015)
  135. Substrate Binding Drives Active-Site Closing of Human Blood Group B Galactosyltransferase as Revealed by Hot-Spot Labeling and NMR Spectroscopy Experiments. Weissbach S, Flügge F, Peters T. Chembiochem 19 970-978 (2018)
  136. The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Cvetkovic MA, Wurm JP, Audin MJ, Schütz S, Sprangers R. Nat. Chem. Biol. 13 522-528 (2017)
  137. Bacterial production of site specific 13C labeled phenylalanine and methodology for high level incorporation into bacterially expressed recombinant proteins. Ramaraju B, McFeeters H, Vogler B, McFeeters RL. J. Biomol. NMR 67 23-34 (2017)
  138. Coassembly of SecYEG and SecA Fully Restores the Properties of the Native Translocon. Bariya P, Randall LL. J. Bacteriol. 201 (2019)
  139. Complete assignment of Ala, Ile, Leu, Met and Val methyl groups of human blood group A and B glycosyltransferases using lanthanide-induced pseudocontact shifts and methyl-methyl NOESY. Flügge F, Peters T. J. Biomol. NMR 70 245-259 (2018)
  140. Conformational heterogeneity in the Hsp70 chaperone-substrate ensemble identified from analysis of NMR-detected titration data. Sekhar A, Nagesh J, Rosenzweig R, Kay LE. Protein Sci. 26 2207-2220 (2017)
  141. Cotranslational folding of alkaline phosphatase in the periplasm of Escherichia coli. Elfageih R, Karyolaimos A, Kemp G, de Gier JW, von Heijne G, Kudva R. Protein Sci 29 2028-2037 (2020)
  142. Dissecting the role of interprotomer cooperativity in the activation of oligomeric high-temperature requirement A2 protein. Toyama Y, Harkness RW, Kay LE. Proc Natl Acad Sci U S A 118 e2111257118 (2021)
  143. Förster Resonance Energy Transfer Mapping: A New Methodology to Elucidate Global Structural Features. Northrop J, Oliver DB, Mukerji I. J Vis Exp (2022)
  144. Hold the fold: how delayed folding aids protein secretion. McCaul N, Braakman I. EMBO J 41 e112787 (2022)
  145. Identification of small-molecule inhibitors against SecA by structure-based virtual ligand screening. De Waelheyns E, Segers K, Sardis MF, Anné J, Nicolaes GA, Economou A. J. Antibiot. 68 666-673 (2015)
  146. Large conformational changes of a highly dynamic pre-protein binding domain in SecA. Ernst I, Haase M, Ernst S, Yuan S, Kuhn A, Leptihn S. Commun Biol 1 130 (2018)
  147. Probing slow timescale dynamics in proteins using methyl 1H CEST. Yuwen T, Huang R, Kay LE. J. Biomol. NMR 68 215-224 (2017)
  148. Structural basis of protein substrate processing by human mitochondrial high-temperature requirement A2 protease. Toyama Y, Harkness RW, Kay LE. Proc Natl Acad Sci U S A 119 e2203172119 (2022)
  149. Substrate Proteins Take Shape at an Improved Bacterial Translocon. Oliver D. J. Bacteriol. 201 (2019)
  150. Topology of the SecA ATPase Bound to Large Unilamellar Vesicles. Roussel G, Lindner E, White SH. J Mol Biol 434 167607 (2022)
  151. A Semiautomated Assignment Protocol for Methyl Group Side Chains in Large Proteins. Kim J, Wang Y, Li G, Veglia G. Meth. Enzymol. 566 35-57 (2016)
  152. An Integrative Approach to Determine 3D Protein Structures Using Sparse Paramagnetic NMR Data and Physical Modeling. Gaalswyk K, Liu Z, Vogel HJ, MacCallum JL. Front Mol Biosci 8 676268 (2021)
  153. Automatic structure-based NMR methyl resonance assignment in large proteins. Pritišanac I, Würz JM, Alderson TR, Güntert P. Nat Commun 10 4922 (2019)
  154. Biochemical methods to map and quantify allosteric motions in human glucokinase. Gordon BH, Liu P, Whittington AC, Silvers R, Miller BG. Methods Enzymol 685 433-459 (2023)
  155. Biochemistry and molecular biology research achievements in Greece. Thireos G, Panayotou G, Thanos D. IUBMB Life 60 254-257 (2008)
  156. Letter Characterization of a polypeptide-binding site in the DEAD Motor of the SecA ATPase. Khalili Yazdi A, Namjoshi S, Hackett J, Ghonaim N, Shilton BH. FEBS Lett. 591 3378-3390 (2017)
  157. Dynamic fluctuations lubricate the circadian clock. Pai MT, Kalodimos C. Proc. Natl. Acad. Sci. U.S.A. 108 14377-14378 (2011)
  158. Dynamic hydrogen-bond networks in bacterial protein secretion. Karathanou K, Bondar AN. FEMS Microbiol. Lett. 365 (2018)
  159. Establishment of serine protease htrA mutants in Helicobacter pylori is associated with secA mutations. Zawilak-Pawlik A, Zarzecka U, Żyła-Uklejewicz D, Lach J, Strapagiel D, Tegtmeyer N, Böhm M, Backert S, Skorko-Glonek J. Sci Rep 9 11794 (2019)
  160. Exploiting conformational plasticity in the AAA+ protein VCP/p97 to modify function. Schütz AK, Rennella E, Kay LE. Proc. Natl. Acad. Sci. U.S.A. (2017)
  161. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Faust O, Abayev-Avraham M, Wentink AS, Maurer M, Nillegoda NB, London N, Bukau B, Rosenzweig R. Nature 587 489-494 (2020)
  162. Insights into phosphatase-activated chemical defense in a marine sponge holobiont. Jomori T, Matsuda K, Egami Y, Abe I, Takai A, Wakimoto T. RSC Chem Biol 2 1600-1607 (2021)
  163. Intra-residue methyl-methyl correlations for valine and leucine residues in large proteins from a 3D-HMBC-HMQC experiment. Siemons L, Mackenzie HW, Shukla VK, Hansen DF. J. Biomol. NMR 73 749-757 (2019)
  164. Iron is a ligand of SecA-like metal-binding domains in vivo. Cranford-Smith T, Jamshad M, Jeeves M, Chandler RA, Yule J, Robinson A, Alam F, Dunne KA, Aponte Angarita EH, Alanazi M, Carter C, Henderson IR, Lovett JE, Winn P, Knowles T, Huber D. J Biol Chem 295 7516-7528 (2020)
  165. Methyl-Specific Isotope Labeling Strategies for NMR Studies of Membrane Proteins. Kurauskas V, Schanda P, Sounier R. Methods Mol. Biol. 1635 109-123 (2017)
  166. Molecular insights into the interaction of Hsp90 with allosteric inhibitors targeting the C-terminal domain. Kumar Mv V, Ebna Noor R, Davis RE, Zhang Z, Sipavicius E, Keramisanou D, Blagg BSJ, Gelis I. Medchemcomm 9 1323-1331 (2018)
  167. News NMR disentangles a dynamic disaggregase machinery. Saio T, Kalodimos CG. Nat. Struct. Mol. Biol. 20 409-410 (2013)
  168. Probing allosteric interactions in homo-oligomeric molecular machines using solution NMR spectroscopy. Toyama Y, Kay LE. Proc Natl Acad Sci U S A 118 e2116325118 (2021)
  169. Progress toward automated methyl assignments for methyl-TROSY applications. Clay MC, Saleh T, Kamatham S, Rossi P, Kalodimos CG. Structure 30 69-79.e2 (2022)
  170. Signal Peptide Efficiency: From High-Throughput Data to Prediction and Explanation. Grasso S, Dabene V, Hendriks MMWB, Zwartjens P, Pellaux R, Held M, Panke S, van Dijl JM, Meyer A, van Rij T. ACS Synth Biol 12 390-404 (2023)
  171. Structural determinants of protein translocation in bacteria: conformational flexibility of SecA IRA1 loop region. Palladino P, Saviano G, Tancredi T, Benedetti E, Rossi F, Ragone R. J. Pept. Sci. 17 263-269 (2011)
  172. Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone. Huang CT, Lai YC, Chen SY, Ho MR, Chiang YW, Hsu SD. Magn Reson (Gott) 2 375-386 (2021)
  173. The Structure of Clostridioides difficile SecA2 ATPase Exposes Regions Responsible for Differential Target Recognition of the SecA1 and SecA2-Dependent Systems. Lindič N, Loboda J, Usenik A, Vidmar R, Turk D. Int J Mol Sci 21 (2020)
  174. Variant Signal Peptides of Vaccine Antigen, FHbp, Impair Processing Affecting Surface Localization and Antibody-Mediated Killing in Most Meningococcal Isolates. da Silva RAG, Karlyshev AV, Oldfield NJ, Wooldridge KG, Bayliss CD, Ryan A, Griffin R. Front Microbiol 10 2847 (2019)