2v5m Citations

Structural basis of Dscam isoform specificity.

Nature 449 487-91 (2007)
Related entries: 2v5r, 2v5s

Cited: 102 times
EuropePMC logo PMID: 17721508

Abstract

The Dscam gene gives rise to thousands of diverse cell surface receptors thought to provide homophilic and heterophilic recognition specificity for neuronal wiring and immune responses. Mutually exclusive splicing allows for the generation of sequence variability in three immunoglobulin ecto-domains, D2, D3 and D7. We report X-ray structures of the amino-terminal four immunoglobulin domains (D1-D4) of two distinct Dscam isoforms. The structures reveal a horseshoe configuration, with variable residues of D2 and D3 constituting two independent surface epitopes on either side of the receptor. Both isoforms engage in homo-dimerization coupling variable domain D2 with D2, and D3 with D3. These interactions involve symmetric, antiparallel pairing of identical peptide segments from epitope I that are unique to each isoform. Structure-guided mutagenesis and swapping of peptide segments confirm that epitope I, but not epitope II, confers homophilic binding specificity of full-length Dscam receptors. Phylogenetic analysis shows strong selection of matching peptide sequences only for epitope I. We propose that peptide complementarity of variable residues in epitope I of Dscam is essential for homophilic binding specificity.

Reviews - 2v5m mentioned but not cited (2)

Articles - 2v5m mentioned but not cited (3)

  1. A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Sawaya MR, Wojtowicz WM, Andre I, Qian B, Wu W, Baker D, Eisenberg D, Zipursky SL. Cell 134 1007-1018 (2008)
  2. Cryo-electron tomography of homophilic adhesion mediated by the neural cell adhesion molecule L1. He Y, Jensen GJ, Bjorkman PJ. Structure 17 460-471 (2009)
  3. Structural basis of Dscam1 homodimerization: Insights into context constraint for protein recognition. Li SA, Cheng L, Yu Y, Chen Q. Sci Adv 2 e1501118 (2016)


Reviews citing this publication (34)

  1. Immune proteins in brain development and synaptic plasticity. Boulanger LM. Neuron 64 93-109 (2009)
  2. Chemoaffinity revisited: dscams, protocadherins, and neural circuit assembly. Zipursky SL, Sanes JR. Cell 143 343-353 (2010)
  3. Phagocytosis and comparative innate immunity: learning on the fly. Stuart LM, Ezekowitz RA. Nat. Rev. Immunol. 8 131-141 (2008)
  4. The molecular basis of self-avoidance. Zipursky SL, Grueber WB. Annu. Rev. Neurosci. 36 547-568 (2013)
  5. Protein-protein interaction networks: how can a hub protein bind so many different partners? Tsai CJ, Ma B, Nussinov R. Trends Biochem. Sci. 34 594-600 (2009)
  6. L1CAM malfunction in the nervous system and human carcinomas. Schäfer MK, Altevogt P. Cell. Mol. Life Sci. 67 2425-2437 (2010)
  7. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Aricescu AR, Jones EY. Curr. Opin. Cell Biol. 19 543-550 (2007)
  8. Self-avoidance and tiling: Mechanisms of dendrite and axon spacing. Grueber WB, Sagasti A. Cold Spring Harb Perspect Biol 2 a001750 (2010)
  9. Cis interactions of immunoreceptors with MHC and non-MHC ligands. Held W, Mariuzza RA. Nat. Rev. Immunol. 8 269-278 (2008)
  10. Immunoglobulin superfamily virus receptors and the evolution of adaptive immunity. Dermody TS, Kirchner E, Guglielmi KM, Stehle T. PLoS Pathog. 5 e1000481 (2009)
  11. Molecular diversity of Dscam: recognition of molecular identity in neuronal wiring. Schmucker D. Nat. Rev. Neurosci. 8 915-920 (2007)
  12. Dscam and pancrustacean immune memory - a review of the evidence. Armitage SA, Peuss R, Kurtz J. Dev. Comp. Immunol. 48 315-323 (2015)
  13. Review of Dscam-mediated immunity in shrimp and other arthropods. Ng TH, Chiang YA, Yeh YC, Wang HC. Dev. Comp. Immunol. 46 129-138 (2014)
  14. Alternative splicing of mutually exclusive exons--a review. Pohl M, Bortfeldt RH, Grützmann K, Schuster S. BioSystems 114 31-38 (2013)
  15. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Li Y, Mariuzza RA. Front Immunol 5 123 (2014)
  16. Role of adhesion in arthropod immune recognition. Schmidt O, Söderhäll K, Theopold U, Faye I. Annu. Rev. Entomol. 55 485-504 (2010)
  17. Signaling mechanism of the netrin-1 receptor DCC in axon guidance. Finci L, Zhang Y, Meijers R, Wang JH. Prog. Biophys. Mol. Biol. 118 153-160 (2015)
  18. Cis-trans interactions of cell surface receptors: biological roles and structural basis. Held W, Mariuzza RA. Cell. Mol. Life Sci. 68 3469-3478 (2011)
  19. Axonal wiring in neural development: Target-independent mechanisms help to establish precision and complexity. Petrovic M, Schmucker D. Bioessays 37 996-1004 (2015)
  20. Receptor protein tyrosine phosphatases and cancer: new insights from structural biology. Nikolaienko RM, Agyekum B, Bouyain S. Cell Adh Migr 6 356-364 (2012)
  21. Structural insights into the evolution of the adaptive immune system. Deng L, Luo M, Velikovsky A, Mariuzza RA. Annu Rev Biophys 42 191-215 (2013)
  22. Role of Netrin-1 Signaling in Nerve Regeneration. Dun XP, Parkinson DB. Int J Mol Sci 18 (2017)
  23. Revisiting Dscam diversity: lessons from clustered protocadherins. Jin Y, Li H. Cell Mol Life Sci 76 667-680 (2019)
  24. Activity-dependent adaptations in inhibitory axons. Frias CP, Wierenga CJ. Front Cell Neurosci 7 219 (2013)
  25. Down syndrome cell adhesion molecule and its functions in neural development. Zhu K, Xu Y, Liu J, Xu Q, Ye H. Neurosci Bull 27 45-52 (2011)
  26. Role of self-avoidance in neuronal wiring. Kise Y, Schmucker D. Curr. Opin. Neurobiol. 23 983-989 (2013)
  27. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Honig B, Shapiro L. Cell 181 520-535 (2020)
  28. Polymorphic receptors: neuronal functions and molecular mechanisms of diversification. Schreiner D, Nguyen TM, Scheiffele P. Curr. Opin. Neurobiol. 27 25-30 (2014)
  29. More than just glue: the diverse roles of cell adhesion molecules in the Drosophila nervous system. Schwabe T, Gontang AC, Clandinin TR. Cell Adh Migr 3 36-42 (2009)
  30. Towards a paradigm shift in innate immunity-seminal work by Hans G. Boman and co-workers. Faye I, Lindberg BG. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371 (2016)
  31. May the Odds Be Ever in Your Favor: Non-deterministic Mechanisms Diversifying Cell Surface Molecule Expression. Williams DL, Sikora VM, Hammer MA, Amin S, Brinjikji T, Brumley EK, Burrows CJ, Carrillo PM, Cromer K, Edwards SJ, Emri O, Fergle D, Jenkins MJ, Kaushik K, Maydan DD, Woodard W, Clowney EJ. Front Cell Dev Biol 9 720798 (2021)
  32. Structure and evolution of neuronal wiring receptors and ligands. Cortés E, Pak JS, Özkan E. Dev Dyn 252 27-60 (2023)
  33. Midline axon guidance in the Drosophila embryonic central nervous system. Howard LJ, Brown HE, Wadsworth BC, Evans TA. Semin. Cell Dev. Biol. 85 13-25 (2019)
  34. Structural Perspectives on Extracellular Recognition and Conformational Changes of Several Type-I Transmembrane Receptors. Chataigner LMP, Leloup N, Janssen BJC. Front Mol Biosci 7 129 (2020)

Articles citing this publication (63)

  1. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Fuerst PG, Koizumi A, Masland RH, Burgess RW. Nature 451 470-474 (2008)
  2. DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Ly A, Nikolaev A, Suresh G, Zheng Y, Tessier-Lavigne M, Stein E. Cell 133 1241-1254 (2008)
  3. JMJD3 is a histone H3K27 demethylase. Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD. Cell Res 17 850-857 (2007)
  4. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. Cell 130 1134-1145 (2007)
  5. Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. Dong Y, Dimopoulos G. J. Biol. Chem. 284 9835-9844 (2009)
  6. Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. Hattori D, Chen Y, Matthews BJ, Salwinski L, Sabatti C, Grueber WB, Zipursky SL. Nature 461 644-648 (2009)
  7. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Brites D, McTaggart S, Morris K, Anderson J, Thomas K, Colson I, Fabbro T, Little TJ, Ebert D, Du Pasquier L. Mol. Biol. Evol. 25 1429-1439 (2008)
  8. Structural basis for synaptic adhesion mediated by neuroligin-neurexin interactions. Chen X, Liu H, Shim AH, Focia PJ, He X. Nat. Struct. Mol. Biol. 15 50-56 (2008)
  9. The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Bouyain S, Watkins DJ. Proc. Natl. Acad. Sci. U.S.A. 107 2443-2448 (2010)
  10. Anopheles NF-κB-regulated splicing factors direct pathogen-specific repertoires of the hypervariable pattern recognition receptor AgDscam. Dong Y, Cirimotich CM, Pike A, Chandra R, Dimopoulos G. Cell Host Microbe 12 521-530 (2012)
  11. Sex-specific splicing in Drosophila: widespread occurrence, tissue specificity and evolutionary conservation. Telonis-Scott M, Kopp A, Wayne ML, Nuzhdin SV, McIntyre LM. Genetics 181 421-434 (2009)
  12. Proteomics studies confirm the presence of alternative protein isoforms on a large scale. Tress ML, Bodenmiller B, Aebersold R, Valencia A. Genome Biol. 9 R162 (2008)
  13. Lateral assembly of the immunoglobulin protein SynCAM 1 controls its adhesive function and instructs synapse formation. Fogel AI, Stagi M, Perez de Arce K, Biederer T. EMBO J. 30 4728-4738 (2011)
  14. Distinct conformations of Ly49 natural killer cell receptors mediate MHC class I recognition in trans and cis. Back J, Malchiodi EL, Cho S, Scarpellino L, Schneider P, Kerzic MC, Mariuzza RA, Held W. Immunity 31 598-608 (2009)
  15. Novel transcriptome assembly and improved annotation of the whiteleg shrimp (Litopenaeus vannamei), a dominant crustacean in global seafood mariculture. Ghaffari N, Sanchez-Flores A, Doan R, Garcia-Orozco KD, Chen PL, Ochoa-Leyva A, Lopez-Zavala AA, Carrasco JS, Hong C, Brieba LG, Rudiño-Piñera E, Blood PD, Sawyer JE, Johnson CD, Dindot SV, Sotelo-Mundo RR, Criscitiello MF. Sci Rep 4 7081 (2014)
  16. Structural basis for cell surface patterning through NetrinG-NGL interactions. Seiradake E, Coles CH, Perestenko PV, Harlos K, McIlhinney RA, Aricescu AR, Jones EY. EMBO J. 30 4479-4488 (2011)
  17. Structure and Sequence Analyses of Clustered Protocadherins Reveal Antiparallel Interactions that Mediate Homophilic Specificity. Nicoludis JM, Lau SY, Schärfe CP, Marks DS, Weihofen WA, Gaudet R. Structure 23 2087-2098 (2015)
  18. Homophilic adhesion mechanism of neurofascin, a member of the L1 family of neural cell adhesion molecules. Liu H, Focia PJ, He X. J. Biol. Chem. 286 797-805 (2011)
  19. Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins. Goodman KM, Rubinstein R, Thu CA, Bahna F, Mannepalli S, Ahlsén G, Rittenhouse C, Maniatis T, Honig B, Shapiro L. Neuron 90 709-723 (2016)
  20. Genetic dissection of Anopheles gambiae gut epithelial responses to Serratia marcescens. Stathopoulos S, Neafsey DE, Lawniczak MK, Muskavitch MA, Christophides GK. PLoS Pathog. 10 e1003897 (2014)
  21. The evolution of Dscam genes across the arthropods. Armitage SA, Freiburg RY, Kurtz J, Bravo IG. BMC Evol. Biol. 12 53 (2012)
  22. Fifty shades of immune defense. Criscitiello MF, de Figueiredo P. PLoS Pathog. 9 e1003110 (2013)
  23. Massive expansions of Dscam splicing diversity via staggered homologous recombination during arthropod evolution. Lee C, Kim N, Roy M, Graveley BR. RNA 16 91-105 (2010)
  24. AS-ALPS: a database for analyzing the effects of alternative splicing on protein structure, interaction and network in human and mouse. Shionyu M, Yamaguchi A, Shinoda K, Takahashi K, Go M. Nucleic Acids Res. 37 D305-9 (2009)
  25. Molecular structure and dimeric organization of the Notch extracellular domain as revealed by electron microscopy. Kelly DF, Lake RJ, Middelkoop TC, Fan HY, Artavanis-Tsakonas S, Walz T. PLoS ONE 5 e10532 (2010)
  26. Complementary chimeric isoforms reveal Dscam1 binding specificity in vivo. Wu W, Ahlsen G, Baker D, Shapiro L, Zipursky SL. Neuron 74 261-268 (2012)
  27. N-terminal horseshoe conformation of DCC is functionally required for axon guidance and might be shared by other neural receptors. Chen Q, Sun X, Zhou XH, Liu JH, Wu J, Zhang Y, Wang JH. J. Cell. Sci. 126 186-195 (2013)
  28. Structural basis for PECAM-1 homophilic binding. Paddock C, Zhou D, Lertkiatmongkol P, Newman PJ, Zhu J. Blood 127 1052-1061 (2016)
  29. Dscam mutation leads to hydrocephalus and decreased motor function. Xu Y, Ye H, Shen Y, Xu Q, Zhu L, Liu J, Wu JY. Protein Cell 2 647-655 (2011)
  30. The immunoglobulin-like domains 1 and 2 of the protein tyrosine phosphatase LAR adopt an unusual horseshoe-like conformation. Biersmith BH, Hammel M, Geisbrecht ER, Bouyain S. J. Mol. Biol. 408 616-627 (2011)
  31. News Two in one: dual function of an invertebrate antigen receptor. Boehm T. Nat Immunol 8 1031-1033 (2007)
  32. Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4. Nicoludis JM, Vogt BE, Green AG, Schärfe CP, Marks DS, Gaudet R. Elife 5 (2016)
  33. More than one way to produce protein diversity: duplication and limited alternative splicing of an adhesion molecule gene in basal arthropods. Brites D, Brena C, Ebert D, Du Pasquier L. Evolution 67 2999-3011 (2013)
  34. Cis association of leukocyte Ig-like receptor 1 with MHC class I modulates accessibility to antibodies and HCMV UL18. Li NL, Fu L, Uchtenhagen H, Achour A, Burshtyn DN. Eur. J. Immunol. 43 1042-1052 (2013)
  35. Population genetics of duplicated alternatively spliced exons of the Dscam gene in Daphnia and Drosophila. Brites D, Encinas-Viso F, Ebert D, Du Pasquier L, Haag CR. PLoS ONE 6 e27947 (2011)
  36. Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure. Armitage SA, Sun W, You X, Kurtz J, Schmucker D, Chen W. PLoS ONE 9 e108660 (2014)
  37. The secreted immunoglobulin domain proteins ZIG-5 and ZIG-8 cooperate with L1CAM/SAX-7 to maintain nervous system integrity. Bénard CY, Blanchette C, Recio J, Hobert O. PLoS Genet. 8 e1002819 (2012)
  38. Allorecognition proteins in an invertebrate exhibit homophilic interactions. Karadge UB, Gosto M, Nicotra ML. Curr. Biol. 25 2845-2850 (2015)
  39. Comments on the NIGMS PSI. Harrison SC. Structure 15 1344-1346 (2007)
  40. Kassiopeia: a database and web application for the analysis of mutually exclusive exomes of eukaryotes. Hatje K, Kollmar M. BMC Genomics 15 115 (2014)
  41. Antimicrobial activity of a novel hypervariable immunoglobulin domain-containing receptor Dscam in Cherax quadricarinatus. Li D, Yu AQ, Li XJ, Zhu YT, Jin XK, Li WW, Wang Q. Fish Shellfish Immunol. 47 766-776 (2015)
  42. Molecular basis of sidekick-mediated cell-cell adhesion and specificity. Goodman KM, Yamagata M, Jin X, Mannepalli S, Katsamba PS, Ahlsén G, Sergeeva AP, Honig B, Sanes JR, Shapiro L. Elife 5 (2016)
  43. The landscape of human mutually exclusive splicing. Hatje K, Rahman RU, Vidal RO, Simm D, Hammesfahr B, Bansal V, Rajput A, Mickael ME, Sun T, Bonn S, Kollmar M. Mol. Syst. Biol. 13 959 (2017)
  44. Conservation weighting functions enable covariance analyses to detect functionally important amino acids. Colwell LJ, Brenner MP, Murray AW. PLoS ONE 9 e107723 (2014)
  45. The sequence signature of an Ig-fold. Wang JH. Protein Cell 4 569-572 (2013)
  46. Letter Down syndrome cell adhesion molecule is important for early development in Xenopus tropicalis. Morales Diaz HD. Genesis 52 849-857 (2014)
  47. Dscam1 in Pancrustacean Immunity: Current Status and a Look to the Future. Armitage SAO, Kurtz J, Brites D, Dong Y, Du Pasquier L, Wang HC. Front Immunol 8 662 (2017)
  48. Homogeneously N-glycosylated proteins derived from the GlycoDelete HEK293 cell line enable diffraction-quality crystallogenesis. Kozak S, Bloch Y, De Munck S, Mikula A, Bento I, Savvides SN, Meijers R. Acta Crystallogr D Struct Biol 76 1244-1255 (2020)
  49. Modulation of natural killer cell functions by interactions between 2B4 and CD48 in cis and in trans. Claus M, Wingert S, Watzl C. Open Biol 6 (2016)
  50. Understanding the Functional Roles of Multiple Extracellular Domains in Cell Adhesion Molecules with a Coarse-Grained Model. Chen J, Wu Y. J. Mol. Biol. 429 1081-1095 (2017)
  51. A chelicerate-specific burst of nonclassical Dscam diversity. Cao G, Shi Y, Zhang J, Ma H, Hou S, Dong H, Hong W, Chen S, Li H, Wu Y, Guo P, Shao X, Xu B, Shi F, Meng Y, Jin Y. BMC Genomics 19 66 (2018)
  52. Dscam1 Has Diverse Neuron Type-Specific Functions in the Developing Drosophila CNS. Wilhelm N, Kumari S, Krick N, Rickert C, Duch C. eNeuro 9 ENEURO.0255-22.2022 (2022)
  53. Neuronal development: neighbors have to be different. Hummel T. Curr. Biol. 17 R1050-2 (2007)
  54. Protein production, crystallization and preliminary crystallographic analysis of the four N-terminal immunoglobulin domains of Down syndrome cell adhesion molecule 1. Cheng L, Li SA, Wang JH, Yu Y, Chen Q. Acta Crystallogr F Struct Biol Commun 71 775-778 (2015)
  55. Reprint of "review of Dscam-mediated immunity in shrimp and other arthropods". Ng TH, Chiang YA, Yeh YC, Wang HC. Dev. Comp. Immunol. 48 306-314 (2015)
  56. Structure of cell-cell adhesion mediated by the Down syndrome cell adhesion molecule. Guo L, Wu Y, Chang H, Zhang Z, Tang H, Yu Y, Xin L, Liu Y, He Y. Proc Natl Acad Sci U S A 118 e2022442118 (2021)
  57. Tyrosine phosphorylation is essential for DSCAML1 to promote dendrite arborization of mouse cortical neurons. Cui S, Lao L, Duan J, Jin G, Hou X. Neurosci. Lett. 555 193-197 (2013)
  58. Chelicerata sDscam isoforms combine homophilic specificities to define unique cell recognition. Zhou F, Cao G, Dai S, Li G, Li H, Ding Z, Hou S, Xu B, You W, Wiseglass G, Shi F, Yang X, Rubinstein R, Jin Y. Proc Natl Acad Sci U S A 117 24813-24824 (2020)
  59. Discovery and Analysis of Invertebrate IgVJ-C2 Structure from Amphioxus Provides Insight into the Evolution of the Ig Superfamily. Chen R, Zhang L, Qi J, Zhang N, Zhang L, Yao S, Wu Y, Jiang B, Wang Z, Yuan H, Zhang Q, Xia C. J. Immunol. 200 2869-2881 (2018)
  60. Improvement of Dscam homophilic binding affinity throughout Drosophila evolution. Wang GZ, Marini S, Ma X, Yang Q, Zhang X, Zhu Y. BMC Evol. Biol. 14 186 (2014)
  61. Pathogen-Specific Binding Soluble Down Syndrome Cell Adhesion Molecule (Dscam) Regulates Phagocytosis via Membrane-Bound Dscam in Crab. Li XJ, Yang L, Li D, Zhu YT, Wang Q, Li WW. Front Immunol 9 801 (2018)
  62. Structural basis for the self-recognition of sDSCAM in Chelicerata. Cheng J, Yu Y, Wang X, Zheng X, Liu T, Hu D, Jin Y, Lai Y, Fu TM, Chen Q. Nat Commun 14 2522 (2023)
  63. The gene structure and hypervariability of the complete Penaeus monodon Dscam gene. Apitanyasai K, Huang SW, Ng TH, He ST, Huang YH, Chiu SP, Tseng KC, Lin SS, Chang WC, Baldwin-Brown JG, Long AD, Lo CF, Yu HT, Wang HC. Sci Rep 9 16595 (2019)