2v3s Citations

Structural insights into the recognition of substrates and activators by the OSR1 kinase.

EMBO Rep 8 839-45 (2007)
Cited: 64 times
EuropePMC logo PMID: 17721439

Abstract

The oxidative-stress-responsive kinase 1 (OSR1) and the STE20/SPS1-related proline/alanine-rich kinase (SPAK) are key enzymes in a signalling cascade regulating the activity of Na(+)/K(+)/2Cl(-) co-transporters (NKCCs) in response to osmotic stress. Both kinases have a conserved carboxy-terminal (CCT) domain, which recognizes a unique peptide (Arg-Phe-Xaa-Val) motif present in OSR1- and SPAK-activating kinases (with-no-lysine kinase 1 (WNK1) and WNK4) as well as its substrates (NKCC1 and NKCC2). Here, we describe the structural basis of this recognition event as shown by the crystal structure of the CCT domain of OSR1 in complex with a peptide containing this motif, derived from WNK4. The CCT domain forms a novel protein fold that interacts with the Arg-Phe-Xaa-Val motif through a surface-exposed groove. An intricate web of interactions is observed between the CCT domain and an Arg-Phe-Xaa-Val motif-containing peptide derived from WNK4. Mutational analysis shows that these interactions are required for the CCT domain to bind to WNK1 and NKCC1. The CCT domain structure also shows how phosphorylation of a Ser/Thr residue preceding the Arg-Phe-Xaa-Val motif results in a steric clash, promoting its dissociation from the CCT domain. These results provide the first molecular insight into the mechanism by which the SPAK and OSR1 kinases specifically recognize their upstream activators and downstream substrates.

Reviews - 2v3s mentioned but not cited (3)

  1. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Gagnon KB, Delpire E. Physiol. Rev. 92 1577-1617 (2012)
  2. Emerging Targets of Diuretic Therapy. Cheng CJ, Rodan AR, Huang CL. Clin. Pharmacol. Ther. 102 420-435 (2017)
  3. CCT and CCT-Like Modular Protein Interaction Domains in WNK Signaling. Taylor CA, Cobb MH. Mol Pharmacol 101 201-212 (2022)

Articles - 2v3s mentioned but not cited (8)

  1. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters. Ponce-Coria J, Markadieu N, Austin TM, Flammang L, Rios K, Welling PA, Delpire E. J. Biol. Chem. 289 17680-17688 (2014)
  2. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure. Zhang J, Siew K, Macartney T, O'Shaughnessy KM, Alessi DR. Hum. Mol. Genet. 24 4545-4558 (2015)
  3. Evaluation of the template-based modeling in CASP12. Kryshtafovych A, Monastyrskyy B, Fidelis K, Moult J, Schwede T, Tramontano A. Proteins 86 Suppl 1 321-334 (2018)
  4. A protocol for CABS-dock protein-peptide docking driven by side-chain contact information. Kurcinski M, Blaszczyk M, Ciemny MP, Kolinski A, Kmiecik S. Biomed Eng Online 16 73 (2017)
  5. Structural and biochemical insights into the activation mechanisms of germinal center kinase OSR1. Li C, Feng M, Shi Z, Hao Q, Song X, Wang W, Zhao Y, Jiao S, Zhou Z. J. Biol. Chem. 289 35969-35978 (2014)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  7. In silico analysis and experimental verification of OSR1 kinase - Peptide interaction. Austin TM, Nannemann DP, Deluca SL, Meiler J, Delpire E. J. Struct. Biol. 187 58-65 (2014)
  8. The structure of INI1/hSNF5 RPT1 and its interactions with the c-MYC:MAX heterodimer provide insights into the interplay between MYC and the SWI/SNF chromatin remodeling complex. Sammak S, Allen MD, Hamdani N, Bycroft M, Zinzalla G. FEBS J. 285 4165-4180 (2018)


Reviews citing this publication (22)

  1. The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters. Alessi DR, Zhang J, Khanna A, Hochdörfer T, Shang Y, Kahle KT. Sci Signal 7 re3 (2014)
  2. Phosphoregulation of the Na-K-2Cl and K-Cl cotransporters by the WNK kinases. Kahle KT, Rinehart J, Lifton RP. Biochim. Biophys. Acta 1802 1150-1158 (2010)
  3. Survey of the year 2007 commercial optical biosensor literature. Rich RL, Myszka DG. J. Mol. Recognit. 21 355-400 (2008)
  4. The mammalian family of sterile 20p-like protein kinases. Delpire E. Pflugers Arch. 458 953-967 (2009)
  5. Mechanism of regulation of renal ion transport by WNK kinases. Huang CL, Yang SS, Lin SH. Curr. Opin. Nephrol. Hypertens. 17 519-525 (2008)
  6. Cotransporters, WNKs and hypertension: an update. Flatman PW. Curr. Opin. Nephrol. Hypertens. 17 186-192 (2008)
  7. Kinase regulation of Na+-K+-2Cl- cotransport in primary afferent neurons. Delpire E, Austin TM. J. Physiol. (Lond.) 588 3365-3373 (2010)
  8. Hypertension, dietary salt intake, and the role of the thiazide-sensitive sodium chloride transporter NCCT. Glover M, Zuber AM, O'Shaughnessy KM. Cardiovasc Ther 29 68-76 (2011)
  9. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Murillo-de-Ozores AR, Chávez-Canales M, de Los Heros P, Gamba G, Castañeda-Bueno M. Front Physiol 11 585907 (2020)
  10. The WNK/SPAK and IRBIT/PP1 pathways in epithelial fluid and electrolyte transport. Park S, Hong JH, Ohana E, Muallem S. Physiology (Bethesda) 27 291-299 (2012)
  11. WNK kinases, renal ion transport and hypertension. San-Cristobal P, de los Heros P, Ponce-Coria J, Moreno E, Gamba G. Am. J. Nephrol. 28 860-870 (2008)
  12. SPAK and WNK kinases: a new target for blood pressure treatment? Glover M, O'shaughnessy KM. Curr. Opin. Nephrol. Hypertens. 20 16-22 (2011)
  13. Germinal center kinases in immune regulation. Yin H, Shi Z, Jiao S, Chen C, Wang W, Greene MI, Zhou Z. Cell. Mol. Immunol. 9 439-445 (2012)
  14. WNK signalling pathways in blood pressure regulation. Murthy M, Kurz T, O'Shaughnessy KM. Cell. Mol. Life Sci. 74 1261-1280 (2017)
  15. Hypertension: the missing WNKs. Dbouk HA, Huang CL, Cobb MH. Am. J. Physiol. Renal Physiol. 311 F16-27 (2016)
  16. Leveraging unique structural characteristics of WNK kinases to achieve therapeutic inhibition. Zhang J, Deng X, Kahle KT. Sci Signal 9 e3 (2016)
  17. WNK Signaling Inhibitors as Potential Antihypertensive Drugs. AlAmri MA, Kadri H, Dhiani BA, Mahmood S, Elzwawi A, Mehellou Y. ChemMedChem 12 1677-1686 (2017)
  18. WNK4 kinase: from structure to physiology. Murillo-de-Ozores AR, Rodríguez-Gama A, Carbajal-Contreras H, Gamba G, Castañeda-Bueno M. Am J Physiol Renal Physiol 320 F378-F403 (2021)
  19. Nudge-nudge, WNK-WNK (kinases), say no more? Cao-Pham AH, Urano D, Ross-Elliott TJ, Jones AM. New Phytol. 220 35-48 (2018)
  20. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Kliche J, Ivarsson Y. Biochem J 479 1-22 (2022)
  21. Pharmacological targeting of SPAK kinase in disorders of impaired epithelial transport. Zhang J, Karimy JK, Delpire E, Kahle KT. Expert Opin. Ther. Targets 21 795-804 (2017)
  22. Role of the cation-chloride-cotransporters in the circadian system. Salihu S, Meor Azlan NF, Josiah SS, Wu Z, Wang Y, Zhang J. Asian J Pharm Sci 16 589-597 (2021)

Articles citing this publication (31)

  1. Kinase drug discovery--what's next in the field? Cohen P, Alessi DR. ACS Chem. Biol. 8 96-104 (2013)
  2. Short-term stimulation of the thiazide-sensitive Na+-Cl- cotransporter by vasopressin involves phosphorylation and membrane translocation. Mutig K, Saritas T, Uchida S, Kahl T, Borowski T, Paliege A, Böhlick A, Bleich M, Shan Q, Bachmann S. Am. J. Physiol. Renal Physiol. 298 F502-9 (2010)
  3. SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Thastrup JO, Rafiqi FH, Vitari AC, Pozo-Guisado E, Deak M, Mehellou Y, Alessi DR. Biochem. J. 441 325-337 (2012)
  4. Crystal structure of domain-swapped STE20 OSR1 kinase domain. Lee SJ, Cobb MH, Goldsmith EJ. Protein Sci. 18 304-313 (2009)
  5. WNK1 is required for mitosis and abscission. Tu SW, Bugde A, Luby-Phelps K, Cobb MH. Proc. Natl. Acad. Sci. U.S.A. 108 1385-1390 (2011)
  6. On the substrate recognition and negative regulation of SPAK, a kinase modulating Na+-K+-2Cl- cotransport activity. Gagnon KB, Delpire E. Am. J. Physiol., Cell Physiol. 299 C614-20 (2010)
  7. Caenorhabditis elegans WNK-STE20 pathway regulates tube formation by modulating ClC channel activity. Hisamoto N, Moriguchi T, Urushiyama S, Mitani S, Shibuya H, Matsumoto K. EMBO Rep. 9 70-75 (2008)
  8. Structure of the OSR1 kinase, a hypertension drug target. Villa F, Deak M, Alessi DR, van Aalten DM. Proteins 73 1082-1087 (2008)
  9. The activity of the thiazide-sensitive Na(+)-Cl(-) cotransporter is regulated by protein phosphatase PP4. Glover M, Mercier Zuber A, Figg N, O'Shaughnessy KM. Can. J. Physiol. Pharmacol. 88 986-995 (2010)
  10. OSR1-sensitive renal tubular phosphate reabsorption. Pathare G, Föller M, Daryadel A, Mutig K, Bogatikov E, Fajol A, Almilaji A, Michael D, Stange G, Voelkl J, Wagner CA, Bachmann S, Lang F. Kidney Blood Press. Res. 36 149-161 (2012)
  11. The mechanism of beta-adrenergic preconditioning: roles for adenosine and ROS during triggering and mediation. Salie R, Moolman JA, Lochner A. Basic Res. Cardiol. 107 281 (2012)
  12. Behavioral analysis of Ste20 kinase SPAK knockout mice. Geng Y, Byun N, Delpire E. Behav. Brain Res. 208 377-382 (2010)
  13. Interactions with WNK (with no lysine) family members regulate oxidative stress response 1 and ion co-transporter activity. Sengupta S, Tu SW, Wedin K, Earnest S, Stippec S, Luby-Phelps K, Cobb MH. J. Biol. Chem. 287 37868-37879 (2012)
  14. Molecular determinants of hyperosmotically activated NKCC1-mediated K+/K+ exchange. Gagnon KB, Delpire E. J. Physiol. (Lond.) 588 3385-3396 (2010)
  15. Short forms of Ste20-related proline/alanine-rich kinase (SPAK) in the kidney are created by aspartyl aminopeptidase (Dnpep)-mediated proteolytic cleavage. Markadieu N, Rios K, Spiller BW, McDonald WH, Welling PA, Delpire E. J. Biol. Chem. 289 29273-29284 (2014)
  16. Domain-Swapping Switch Point in Ste20 Protein Kinase SPAK. Taylor CA, Juang YC, Earnest S, Sengupta S, Goldsmith EJ, Cobb MH. Biochemistry 54 5063-5071 (2015)
  17. OSR1-sensitive regulation of Na+/H+ exchanger activity in dendritic cells. Pasham V, Rotte A, Yang W, Zelenak C, Bhandaru M, Föller M, Lang F. Am. J. Physiol., Cell Physiol. 303 C416-26 (2012)
  18. Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains. AlAmri MA, Kadri H, Alderwick LJ, Simpkins NS, Mehellou Y. ChemMedChem 12 639-645 (2017)
  19. Solution structure of the WNK1 autoinhibitory domain, a WNK-specific PF2 domain. Moon TM, Correa F, Kinch LN, Piala AT, Gardner KH, Goldsmith EJ. J. Mol. Biol. 425 1245-1252 (2013)
  20. The Ste20 kinases SPAK and OSR1 travel between cells through exosomes. Koumangoye R, Delpire E. Am. J. Physiol., Cell Physiol. 311 C43-53 (2016)
  21. Implications of the N-terminal heterogeneity for the neuronal K-Cl cotransporter KCC2 function. Markkanen M, Ludwig A, Khirug S, Pryazhnikov E, Soni S, Khiroug L, Delpire E, Rivera C, Airaksinen MS, Uvarov P. Brain Res. 1675 87-101 (2017)
  22. OSR1-sensitive small intestinal Na+ transport. Pasham V, Pathare G, Fajol A, Rexhepaj R, Michael D, Pakladok T, Alesutan I, Rotte A, Föller M, Lang F. Am. J. Physiol. Gastrointest. Liver Physiol. 303 G1212-9 (2012)
  23. Development of WNK signaling inhibitors as a new class of antihypertensive drugs. Ishigami-Yuasa M, Watanabe Y, Mori T, Masuno H, Fujii S, Kikuchi E, Uchida S, Kagechika H. Bioorg. Med. Chem. 25 3845-3852 (2017)
  24. Functional identification of protein phosphatase 1-binding consensus residues in NBCe1-B. Lee KP, Kim HJ, Yang D. Korean J. Physiol. Pharmacol. 22 91-99 (2018)
  25. C-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activity. Murillo-de-Ozores AR, Rodríguez-Gama A, Bazúa-Valenti S, Leyva-Ríos K, Vázquez N, Pacheco-Álvarez D, De La Rosa-Velázquez IA, Wengi A, Stone KL, Zhang J, Loffing J, Lifton RP, Yang CL, Ellison DH, Gamba G, Castañeda-Bueno M. J. Biol. Chem. 293 12209-12221 (2018)
  26. Genome-Wide Identification and Expression Analysis of WNK Kinase Gene Family in Acorus. Ji H, Wu Y, Zhao X, Miao JL, Deng S, Li S, Gao R, Liu ZJ, Zhai J. Int J Mol Sci 24 17594 (2023)
  27. Modulation of brain cation-Cl- cotransport via the SPAK kinase inhibitor ZT-1a. Zhang J, Bhuiyan MIH, Zhang T, Karimy JK, Wu Z, Fiesler VM, Zhang J, Huang H, Hasan MN, Skrzypiec AE, Mucha M, Duran D, Huang W, Pawlak R, Foley LM, Hitchens TK, Minnigh MB, Poloyac SM, Alper SL, Molyneaux BJ, Trevelyan AJ, Kahle KT, Sun D, Deng X. Nat Commun 11 78 (2020)
  28. OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant. Taylor CA, An SW, Kankanamalage SG, Stippec S, Earnest S, Trivedi AT, Yang JZ, Mirzaei H, Huang CL, Cobb MH. Proc. Natl. Acad. Sci. U.S.A. 115 3840-3845 (2018)
  29. Sequence and structural variations determining the recruitment of WNK kinases to the KLHL3 E3 ligase. Chen Z, Zhang J, Murillo-de-Ozores AR, Castañeda-Bueno M, D'Amico F, Heilig R, Manning CE, Sorrell FJ, D'Angiolella V, Fischer R, Mulder MPC, Gamba G, Alessi DR, Bullock AN. Biochem J 479 661-675 (2022)
  30. Unanticipated domain requirements for Drosophila Wnk kinase in vivo. Yarikipati P, Jonusaite S, Pleinis JM, Dominicci Cotto C, Sanchez-Hernandez D, Morrison DE, Goyal S, Schellinger J, Pénalva C, Curtiss J, Rodan AR, Jenny A. PLoS Genet 19 e1010975 (2023)
  31. WNK1 collaborates with TGF-β in endothelial cell junction turnover and angiogenesis. Jaykumar AB, Plumber S, Barry DM, Binns D, Wichaidit C, Grzemska M, Earnest S, Goldsmith EJ, Cleaver O, Cobb MH. Proc Natl Acad Sci U S A 119 e2203743119 (2022)