2uw7 Citations

Identification of inhibitors of protein kinase B using fragment-based lead discovery.

J Med Chem 50 2293-6 (2007)
Related entries: 2uw3, 2uw4, 2uw5, 2uw6, 2uw8, 2uw9

Cited: 62 times
EuropePMC logo PMID: 17451234

Abstract

Using fragment-based screening techniques, 5-methyl-4-phenyl-1H-pyrazole (IC50 80 microM) was identified as a novel, low molecular weight inhibitor of protein kinase B (PKB). Herein we describe the rapid elaboration of highly potent and ligand efficient analogues using a fragment growing approach. Iterative structure-based design was supported by protein-ligand structure determinations using a PKA-PKB "chimera" and a final protein-ligand structure of a lead compound in PKBbeta itself.

Articles - 2uw7 mentioned but not cited (1)

  1. AlphaSpace 2.0: Representing Concave Biomolecular Surfaces Using β-Clusters. Katigbak J, Li H, Rooklin D, Zhang Y. J Chem Inf Model 60 1494-1508 (2020)


Reviews citing this publication (17)

  1. The rise of fragment-based drug discovery. Murray CW, Rees DC. Nat Chem 1 187-192 (2009)
  2. Structural biology in fragment-based drug design. Murray CW, Blundell TL. Curr. Opin. Struct. Biol. 20 497-507 (2010)
  3. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos DΑ, Libra M, Tsatsakis AM. Int. J. Oncol. 48 869-885 (2016)
  4. Small-molecule inhibitors of PDK1. Peifer C, Alessi DR. ChemMedChem 3 1810-1838 (2008)
  5. The influence of lipophilicity in drug discovery and design. Arnott JA, Planey SL. Expert Opin Drug Discov 7 863-875 (2012)
  6. Transforming fragments into candidates: small becomes big in medicinal chemistry. de Kloe GE, Bailey D, Leurs R, de Esch IJ. Drug Discov. Today 14 630-646 (2009)
  7. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Q. Rev. Biophys. 45 383-426 (2012)
  8. Bisubstrate inhibitors of protein kinases: from principle to practical applications. Lavogina D, Enkvist E, Uri A. ChemMedChem 5 23-34 (2010)
  9. Structure-based design of molecular cancer therapeutics. van Montfort RL, Workman P. Trends Biotechnol. 27 315-328 (2009)
  10. Of dogs and men: comparative biology as a tool for the discovery of novel biomarkers and drug development targets in osteosarcoma. Rankin KS, Starkey M, Lunec J, Gerrand CH, Murphy S, Biswas S. Pediatr Blood Cancer 58 327-333 (2012)
  11. Two 'Golden Ratio' indices in fragment-based drug discovery. Orita M, Ohno K, Niimi T. Drug Discov. Today 14 321-328 (2009)
  12. Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery. Hall DR, Kozakov D, Whitty A, Vajda S. Trends Pharmacol. Sci. 36 724-736 (2015)
  13. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Cressina E, Chen L, Moulin M, Leeper FJ, Abell C, Smith AG. Biochem. Soc. Trans. 39 652-657 (2011)
  14. Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Cavalluzzi MM, Mangiatordi GF, Nicolotti O, Lentini G. Expert Opin Drug Discov 12 1087-1104 (2017)
  15. Recent progress towards clinically relevant ATP-competitive Akt inhibitors. Huck BR, Mochalkin I. Bioorg. Med. Chem. Lett. 27 2838-2848 (2017)
  16. Computer-Aided Identification of Kinase-Targeted Small Molecules for Cancer: A Review on AKT Protein. Primavera E, Palazzotti D, Barreca ML, Astolfi A. Pharmaceuticals (Basel) 16 993 (2023)
  17. Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Minetti CA, Remeta DP. Life (Basel) 12 1438 (2022)

Articles citing this publication (44)

  1. Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1α protein-protein interface. Van Molle I, Thomann A, Buckley DL, So EC, Lang S, Crews CM, Ciulli A. Chem. Biol. 19 1300-1312 (2012)
  2. Fragment-based quantitative structure-activity relationship (FB-QSAR) for fragment-based drug design. Du QS, Huang RB, Wei YT, Pang ZW, Du LQ, Chou KC. J Comput Chem 30 295-304 (2009)
  3. Synthesis and structure based optimization of novel Akt inhibitors. Lippa B, Pan G, Corbett M, Li C, Kauffman GS, Pandit J, Robinson S, Wei L, Kozina E, Marr ES, Borzillo G, Knauth E, Barbacci-Tobin EG, Vincent P, Troutman M, Baker D, Rajamohan F, Kakar S, Clark T, Morris J. Bioorg. Med. Chem. Lett. 18 3359-3363 (2008)
  4. InterAKTions with FKBPs--mutational and pharmacological exploration. Fabian AK, März A, Neimanis S, Biondi RM, Kozany C, Hausch F. PLoS ONE 8 e57508 (2013)
  5. AT7867 is a potent and oral inhibitor of AKT and p70 S6 kinase that induces pharmacodynamic changes and inhibits human tumor xenograft growth. Grimshaw KM, Hunter LJ, Yap TA, Heaton SP, Walton MI, Woodhead SJ, Fazal L, Reule M, Davies TG, Seavers LC, Lock V, Lyons JF, Thompson NT, Workman P, Garrett MD. Mol. Cancer Ther. 9 1100-1110 (2010)
  6. Group efficiency: a guideline for hits-to-leads chemistry. Verdonk ML, Rees DC. ChemMedChem 3 1179-1180 (2008)
  7. Opportunity Knocks: Organic Chemistry for Fragment-Based Drug Discovery (FBDD). Murray CW, Rees DC. Angew. Chem. Int. Ed. Engl. 55 488-492 (2016)
  8. Discovery of 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as selective, orally active inhibitors of protein kinase B (Akt). McHardy T, Caldwell JJ, Cheung KM, Hunter LJ, Taylor K, Rowlands M, Ruddle R, Henley A, de Haven Brandon A, Valenti M, Davies TG, Fazal L, Seavers L, Raynaud FI, Eccles SA, Aherne GW, Garrett MD, Collins I. J. Med. Chem. 53 2239-2249 (2010)
  9. Rhodium-catalyzed highly enantioselective addition of arylboronic acids to 2-nitrostyrenes by tert-butanesulfinylphosphine ligand. Lang F, Chen G, Li L, Xing J, Han F, Cun L, Liao J. Chemistry 17 5242-5245 (2011)
  10. Identification of selective enzyme inhibitors by fragment library screening. Gao G, Liu X, Pavlovsky A, Viola RE. J Biomol Screen 15 1042-1050 (2010)
  11. Fragment-Based Discovery of Potent and Selective DDR1/2 Inhibitors. Murray CW, Berdini V, Buck IM, Carr ME, Cleasby A, Coyle JE, Curry JE, Day JE, Day PJ, Hearn K, Iqbal A, Lee LY, Martins V, Mortenson PN, Munck JM, Page LW, Patel S, Roomans S, Smith K, Tamanini E, Saxty G. ACS Med Chem Lett 6 798-803 (2015)
  12. New thiazole carboxamides as potent inhibitors of Akt kinases. Chang S, Zhang Z, Zhuang X, Luo J, Cao X, Li H, Tu Z, Lu X, Ren X, Ding K, Ding K. Bioorg. Med. Chem. Lett. 22 1208-1212 (2012)
  13. Design of a multi-purpose fragment screening library using molecular complexity and orthogonal diversity metrics. Lau WF, Withka JM, Hepworth D, Magee TV, Du YJ, Bakken GA, Miller MD, Hendsch ZS, Thanabal V, Kolodziej SA, Xing L, Hu Q, Narasimhan LS, Love R, Charlton ME, Hughes S, van Hoorn WP, Mills JE. J. Comput. Aided Mol. Des. 25 621-636 (2011)
  14. Optimization of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase Based on Group Efficiency Analysis. Hung AW, Silvestre HL, Wen S, George GP, Boland J, Blundell TL, Ciulli A, Abell C. ChemMedChem 11 38-42 (2016)
  15. Fragment-based discovery of type I inhibitors of maternal embryonic leucine zipper kinase. Johnson CN, Berdini V, Beke L, Bonnet P, Brehmer D, Coyle JE, Day PJ, Frederickson M, Freyne EJ, Gilissen RA, Hamlett CC, Howard S, Meerpoel L, McMenamin R, Patel S, Rees DC, Sharff A, Sommen F, Wu T, Linders JT. ACS Med Chem Lett 6 25-30 (2015)
  16. Discovery of a novel protein kinase B inhibitor by structure-based virtual screening. Medina-Franco JL, Giulianotti MA, Yu Y, Shen L, Yao L, Singh N. Bioorg. Med. Chem. Lett. 19 4634-4638 (2009)
  17. Fragment-based QSAR strategies in drug design. Salum LB, Andricopulo AD. Expert Opin Drug Discov 5 405-412 (2010)
  18. First-in-Human Study of AT13148, a Dual ROCK-AKT Inhibitor in Patients with Solid Tumors. McLeod R, Kumar R, Papadatos-Pastos D, Mateo J, Brown JS, Garces AHI, Ruddle R, Decordova S, Jueliger S, Ferraldeschi R, Maiques O, Sanz-Moreno V, Jones P, Traub S, Halbert G, Mellor S, Swales KE, Raynaud FI, Garrett MD, Banerji U. Clin Cancer Res 26 4777-4784 (2020)
  19. Mycobacterium tuberculosis Malate Synthase Structures with Fragments Reveal a Portal for Substrate/Product Exchange. Huang HL, Krieger IV, Parai MK, Gawandi VB, Sacchettini JC. J. Biol. Chem. 291 27421-27432 (2016)
  20. Combining ligand- and structure-based in silico methods for the identification of natural product-based inhibitors of Akt1. Mahajan P, Wadhwa B, Barik MR, Malik F, Nargotra A. Mol Divers 24 45-60 (2020)
  21. Letter Docking of protein kinase B inhibitors: implications in the structure-based optimization of a novel scaffold. Hernández-Campos A, Velázquez-Martínez I, Castillo R, López-Vallejo F, Jia P, Yu Y, Giulianotti MA, Medina-Franco JL. Chem Biol Drug Des 76 269-276 (2010)
  22. In search of AKT kinase inhibitors as anticancer agents: structure-based design, docking, and molecular dynamics studies of 2,4,6-trisubstituted pyridines. Trejo-Soto PJ, Hernández-Campos A, Romo-Mancillas A, Medina-Franco JL, Castillo R. J. Biomol. Struct. Dyn. 36 423-442 (2018)
  23. Synthesis and structural characterisation of selective non-carbohydrate-based inhibitors of bacterial sialidases. Brear P, Telford J, Taylor GL, Westwood NJ. Chembiochem 13 2374-2383 (2012)
  24. Evaluating the enthalpic contribution to ligand binding using QM calculations: effect of methodology on geometries and interaction energies. Gleeson D, Tehan B, Gleeson MP, Limtrakul J. Org. Biomol. Chem. 10 7053-7061 (2012)
  25. Quantum mechanical pairwise decomposition analysis of protein kinase B inhibitors: validating a new tool for guiding drug design. Zhang X, Gibbs AC, Reynolds CH, Peters MB, Westerhoff LM. J Chem Inf Model 50 651-661 (2010)
  26. A cautionary tale of structure-guided inhibitor development against an essential enzyme in the aspartate-biosynthetic pathway. Pavlovsky AG, Thangavelu B, Bhansali P, Viola RE. Acta Crystallogr. D Biol. Crystallogr. 70 3244-3252 (2014)
  27. A nordehydroabietyl amide-containing chiral diene for rhodium-catalysed asymmetric arylation to nitroolefins. Li R, Wen Z, Wu N. Org. Biomol. Chem. 14 11080-11084 (2016)
  28. Design and synthesis of novel amide AKT1 inhibitors with selectivity over CDK2. Ashton KS, St Jean DJ, Poon SF, Lee MR, Allen JG, Zhang S, Lofgren JA, Zhang X, Fotsch C, Hungate R. Bioorg. Med. Chem. Lett. 21 5191-5196 (2011)
  29. Discovery of Akt kinase inhibitors through structure-based virtual screening and their evaluation as potential anticancer agents. Chuang CH, Cheng TC, Leu YL, Chuang KH, Tzou SC, Chen CS. Int J Mol Sci 16 3202-3212 (2015)
  30. Fragment-based screening maps inhibitor interactions in the ATP-binding site of checkpoint kinase 2. Silva-Santisteban MC, Westwood IM, Boxall K, Brown N, Peacock S, McAndrew C, Barrie E, Richards M, Mirza A, Oliver AW, Burke R, Hoelder S, Jones K, Aherne GW, Blagg J, Collins I, Garrett MD, van Montfort RL. PLoS ONE 8 e65689 (2013)
  31. Improved Modeling of Halogenated Ligand-Protein Interactions Using the Drude Polarizable and CHARMM Additive Empirical Force Fields. Lin FY, MacKerell AD. J Chem Inf Model 59 215-228 (2019)
  32. QSAR based docking studies of marine algal anticancer compounds as inhibitors of protein kinase B (PKBβ). Davis GD, Vasanthi AH. Eur J Pharm Sci 76 110-118 (2015)
  33. Reciprocal chemical genetics for swift lead and target identification. Kuijl C, Tuin AW, Overkleeft H, Neefjes J. Mol Biosyst 4 1001-1008 (2008)
  34. Targeting PKC-β II and PKB Connection: Design of Dual Inhibitors. Jain K, Ajay D, Sobhia ME. Mol Inform 30 329-344 (2011)
  35. Theory of docking scores and its application to a customizable scoring function. Takahashi O, Masuda Y, Muroya A, Furuya T. SAR QSAR Environ Res 21 547-558 (2010)
  36. Deciphering the Structural Requirements of Nucleoside Bisubstrate Analogues for Inhibition of MbtA in Mycobacterium tuberculosis: A FB-QSAR Study and Combinatorial Library Generation for Identifying Potential Hits. Maganti L, Das SK, Mascarenhas NM, Ghoshal N. Mol Inform 30 863-872 (2011)
  37. Synthesis and evaluation of heteroaryl substituted diazaspirocycles as scaffolds to probe the ATP-binding site of protein kinases. Allen CE, Chow CL, Caldwell JJ, Westwood IM, van Montfort RL, Collins I. Bioorg. Med. Chem. 21 5707-5724 (2013)
  38. Template-based de novo design for type II kinase inhibitors and its extented application to acetylcholinesterase inhibitors. Su BH, Huang YS, Chang CY, Tu YS, Tseng YJ. Molecules 18 13487-13509 (2013)
  39. Design, synthesis and biological evaluation of AKT inhibitors bearing a piperidin-4-yl appendant. Zhang D, Tong D, Yang D, Sun J, Zhang F, Zhao G. Medchemcomm 9 1340-1350 (2018)
  40. Evaluation of a crystallographic surrogate for kallikrein 5 in the discovery of novel inhibitors for Netherton syndrome. Thorpe JH, Edgar EV, Smith KJ, Lewell XQ, Rella M, White GV, Polyakova O, Nassau P, Walker AL, Holmes DS, Pearce AC, Wang Y, Liddle J, Hovnanian A. Acta Crystallogr F Struct Biol Commun 75 385-391 (2019)
  41. In Silico Structure-Based Approach for Group Efficiency Estimation in Fragment-Based Drug Design Using Evaluation of Fragment Contributions. Shulga DA, Ivanov NN, Palyulin VA. Molecules 27 1985 (2022)
  42. LeadOp+R: Structure-Based Lead Optimization With Synthetic Accessibility. Lin FY, Esposito EX, Tseng YJ. Front Pharmacol 9 96 (2018)
  43. Multifunctional isoquinoline-oxazoline ligands of chemical and biological importance. Li W, Wang G, Lai J, Li S. Chem Commun (Camb) 55 5902-5905 (2019)
  44. The nature of ligand efficiency. Kenny PW. J Cheminform 11 8 (2019)