2uu9 Citations

Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines.

Nat Struct Mol Biol 14 498-502 (2007)
Related entries: 2uua, 2uub, 2uuc

Cited: 118 times
EuropePMC logo PMID: 17496902

Abstract

One of the most prevalent base modifications involved in decoding is uridine 5-oxyacetic acid at the wobble position of tRNA. It has been known for several decades that this modification enables a single tRNA to decode all four codons in a degenerate codon box. We have determined structures of an anticodon stem-loop of tRNA(Val) containing the modified uridine with all four valine codons in the decoding site of the 30S ribosomal subunit. An intramolecular hydrogen bond involving the modification helps to prestructure the anticodon loop. We found unusual base pairs with the three noncomplementary codon bases, including a G.U base pair in standard Watson-Crick geometry, which presumably involves an enol form for the uridine. These structures suggest how a modification in the uridine at the wobble position can expand the decoding capability of a tRNA.

Articles - 2uu9 mentioned but not cited (4)

  1. Mechanism for expanding the decoding capacity of transfer RNAs by modification of uridines. Weixlbaumer A, Murphy FV, Dziergowska A, Malkiewicz A, Vendeix FA, Agris PF, Ramakrishnan V. Nat Struct Mol Biol 14 498-502 (2007)
  2. The wobble hypothesis revisited: uridine-5-oxyacetic acid is critical for reading of G-ending codons. Näsvall SJ, Chen P, Björk GR. RNA 13 2151-2164 (2007)
  3. Nucleotide modifications and tRNA anticodon-mRNA codon interactions on the ribosome. Allnér O, Nilsson L. RNA 17 2177-2188 (2011)
  4. Automatic structure classification of small proteins using random forest. Jain P, Hirst JD. BMC Bioinformatics 11 364 (2010)


Reviews citing this publication (30)

  1. Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes. Grosjean H, de Crécy-Lagard V, Marck C. FEBS Lett 584 252-264 (2010)
  2. tRNA's modifications bring order to gene expression. Gustilo EM, Vendeix FA, Agris PF. Curr Opin Microbiol 11 134-140 (2008)
  3. An integrated, structure- and energy-based view of the genetic code. Grosjean H, Westhof E. Nucleic Acids Res 44 8020-8040 (2016)
  4. Hierarchy of RNA functional dynamics. Mustoe AM, Brooks CL, Al-Hashimi HM. Annu Rev Biochem 83 441-466 (2014)
  5. Structure and function of noncanonical nucleobases. Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Angew Chem Int Ed Engl 51 7110-7131 (2012)
  6. Celebrating wobble decoding: Half a century and still much is new. Agris PF, Eruysal ER, Narendran A, Väre VYP, Vangaveti S, Ranganathan SV. RNA Biol 15 537-553 (2018)
  7. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function. Väre VY, Eruysal ER, Narendran A, Sarachan KL, Agris PF. Biomolecules 7 E29 (2017)
  8. The modified base isopentenyladenosine and its derivatives in tRNA. Schweizer U, Bohleber S, Fradejas-Villar N. RNA Biol 14 1197-1208 (2017)
  9. The Importance of Being Modified: The Role of RNA Modifications in Translational Fidelity. Agris PF, Narendran A, Sarachan K, Väre VYP, Eruysal E. Enzymes 41 1-50 (2017)
  10. The chemical diversity of RNA modifications. Ontiveros RJ, Stoute J, Liu KF. Biochem J 476 1227-1245 (2019)
  11. A rationale for tRNA modification circuits in the anticodon loop. Han L, Phizicky EM. RNA 24 1277-1284 (2018)
  12. Correlating ribosome function with high-resolution structures. Bashan A, Yonath A. Trends Microbiol 16 326-335 (2008)
  13. In vivo incorporation of multiple noncanonical amino acids into proteins. Hoesl MG, Budisa N. Angew Chem Int Ed Engl 50 2896-2902 (2011)
  14. Role of taurine in the pathologies of MELAS and MERRF. Schaffer SW, Jong CJ, Ito T, Azuma J. Amino Acids 46 47-56 (2014)
  15. Recognition of Watson-Crick base pairs: constraints and limits due to geometric selection and tautomerism. Westhof E, Yusupov M, Yusupova G. F1000Prime Rep 6 19 (2014)
  16. Isostericity and tautomerism of base pairs in nucleic acids. Westhof E. FEBS Lett 588 2464-2469 (2014)
  17. Translational Control by Ribosome Pausing in Bacteria: How a Non-uniform Pace of Translation Affects Protein Production and Folding. Samatova E, Daberger J, Liutkute M, Rodnina MV. Front Microbiol 11 619430 (2020)
  18. Transfer RNAs: diversity in form and function. Berg MD, Brandl CJ. RNA Biol 18 316-339 (2021)
  19. The multiple flavors of GoU pairs in RNA. Westhof E, Yusupov M, Yusupova G. J Mol Recognit 32 e2782 (2019)
  20. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Zhang W, Foo M, Eren AM, Pan T. Mol Cell 82 891-906 (2022)
  21. Invited review: MnmE, a GTPase that drives a complex tRNA modification reaction. Fislage M, Wauters L, Versées W. Biopolymers 105 568-579 (2016)
  22. An RNA-centric historical narrative around the Protein Data Bank. Westhof E, Leontis NB. J Biol Chem 296 100555 (2021)
  23. The problem of genetic code misreading during protein synthesis. Joshi K, Cao L, Farabaugh PJ. Yeast 36 35-42 (2019)
  24. Bacterial wobble modifications of NNA-decoding tRNAs. Nilsson EM, Alexander RW. IUBMB Life 71 1158-1166 (2019)
  25. Increasing occurrences and functional roles for high energy purine-pyrimidine base-pairs in nucleic acids. Kimsey I, Al-Hashimi HM. Curr Opin Struct Biol 24 72-80 (2014)
  26. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. Genes (Basel) 12 1125 (2021)
  27. The life and times of a tRNA. Phizicky EM, Hopper AK. RNA 29 898-957 (2023)
  28. Making Sense of "Nonsense" and More: Challenges and Opportunities in the Genetic Code Expansion, in the World of tRNA Modifications. Lateef OM, Akintubosun MO, Olaoba OT, Samson SO, Adamczyk M. Int J Mol Sci 23 938 (2022)
  29. The importance of codon-anticodon interactions in translation elongation. Saint-Léger A, Ribas de Pouplana L. Biochimie 114 72-79 (2015)
  30. S-Adenosylmethionine: more than just a methyl donor. Lee YH, Ren D, Jeon B, Liu HW. Nat Prod Rep 40 1521-1549 (2023)

Articles citing this publication (84)

  1. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Jenner LB, Demeshkina N, Yusupova G, Yusupov M. Nat Struct Mol Biol 17 555-560 (2010)
  2. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5'-3' exonucleases Rat1 and Xrn1. Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. Genes Dev 22 1369-1380 (2008)
  3. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. Agris PF. EMBO Rep 9 629-635 (2008)
  4. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Kimsey IJ, Petzold K, Sathyamoorthy B, Stein ZW, Al-Hashimi HM. Nature 519 315-320 (2015)
  5. Superwobbling facilitates translation with reduced tRNA sets. Rogalski M, Karcher D, Bock R. Nat Struct Mol Biol 15 192-198 (2008)
  6. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code. Rozov A, Demeshkina N, Khusainov I, Westhof E, Yusupov M, Yusupova G. Nat Commun 7 10457 (2016)
  7. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Chionh YH, McBee M, Babu IR, Hia F, Lin W, Zhao W, Cao J, Dziergowska A, Malkiewicz A, Begley TJ, Alonso S, Dedon PC. Nat Commun 7 13302 (2016)
  8. Structural insights into the translational infidelity mechanism. Rozov A, Demeshkina N, Westhof E, Yusupov M, Yusupova G. Nat Commun 6 7251 (2015)
  9. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Rozov A, Khusainov I, El Omari K, Duman R, Mykhaylyk V, Yusupov M, Westhof E, Wagner A, Yusupova G. Nat Commun 10 2519 (2019)
  10. Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system. Takemoto C, Spremulli LL, Benkowski LA, Ueda T, Yokogawa T, Watanabe K. Nucleic Acids Res 37 1616-1627 (2009)
  11. Studies of translational misreading in vivo show that the ribosome very efficiently discriminates against most potential errors. Manickam N, Nag N, Abbasi A, Patel K, Farabaugh PJ. RNA 20 9-15 (2014)
  12. Effects of tRNA modification on translational accuracy depend on intrinsic codon-anticodon strength. Manickam N, Joshi K, Bhatt MJ, Farabaugh PJ. Nucleic Acids Res 44 1871-1881 (2016)
  13. The contributions of wobbling and superwobbling to the reading of the genetic code. Alkatib S, Scharff LB, Rogalski M, Fleischmann TT, Matthes A, Seeger S, Schöttler MA, Ruf S, Bock R. PLoS Genet 8 e1003076 (2012)
  14. Structure-guided discovery of the metabolite carboxy-SAM that modulates tRNA function. Kim J, Xiao H, Bonanno JB, Kalyanaraman C, Brown S, Tang X, Al-Obaidi NF, Patskovsky Y, Babbitt PC, Jacobson MP, Lee YS, Almo SC. Nature 498 123-126 (2013)
  15. The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria. Ran W, Higgs PG. Mol Biol Evol 27 2129-2140 (2010)
  16. Expanded use of sense codons is regulated by modified cytidines in tRNA. Cantara WA, Murphy FV, Demirci H, Agris PF. Proc Natl Acad Sci U S A 110 10964-10969 (2013)
  17. Structural and mechanistic basis for enhanced translational efficiency by 2-thiouridine at the tRNA anticodon wobble position. Rodriguez-Hernandez A, Spears JL, Gaston KW, Limbach PA, Gamper H, Hou YM, Kaiser R, Agris PF, Perona JJ. J Mol Biol 425 3888-3906 (2013)
  18. Functional importance of Ψ38 and Ψ39 in distinct tRNAs, amplified for tRNAGln(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. Han L, Kon Y, Phizicky EM. RNA 21 188-201 (2015)
  19. Structural insights into +1 frameshifting promoted by expanded or modification-deficient anticodon stem loops. Maehigashi T, Dunkle JA, Miles SJ, Dunham CM. Proc Natl Acad Sci U S A 111 12740-12745 (2014)
  20. The complete chloroplast genome sequence of Podocarpus lambertii: genome structure, evolutionary aspects, gene content and SSR detection. Vieira Ldo N, Faoro H, Rogalski M, Fraga HP, Cardoso RL, de Souza EM, de Oliveira Pedrosa F, Nodari RO, Guerra MP. PLoS One 9 e90618 (2014)
  21. Biogenesis and growth phase-dependent alteration of 5-methoxycarbonylmethoxyuridine in tRNA anticodons. Sakai Y, Miyauchi K, Kimura S, Suzuki T. Nucleic Acids Res 44 509-523 (2016)
  22. S. cerevisiae Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates. Han L, Marcus E, D'Silva S, Phizicky EM. RNA 23 406-419 (2017)
  23. Structure of the chloroplast ribosome with chl-RRF and hibernation-promoting factor. Perez Boerema A, Aibara S, Paul B, Tobiasson V, Kimanius D, Forsberg BO, Wallden K, Lindahl E, Amunts A. Nat Plants 4 212-217 (2018)
  24. Free energy calculation of modified base-pair formation in explicit solvent: A predictive model. Vendeix FA, Munoz AM, Agris PF. RNA 15 2278-2287 (2009)
  25. The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. Bilbille Y, Gustilo EM, Harris KA, Jones CN, Lusic H, Kaiser RJ, Delaney MO, Spremulli LL, Deiters A, Agris PF. J Mol Biol 406 257-274 (2011)
  26. The yfiC gene of E. coli encodes an adenine-N6 methyltransferase that specifically modifies A37 of tRNA1Val(cmo5UAC). Golovina AY, Sergiev PV, Golovin AV, Serebryakova MV, Demina I, Govorun VM, Dontsova OA. RNA 15 1134-1141 (2009)
  27. Lack of 2'-O-methylation in the tRNA anticodon loop of two phylogenetically distant yeast species activates the general amino acid control pathway. Han L, Guy MP, Kon Y, Phizicky EM. PLoS Genet 14 e1007288 (2018)
  28. The bacterial and mitochondrial ribosomal A-site molecular switches possess different conformational substates. Kondo J, Westhof E. Nucleic Acids Res 36 2654-2666 (2008)
  29. tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii. Yu N, Jora M, Solivio B, Thakur P, Acevedo-Rocha CG, Randau L, de Crécy-Lagard V, Addepalli B, Limbach PA. J Bacteriol 201 e00690-18 (2019)
  30. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs. Szymanski ES, Kimsey IJ, Al-Hashimi HM. J Am Chem Soc 139 4326-4329 (2017)
  31. Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice. Ito T, Yoshikawa N, Schaffer SW, Azuma J. J Amino Acids 2014 964680 (2014)
  32. tRNA epitranscriptomics and biased codon are linked to proteome expression in Plasmodium falciparum. Ng CS, Sinha A, Aniweh Y, Nah Q, Babu IR, Gu C, Chionh YH, Dedon PC, Preiser PR. Mol Syst Biol 14 e8009 (2018)
  33. Conformation effects of base modification on the anticodon stem-loop of Bacillus subtilis tRNA(Tyr). Denmon AP, Wang J, Nikonowicz EP. J Mol Biol 412 285-303 (2011)
  34. Dual pathways of tRNA hydroxylation ensure efficient translation by expanding decoding capability. Sakai Y, Kimura S, Suzuki T. Nat Commun 10 2858 (2019)
  35. Evidence from glycine transfer RNA of a frozen accident at the dawn of the genetic code. Bernhardt HS, Tate WP. Biol Direct 3 53 (2008)
  36. Biogenesis and iron-dependency of ribosomal RNA hydroxylation. Kimura S, Sakai Y, Ishiguro K, Suzuki T. Nucleic Acids Res 45 12974-12986 (2017)
  37. Tautomeric G•U pairs within the molecular ribosomal grip and fidelity of decoding in bacteria. Rozov A, Wolff P, Grosjean H, Yusupov M, Yusupova G, Westhof E. Nucleic Acids Res 46 7425-7435 (2018)
  38. The cost of wobble translation in fungal mitochondrial genomes: integration of two traditional hypotheses. Xia X. BMC Evol Biol 8 211 (2008)
  39. C to U editing at position 32 of the anticodon loop precedes tRNA 5' leader removal in trypanosomatids. Gaston KW, Rubio MA, Spears JL, Pastar I, Papavasiliou FN, Alfonzo JD. Nucleic Acids Res 35 6740-6749 (2007)
  40. C5-substituents of uridines and 2-thiouridines present at the wobble position of tRNA determine the formation of their keto-enol or zwitterionic forms - a factor important for accuracy of reading of guanosine at the 3΄-end of the mRNA codons. Sochacka E, Lodyga-Chruscinska E, Pawlak J, Cypryk M, Bartos P, Ebenryter-Olbinska K, Leszczynska G, Nawrot B. Nucleic Acids Res 45 4825-4836 (2017)
  41. Escherichia coli tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA via S-geranylated-intermediate. Sierant M, Leszczynska G, Sadowska K, Komar P, Radzikowska-Cieciura E, Sochacka E, Nawrot B. FEBS Lett 592 2248-2258 (2018)
  42. Letter Nucleobase carbonyl groups are poor Mg2+ inner-sphere binders but excellent monovalent ion binders-a critical PDB survey. Leonarski F, D'Ascenzo L, Auffinger P. RNA 25 173-192 (2019)
  43. Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. Parisien M, Yi C, Pan T. RNA 18 355-367 (2012)
  44. Codon-specific effects of tRNA anticodon loop modifications on translational misreading errors in the yeast Saccharomyces cerevisiae. Joshi K, Bhatt MJ, Farabaugh PJ. Nucleic Acids Res 46 10331-10339 (2018)
  45. Importance of a tRNA anticodon loop modification and a conserved, noncanonical anticodon stem pairing in tRNACGGProfor decoding Nguyen HA, Hoffer ED, Dunham CM. J Biol Chem 294 5281-5291 (2019)
  46. Sequence-structure-function analysis of the bifunctional enzyme MnmC that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA. Roovers M, Oudjama Y, Kaminska KH, Purta E, Caillet J, Droogmans L, Bujnicki JM. Proteins 71 2076-2085 (2008)
  47. Determinants of the CmoB carboxymethyl transferase utilized for selective tRNA wobble modification. Kim J, Xiao H, Koh J, Wang Y, Bonanno JB, Thomas K, Babbitt PC, Brown S, Lee YS, Almo SC. Nucleic Acids Res 43 4602-4613 (2015)
  48. In vivo identification of essential nucleotides in tRNALeu to its functions by using a constructed yeast tRNALeu knockout strain. Huang Q, Yao P, Eriani G, Wang ED. Nucleic Acids Res 40 10463-10477 (2012)
  49. Biological boundaries and biological age. Demongeot J. Acta Biotheor 57 397-418 (2009)
  50. Base pairs and pseudo pairs observed in RNA-ligand complexes. Kondo J, Westhof E. J Mol Recognit 23 241-252 (2010)
  51. Why base tautomerization does not cause errors in mRNA decoding on the ribosome. Satpati P, Åqvist J. Nucleic Acids Res 42 12876-12884 (2014)
  52. Hypomodified tRNA in evolutionarily distant yeasts can trigger rapid tRNA decay to activate the general amino acid control response, but with different consequences. De Zoysa T, Phizicky EM. PLoS Genet 16 e1008893 (2020)
  53. 5-Oxyacetic Acid Modification Destabilizes Double Helical Stem Structures and Favors Anionic Watson-Crick like cmo5 U-G Base Pairs. Strebitzer E, Rangadurai A, Plangger R, Kremser J, Juen MA, Tollinger M, Al-Hashimi HM, Kreutz C. Chemistry 24 18903-18906 (2018)
  54. Selective terminal methylation of a tRNA wobble base. Masuda I, Takase R, Matsubara R, Paulines MJ, Gamper H, Limbach PA, Hou YM. Nucleic Acids Res 46 e37 (2018)
  55. Loss of Elongator- and KEOPS-Dependent tRNA Modifications Leads to Severe Growth Phenotypes and Protein Aggregation in Yeast. Pollo-Oliveira L, Klassen R, Davis N, Ciftci A, Bacusmo JM, Martinelli M, DeMott MS, Begley TJ, Dedon PC, Schaffrath R, de Crécy-Lagard V. Biomolecules 10 E322 (2020)
  56. Quantitative analysis of tRNA abundance and modifications by nanopore RNA sequencing. Lucas MC, Pryszcz LP, Medina R, Milenkovic I, Camacho N, Marchand V, Motorin Y, Ribas de Pouplana L, Novoa EM. Nat Biotechnol (2023)
  57. The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Pernod K, Schaeffer L, Chicher J, Hok E, Rick C, Geslain R, Eriani G, Westhof E, Ryckelynck M, Martin F. Nucleic Acids Res 48 6170-6183 (2020)
  58. Watson-Crick-like pairs in CCUG repeats: evidence for tautomeric shifts or protonation. Rypniewski W, Banaszak K, Kuliński T, Kiliszek A. RNA 22 22-31 (2016)
  59. A Structural Basis for Restricted Codon Recognition Mediated by 2-thiocytidine in tRNA Containing a Wobble Position Inosine. Vangaveti S, Cantara WA, Spears JL, DeMirci H, Murphy FV, Ranganathan SV, Sarachan KL, Agris PF. J Mol Biol 432 913-929 (2020)
  60. Emergence of a "Cyclosome" in a Primitive Network Capable of Building "Infinite" Proteins. Demongeot J, Norris V. Life (Basel) 9 E51 (2019)
  61. Probing conformational transitions towards mutagenic Watson-Crick-like G·T mismatches using off-resonance sugar carbon R relaxation dispersion. Rangadurai A, Szymanski ES, Kimsey I, Shi H, Al-Hashimi HM. J Biomol NMR 74 457-471 (2020)
  62. Configuration of wobble base pairs having pyrimidines as anticodon wobble bases: significance for codon degeneracy. Das G, Lyngdoh RH. J Biomol Struct Dyn 32 1500-1520 (2014)
  63. Identification and Characterization of Genes Required for 5-Hydroxyuridine Synthesis in Bacillus subtilis and Escherichia coli tRNA. Lauhon CT. J Bacteriol 201 e00433-19 (2019)
  64. Translational Selection for Speed Is Not Sufficient to Explain Variation in Bacterial Codon Usage Bias. Mahajan S, Agashe D. Genome Biol Evol 10 562-576 (2018)
  65. Chemical synthesis of the 5-taurinomethyl(-2-thio)uridine modified anticodon arm of the human mitochondrial tRNA(Leu(UUR)) and tRNA(Lys). Leszczynska G, Leonczak P, Wozniak K, Malkiewicz A. RNA 20 938-947 (2014)
  66. The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins. Ponce de Leon M, de Miranda AB, Alvarez-Valin F, Carels N. Bioinform Biol Insights 8 93-108 (2014)
  67. tRNA methylation resolves codon usage bias at the limit of cell viability. Masuda I, Yamaki Y, Detroja R, Tagore S, Moore H, Maharjan S, Nakano Y, Christian T, Matsubara R, Lowe TM, Frenkel-Morgenstern M, Hou YM. Cell Rep 41 111539 (2022)
  68. C5-Substituted 2-Selenouridines Ensure Efficient Base Pairing with Guanosine; Consequences for Reading the NNG-3' Synonymous mRNA Codons. Leszczynska G, Cypryk M, Gostynski B, Sadowska K, Herman P, Bujacz G, Lodyga-Chruscinska E, Sochacka E, Nawrot B. Int J Mol Sci 21 E2882 (2020)
  69. The plastome of Melocactus glaucescens Buining & Brederoo reveals unique evolutionary features and loss of essential tRNA genes. Dalla Costa TP, Silva MC, de Santana Lopes A, Gomes Pacheco T, de Oliveira JD, de Baura VA, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. Planta 255 57 (2022)
  70. Elucidation of the substrate of tRNA-modifying enzymes MnmEG leads to in vitro reconstitution of an evolutionarily conserved uridine hypermodification. Bommisetti P, Young A, Bandarian V. J Biol Chem 298 102548 (2022)
  71. Structural Bases for the Fitness Cost of the Antibiotic-Resistance and Lethal Mutations at Position 1408 of 16S rRNA. Kondo J, Koganei M. Molecules 25 E159 (2019)
  72. Structural and functional characterization of TrmM in m6 A modification of bacterial tRNA. Jeong H, Lee Y, Kim J. Protein Sci 31 e4319 (2022)
  73. Structural effects of modified ribonucleotides and magnesium in transfer RNAs. Xu Y, MacKerell AD, Nilsson L. Bioorg Med Chem 24 4826-4834 (2016)
  74. A tRNA-mimic Strategy to Explore the Role of G34 of tRNAGly in Translation and Codon Frameshifting. Janvier A, Despons L, Schaeffer L, Tidu A, Martin F, Eriani G. Int J Mol Sci 20 E3911 (2019)
  75. DETECTING CONFORMATIONAL DIFFERENCES BETWEEN RNA 3D STRUCTURES. Rahrig RR, Zirbel CL. JP J Biostat 12 99-115 (2015)
  76. Multiscale Modeling of Wobble to Watson-Crick-Like Guanine-Uracil Tautomerization Pathways in RNA. Chandorkar S, Raghunathan S, Jaganade T, Priyakumar UD. Int J Mol Sci 22 5411 (2021)
  77. Overview of tRNA Modifications in Chloroplasts. Fages-Lartaud M, Hohmann-Marriott MF. Microorganisms 10 226 (2022)
  78. Unique anticodon loop conformation with the flipped-out wobble nucleotide in the crystal structure of unbound tRNAVal. Jeong H, Kim J. RNA 27 1330-1338 (2021)
  79. 2-Selenouridine, a Modified Nucleoside of Bacterial tRNAs, Its Reactivity in the Presence of Oxidizing and Reducing Reagents. Kulik K, Sadowska K, Wielgus E, Pacholczyk-Sienicka B, Sochacka E, Nawrot B. Int J Mol Sci 23 7973 (2022)
  80. Anionic G•U pairs in bacterial ribosomal rRNAs. Westhof E, Watson ZL, Zirbel CL, Cate JHD. RNA 29 1069-1076 (2023)
  81. Extensive breaking of genetic code degeneracy with non-canonical amino acids. McFeely CAL, Shakya B, Makovsky CA, Haney AK, Ashton Cropp T, Hartman MCT. Nat Commun 14 5008 (2023)
  82. Genetic code degeneracy is established by the decoding center of the ribosome. Ye S, Lehmann J. Nucleic Acids Res 50 4113-4126 (2022)
  83. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Nat Commun 14 5582 (2023)
  84. Structural basis for the selective methylation of 5-carboxymethoxyuridine in tRNA modification. Yoo J, Lee J, Kim J. Nucleic Acids Res 51 9432-9441 (2023)