2roc Citations

Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1.

J Mol Biol 380 958-71 (2008)
Cited: 129 times
EuropePMC logo PMID: 18589438

Abstract

Pro-survival proteins in the B-cell lymphoma-2 (Bcl-2) family have a defined specificity profile for their cell death-inducing BH3-only antagonists. Solution structures of myeloid cell leukaemia-1 (Mcl-1) in complex with the BH3 domains from Noxa and Puma, two proteins regulated by the tumour suppressor p53, show that they bind as amphipathic alpha-helices in the same hydrophobic groove of Mcl-1, using conserved residues for binding. Thermodynamic parameters for the interaction of Noxa, Puma and the related BH3 domains of Bmf, Bim, Bid and Bak with Mcl-1 were determined by calorimetry. These unstructured BH3 domains bind Mcl-1 with affinities that span 3 orders of magnitude, and binding is an enthalpically driven and entropy-enthalpy-compensated process. Alanine scanning analysis of Noxa demonstrated that only a subset of residues is required for interaction with Mcl-1, and these residues are localised to a short highly conserved sequence motif that defines the BH3 domain. Chemical shift mapping of Mcl-1:BH3 complexes showed that Mcl-1 engages all BH3 ligands in a similar way and that, in addition to changes in the immediate vicinity of the binding site, small molecule-wide structural adjustments accommodate ligand binding. Our studies show that unstructured peptides, such as the BH3 domains, behave like their structured counterparts and can bind tightly and selectively in an enthalpically driven process.

Reviews - 2roc mentioned but not cited (5)

  1. Insights into Coupled Folding and Binding Mechanisms from Kinetic Studies. Shammas SL, Crabtree MD, Dahal L, Wicky BI, Clarke J. J Biol Chem 291 6689-6695 (2016)
  2. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. Luna-Vargas MP, Chipuk JE. FEBS J 283 2676-2689 (2016)
  3. Intrinsically disordered proteins in bcl-2 regulated apoptosis. Rautureau GJ, Day CL, Hinds MG. Int J Mol Sci 11 1808-1824 (2010)
  4. Form follows function: structural and catalytic variation in the class a flavoprotein monooxygenases. Crozier-Reabe K, Moran GR. Int J Mol Sci 13 15601-15639 (2012)
  5. Peptide Folding and Binding Probed by Systematic Non-canonical Mutagenesis. Rogers JM. Front Mol Biosci 7 100 (2020)

Articles - 2roc mentioned but not cited (23)

  1. The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Stewart ML, Fire E, Keating AE, Walensky LD. Nat Chem Biol 6 595-601 (2010)
  2. Interplay between partner and ligand facilitates the folding and binding of an intrinsically disordered protein. Rogers JM, Oleinikovas V, Shammas SL, Wong CT, De Sancho D, Baker CM, Clarke J. Proc Natl Acad Sci U S A 111 15420-15425 (2014)
  3. Folding and binding of an intrinsically disordered protein: fast, but not 'diffusion-limited'. Rogers JM, Steward A, Clarke J. J Am Chem Soc 135 1415-1422 (2013)
  4. Coupled folding and binding of the disordered protein PUMA does not require particular residual structure. Rogers JM, Wong CT, Clarke J. J Am Chem Soc 136 5197-5200 (2014)
  5. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Fire E, Gullá SV, Grant RA, Keating AE. Protein Sci 19 507-519 (2010)
  6. Structure-guided rational design of α/β-peptide foldamers with high affinity for BCL-2 family prosurvival proteins. Smith BJ, Lee EF, Checco JW, Evangelista M, Gellman SH, Fairlie WD. Chembiochem 14 1564-1572 (2013)
  7. Structural basis of Bcl-xL recognition by a BH3-mimetic α/β-peptide generated by sequence-based design. Lee EF, Smith BJ, Horne WS, Mayer KN, Evangelista M, Colman PM, Gellman SH, Fairlie WD. Chembiochem 12 2025-2032 (2011)
  8. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Mustata G, Li M, Zevola N, Bakan A, Zhang L, Epperly M, Greenberger JS, Yu J, Bahar I. Curr Top Med Chem 11 281-290 (2011)
  9. Apoptotic regulation by MCL-1 through heterodimerization. Liu Q, Moldoveanu T, Sprules T, Matta-Camacho E, Mansur-Azzam N, Gehring K. J Biol Chem 285 19615-19624 (2010)
  10. Intrinsically disordered energy landscapes. Chebaro Y, Ballard AJ, Chakraborty D, Wales DJ. Sci Rep 5 10386 (2015)
  11. Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization. Pang YP, Dai H, Smith A, Meng XW, Schneider PA, Kaufmann SH. Sci Rep 2 257 (2012)
  12. Comprehensive repertoire of foldable regions within whole genomes. Faure G, Callebaut I. PLoS Comput Biol 9 e1003280 (2013)
  13. Role of non-native electrostatic interactions in the coupled folding and binding of PUMA with Mcl-1. Chu WT, Clarke J, Shammas SL, Wang J. PLoS Comput Biol 13 e1005468 (2017)
  14. Structure of the PLP degradative enzyme 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti MAFF303099 and its mechanistic implications. McCulloch KM, Mukherjee T, Begley TP, Ealick SE. Biochemistry 48 4139-4149 (2009)
  15. Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure. Wicky BIM, Shammas SL, Clarke J. Proc Natl Acad Sci U S A 114 9882-9887 (2017)
  16. Folding and binding pathways of BH3-only proteins are encoded within their intrinsically disordered sequence, not templated by partner proteins. Crabtree MD, Mendonça CATF, Bubb QR, Clarke J. J Biol Chem 293 9718-9723 (2018)
  17. Nonproteinogenic deep mutational scanning of linear and cyclic peptides. Rogers JM, Passioura T, Suga H. Proc Natl Acad Sci U S A 115 10959-10964 (2018)
  18. High-quality NMR structure of human anti-apoptotic protein domain Mcl-1(171-327) for cancer drug design. Liu G, Poppe L, Aoki K, Yamane H, Lewis J, Szyperski T. PLoS One 9 e96521 (2014)
  19. Use of in-silico assays to characterize the ADMET profile and identify potential therapeutic targets of fusarochromanone, a novel anti-cancer agent. El-Saadi MW, Williams-Hart T, Salvatore BA, Mahdavian E. In Silico Pharmacol 3 6 (2015)
  20. Targeting the apoptotic Mcl-1-PUMA interface with a dual-acting compound. Liu J, Tian Z, Zhou N, Liu X, Liao C, Lei B, Li J, Zhang S, Chen H. Oncotarget 8 54236-54242 (2017)
  21. A Fragmenting Protocol with Explicit Hydration for Calculation of Binding Enthalpies of Target-Ligand Complexes at a Quantum Mechanical Level. Horváth I, Jeszenői N, Bálint M, Paragi G, Hetényi C. Int J Mol Sci 20 (2019)
  22. Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide-Mcl1 Complexes. Marimuthu P, Razzokov J, Singaravelu K, Bogaerts A. Biomolecules 10 (2020)
  23. Computational Site Saturation Mutagenesis of Canonical and Non-Canonical Amino Acids to Probe Protein-Peptide Interactions. Holden JK, Pavlovicz R, Gobbi A, Song Y, Cunningham CN. Front Mol Biosci 9 848689 (2022)


Reviews citing this publication (24)

  1. Mcl-1; the molecular regulation of protein function. Thomas LW, Lam C, Edwards SW. FEBS Lett 584 2981-2989 (2010)
  2. PUMA, a potent killer with or without p53. Yu J, Zhang L. Oncogene 27 Suppl 1 S71-83 (2008)
  3. BH3-only proteins in apoptosis and beyond: an overview. Lomonosova E, Chinnadurai G. Oncogene 27 Suppl 1 S2-19 (2008)
  4. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Siddiqui WA, Ahad A, Ahsan H. Arch Toxicol 89 289-317 (2015)
  5. Many players in BCL-2 family affairs. Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Trends Biochem Sci 39 101-111 (2014)
  6. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Westphal D, Kluck RM, Dewson G. Cell Death Differ 21 196-205 (2014)
  7. Delving deeper: MCL-1's contributions to normal and cancer biology. Perciavalle RM, Opferman JT. Trends Cell Biol 23 22-29 (2013)
  8. Protein binding specificity versus promiscuity. Schreiber G, Keating AE. Curr Opin Struct Biol 21 50-61 (2011)
  9. The Bcl-2 family: structures, interactions and targets for drug discovery. Kvansakul M, Hinds MG. Apoptosis 20 136-150 (2015)
  10. Structural biology of the Bcl-2 family and its mimicry by viral proteins. Kvansakul M, Hinds MG. Cell Death Dis 4 e909 (2013)
  11. PUMA, a critical mediator of cell death--one decade on from its discovery. Hikisz P, Kiliańska ZM. Cell Mol Biol Lett 17 646-669 (2012)
  12. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. Rich RL, Myszka DG. J Mol Recognit 23 1-64 (2010)
  13. Survey of the year 2008: applications of isothermal titration calorimetry. Falconer RJ, Penkova A, Jelesarov I, Collins BM. J Mol Recognit 23 395-413 (2010)
  14. Targeting Cell Survival Proteins for Cancer Cell Death. Pandey MK, Prasad S, Tyagi AK, Deb L, Huang J, Karelia DN, Amin SG, Aggarwal BB. Pharmaceuticals (Basel) 9 (2016)
  15. Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Fernández-Marrero Y, Spinner S, Kaufmann T, Jost PJ. Leukemia 30 2152-2159 (2016)
  16. The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Banjara S, Suraweera CD, Hinds MG, Kvansakul M. Biomolecules 10 (2020)
  17. MCL-1 inhibitors, fast-lane development of a new class of anti-cancer agents. Bolomsky A, Vogler M, Köse MC, Heckman CA, Ehx G, Ludwig H, Caers J. J Hematol Oncol 13 173 (2020)
  18. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. Sancho M, Leiva D, Lucendo E, Orzáez M. FEBS J 289 6209-6234 (2022)
  19. Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. Fairlie WD, Lee EF. Int J Mol Sci 22 (2021)
  20. BH3-mimetics: recent developments in cancer therapy. Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. J Exp Clin Cancer Res 40 355 (2021)
  21. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Perez JJ, Perez RA, Perez A. Front Mol Biosci 8 681617 (2021)
  22. P53 protein and the diseases in central nervous system. Lei L, Lu Q, Ma G, Li T, Deng J, Li W. Front Genet 13 1051395 (2022)
  23. Emerging mitochondrial-mediated mechanisms involved in oligodendrocyte development. Gil M, Gama V. J Neurosci Res 101 354-366 (2023)
  24. Structural biology of the intrinsic cell death pathway: what do we know and what is missing? Lee EF, Fairlie WD. Comput Struct Biotechnol J 1 e201204007 (2012)

Articles citing this publication (77)

  1. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD. Mol Cell 40 481-492 (2010)
  2. A novel small-molecule inhibitor of mcl-1 blocks pancreatic cancer growth in vitro and in vivo. Abulwerdi F, Liao C, Liu M, Azmi AS, Aboukameel A, Mady AS, Gulappa T, Cierpicki T, Owens S, Zhang T, Sun D, Stuckey JA, Mohammad RM, Nikolovska-Coleska Z. Mol Cancer Ther 13 565-575 (2014)
  3. CIDER: Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins. Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV. Biophys J 112 16-21 (2017)
  4. Discovery of marinopyrrole A (maritoclax) as a selective Mcl-1 antagonist that overcomes ABT-737 resistance by binding to and targeting Mcl-1 for proteasomal degradation. Doi K, Li R, Sung SS, Wu H, Liu Y, Manieri W, Krishnegowda G, Awwad A, Dewey A, Liu X, Amin S, Cheng C, Qin Y, Schonbrunn E, Daughdrill G, Loughran TP, Sebti S, Wang HG. J Biol Chem 287 10224-10235 (2012)
  5. Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Campbell KJ, Bath ML, Turner ML, Vandenberg CJ, Bouillet P, Metcalf D, Scott CL, Cory S. Blood 116 3197-3207 (2010)
  6. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Follis AV, Chipuk JE, Fisher JC, Yun MK, Grace CR, Nourse A, Baran K, Ou L, Min L, White SW, Green DR, Kriwacki RW. Nat Chem Biol 9 163-168 (2013)
  7. Mcl-1 Degradation Is Required for Targeted Therapeutics to Eradicate Colon Cancer Cells. Tong J, Wang P, Tan S, Chen D, Nikolovska-Coleska Z, Zou F, Yu J, Zhang L. Cancer Res 77 2512-2521 (2017)
  8. Mcl-1 Phosphorylation defines ABT-737 resistance that can be overcome by increased NOXA expression in leukemic B cells. Mazumder S, Choudhary GS, Al-Harbi S, Almasan A. Cancer Res 72 3069-3079 (2012)
  9. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. Dutta S, Gullá S, Chen TS, Fire E, Grant RA, Keating AE. J Mol Biol 398 747-762 (2010)
  10. Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM. J Biol Chem 286 7123-7131 (2011)
  11. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM, Smith BJ, Fairlie WD. J Biol Chem 284 30508-30517 (2009)
  12. Evolution of Bcl-2 homology motifs: homology versus homoplasy. Aouacheria A, Rech de Laval V, Combet C, Hardwick JM. Trends Cell Biol 23 103-111 (2013)
  13. Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Oda S, Schröder M, Khan AR. Structure 17 1528-1537 (2009)
  14. Multimodal interaction with BCL-2 family proteins underlies the proapoptotic activity of PUMA BH3. Edwards AL, Gavathiotis E, LaBelle JL, Braun CR, Opoku-Nsiah KA, Bird GH, Walensky LD. Chem Biol 20 888-902 (2013)
  15. The novel BH3 α-helix mimetic JY-1-106 induces apoptosis in a subset of cancer cells (lung cancer, colon cancer and mesothelioma) by disrupting Bcl-xL and Mcl-1 protein-protein interactions with Bak. Cao X, Yap JL, Newell-Rogers MK, Peddaboina C, Jiang W, Papaconstantinou HT, Jupitor D, Rai A, Jung KY, Tubin RP, Yu W, Vanommeslaeghe K, Wilder PT, MacKerell AD, Fletcher S, Smythe RW. Mol Cancer 12 42 (2013)
  16. Distinct cellular and therapeutic effects of obatoclax in rituximab-sensitive and -resistant lymphomas. Brem EA, Thudium K, Khubchandani S, Tsai PC, Olejniczak SH, Bhat S, Riaz W, Gu J, Iqbal A, Campagna R, Knight J, Mavis C, Hoskin P, Deeb G, Gibbs JF, Fetterly G, Czuczman MS, Hernandez-Ilizaliturri FJ. Br J Haematol 153 599-611 (2011)
  17. Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes. Lee EF, Clarke OB, Evangelista M, Feng Z, Speed TP, Tchoubrieva EB, Strasser A, Kalinna BH, Colman PM, Fairlie WD. Proc Natl Acad Sci U S A 108 6999-7003 (2011)
  18. The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Rautureau GJ, Yabal M, Yang H, Huang DC, Kvansakul M, Hinds MG. Cell Death Dis 3 e443 (2012)
  19. Predictive Bcl-2 family binding models rooted in experiment or structure. DeBartolo J, Dutta S, Reich L, Keating AE. J Mol Biol 422 124-144 (2012)
  20. Mcl-1 Phosphorylation without Degradation Mediates Sensitivity to HDAC Inhibitors by Liberating BH3-Only Proteins. Tong J, Zheng X, Tan X, Fletcher R, Nikolovska-Coleska Z, Yu J, Zhang L. Cancer Res 78 4704-4715 (2018)
  21. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. PLoS One 7 e31510 (2012)
  22. Vaccinia virus protein A49 is an unexpected member of the B-cell Lymphoma (Bcl)-2 protein family. Neidel S, Maluquer de Motes C, Mansur DS, Strnadova P, Smith GL, Graham SC. J Biol Chem 290 5991-6002 (2015)
  23. Human nuclear clusterin mediates apoptosis by interacting with Bcl-XL through C-terminal coiled coil domain. Kim N, Yoo JC, Han JY, Hwang EM, Kim YS, Jeong EY, Sun CH, Yi GS, Roh GS, Kim HJ, Kang SS, Cho GJ, Park JY, Choi WS. J Cell Physiol 227 1157-1167 (2012)
  24. Bcl-2 phosphorylation confers resistance on chronic lymphocytic leukaemia cells to the BH3 mimetics ABT-737, ABT-263 and ABT-199 by impeding direct binding. Song T, Chai G, Liu Y, Yu X, Wang Z, Zhang Z. Br J Pharmacol 173 471-483 (2016)
  25. Proteasome inhibitors prevent cisplatin-induced mitochondrial release of apoptosis-inducing factor and markedly ameliorate cisplatin nephrotoxicity. Liu L, Yang C, Herzog C, Seth R, Kaushal GP. Biochem Pharmacol 79 137-146 (2010)
  26. The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (Bcl-2) proteins depend on structural differences in their Bcl-2 homology 3 (BH3) domains. Lee EF, Dewson G, Evangelista M, Pettikiriarachchi A, Gold GJ, Zhu H, Colman PM, Fairlie WD. J Biol Chem 289 36001-36017 (2014)
  27. KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells. Mohan N, Ai W, Chakrabarti M, Banik NL, Ray SK. Mol Oncol 7 464-474 (2013)
  28. Mapping the interaction of pro-apoptotic tBID with pro-survival BCL-XL. Yao Y, Bobkov AA, Plesniak LA, Marassi FM. Biochemistry 48 8704-8711 (2009)
  29. Identification of a novel Mcl-1 protein binding motif. Placzek WJ, Sturlese M, Wu B, Cellitti JF, Wei J, Pellecchia M. J Biol Chem 286 39829-39835 (2011)
  30. In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2. London N, Gullá S, Keating AE, Schueler-Furman O. Biochemistry 51 5841-5850 (2012)
  31. Novel Bcl-2 homology-3 domain-like sequences identified from screening randomized peptide libraries for inhibitors of the pro-survival Bcl-2 proteins. Lee EF, Fedorova A, Zobel K, Boyle MJ, Yang H, Perugini MA, Colman PM, Huang DC, Deshayes K, Fairlie WD. J Biol Chem 284 31315-31326 (2009)
  32. The structure of Boo/Diva reveals a divergent Bcl-2 protein. Rautureau GJ, Day CL, Hinds MG. Proteins 78 2181-2186 (2010)
  33. BAK/BAX activation and cytochrome c release assays using isolated mitochondria. Renault TT, Floros KV, Chipuk JE. Methods 61 146-155 (2013)
  34. Genome-wide prediction and validation of peptides that bind human prosurvival Bcl-2 proteins. DeBartolo J, Taipale M, Keating AE. PLoS Comput Biol 10 e1003693 (2014)
  35. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Lee DH, Ha JH, Kim Y, Bae KH, Park JY, Choi WS, Yoon HS, Park SG, Park BC, Yi GS, Chi SW. Biochem Biophys Res Commun 408 541-547 (2011)
  36. Regulation of antiapoptotic MCL-1 function by gossypol: mechanistic insights from in vitro reconstituted systems. Etxebarria A, Landeta O, Antonsson B, Basañez G. Biochem Pharmacol 76 1563-1576 (2008)
  37. Overexpression of peroxisomal testis-specific 1 protein induces germ cell apoptosis and leads to infertility in male mice. Kaczmarek K, Studencka M, Meinhardt A, Wieczerzak K, Thoms S, Engel W, Grzmil P. Mol Biol Cell 22 1766-1779 (2011)
  38. Stereocontrolled protein surface recognition using chiral oligoamide proteomimetic foldamers. Azzarito V, Miles JA, Fisher J, Edwards TA, Warriner SL, Wilson AJ. Chem Sci 6 2434-2443 (2015)
  39. Structural basis of Deerpox virus-mediated inhibition of apoptosis. Burton DR, Caria S, Marshall B, Barry M, Kvansakul M. Acta Crystallogr D Biol Crystallogr 71 1593-1603 (2015)
  40. Proapoptotic role of nuclear clusterin in brain. Kim N, Choi WS. Anat Cell Biol 44 169-175 (2011)
  41. The Interferon-Inducible Mouse Apolipoprotein L9 and Prohibitins Cooperate to Restrict Theiler's Virus Replication. Kreit M, Vertommen D, Gillet L, Michiels T. PLoS One 10 e0133190 (2015)
  42. Modulation of Navitoclax Sensitivity by Dihydroartemisinin-Mediated MCL-1 Repression in BCR-ABL+ B-Lineage Acute Lymphoblastic Leukemia. Budhraja A, Turnis ME, Churchman ML, Kothari A, Yang X, Xu H, Kaminska E, Panetta JC, Finkelstein D, Mullighan CG, Opferman JT. Clin Cancer Res 23 7558-7568 (2017)
  43. Heterodimerization of BAK and MCL-1 activated by detergent micelles. Liu Q, Gehring K. J Biol Chem 285 41202-41210 (2010)
  44. Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. Kønig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E. PLoS Comput Biol 15 e1007485 (2019)
  45. Research Support, Non-U.S. Gov't Fuzzy regions in an intrinsically disordered protein impair protein-protein interactions. Gruet A, Dosnon M, Blocquel D, Brunel J, Gerlier D, Das RK, Bonetti D, Gianni S, Fuxreiter M, Longhi S, Bignon C. FEBS J 283 576-594 (2016)
  46. A dual-readout F2 assay that combines fluorescence resonance energy transfer and fluorescence polarization for monitoring bimolecular interactions. Du Y, Nikolovska-Coleska Z, Qui M, Li L, Lewis I, Dingledine R, Stuckey JA, Krajewski K, Roller PP, Wang S, Fu H. Assay Drug Dev Technol 9 382-393 (2011)
  47. Mouse Noxa uses only the C-terminal BH3-domain to inactivate Mcl-1. Weber A, Ausländer D, Häcker G. Apoptosis 18 1093-1105 (2013)
  48. An Integrated Bioinformatics and Computational Biology Approach Identifies New BH3-Only Protein Candidates. Hawley RG, Chen Y, Riz I, Zeng C. Open Biol J 5 6-16 (2012)
  49. mRNA display selection of a high-affinity, Bcl-X(L)-specific binding peptide. Matsumura N, Tsuji T, Sumida T, Kokubo M, Onimaru M, Doi N, Takashima H, Miyamoto-Sato E, Yanagawa H. FASEB J 24 2201-2210 (2010)
  50. A structural investigation of NRZ mediated apoptosis regulation in zebrafish. Suraweera CD, Caria S, Järvå M, Hinds MG, Kvansakul M. Cell Death Dis 9 967 (2018)
  51. Antiapoptotic Bcl-2 homolog CED-9 in Caenorhabditis elegans: dynamics of BH3 and CED-4 binding regions and comparison with mammalian antiapoptotic Bcl-2 proteins. Modi V, Sankararamakrishnan R. Proteins 82 1035-1047 (2014)
  52. Caspase cleavage of Mcl-1 impairs its anti-apoptotic activity and proteasomal degradation in non-small lung cancer cells. Wang T, Yang Z, Zhang Y, Zhang X, Wang L, Zhang S, Jia L. Apoptosis 23 54-64 (2018)
  53. High-resolution structural characterization of Noxa, an intrinsically disordered protein, by microsecond molecular dynamics simulations. Espinoza-Fonseca LM, Kelekar A. Mol Biosyst 11 1850-1856 (2015)
  54. Pyoluteorin derivatives induce Mcl-1 degradation and apoptosis in hematological cancer cells. Doi K, Gowda K, Liu Q, Lin JM, Sung SS, Dower C, Claxton D, Loughran TP, Amin S, Wang HG. Cancer Biol Ther 15 1688-1699 (2014)
  55. Discovery of a small-molecule pBcl-2 inhibitor that overcomes pBcl-2-mediated resistance to apoptosis. Song T, Yu X, Liu Y, Li X, Chai G, Zhang Z. Chembiochem 16 757-765 (2015)
  56. Dynamics of the Extended String-Like Interaction of TFIIE with the p62 Subunit of TFIIH. Okuda M, Higo J, Komatsu T, Konuma T, Sugase K, Nishimura Y. Biophys J 111 950-962 (2016)
  57. Identification of a Novel Bcl-2 Inhibitor by Ligand-Based Screening and Investigation of Its Anti-cancer Effect on Human Breast Cancer Cells. Wen M, Deng ZK, Jiang SL, Guan YD, Wu HZ, Wang XL, Xiao SS, Zhang Y, Yang JM, Cao DS, Cheng Y. Front Pharmacol 10 391 (2019)
  58. Protein-protein interactions in paralogues: Electrostatics modulates specificity on a conserved steric scaffold. Ivanov SM, Cawley A, Huber RG, Bond PJ, Warwicker J. PLoS One 12 e0185928 (2017)
  59. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides. Modi V, Sankararamakrishnan R. J Mol Graph Model 73 115-128 (2017)
  60. Crystal structures of ORFV125 provide insight into orf virus-mediated inhibition of apoptosis. Suraweera CD, Hinds MG, Kvansakul M. Biochem J 477 4527-4541 (2020)
  61. Discovery of Mcl-1 inhibitors from integrated high throughput and virtual screening. Mady ASA, Liao C, Bajwa N, Kump KJ, Abulwerdi FA, Lev KL, Miao L, Grigsby SM, Perdih A, Stuckey JA, Du Y, Fu H, Nikolovska-Coleska Z. Sci Rep 8 10210 (2018)
  62. Structure-based approach to the design of BakBH3 mimetic peptides with increased helical propensity. Delgado-Soler L, Del Mar Orzaez M, Rubio-Martinez J. J Mol Model 19 4305-4318 (2013)
  63. Bridging solvent molecules mediate RNase A - Ligand binding. Ivanov SM, Dimitrov I, Doytchinova IA. PLoS One 14 e0224271 (2019)
  64. Identification of axolotl BH3-only proteins and expression in axolotl organs and apoptotic limb regeneration tissue. Bucan V, Peck CT, Nasser I, Liebsch C, Vogt PM, Strauß S. Biol Open 7 (2018)
  65. Impaired ribosome biogenesis checkpoint activation induces p53-dependent MCL-1 degradation and MYC-driven lymphoma death. Domostegui A, Peddigari S, Mercer CA, Iannizzotto F, Rodriguez ML, Garcia-Cajide M, Amador V, Diepstraten ST, Kelly GL, Salazar R, Kozma SC, Kusnadi EP, Kang J, Gentilella A, Pearson RB, Thomas G, Pelletier J. Blood 137 3351-3364 (2021)
  66. article-commentary Protein-protein interactions: A PUMA mechanism unfolds. Walensky LD. Nat Chem Biol 9 141-143 (2013)
  67. Robust autoactivation for apoptosis by BAK but not BAX highlights BAK as an important therapeutic target. Iyer S, Uren RT, Dengler MA, Shi MX, Uno E, Adams JM, Dewson G, Kluck RM. Cell Death Dis 11 268 (2020)
  68. Therapeutic effects of an innovative BS-HH-002 drug on pancreatic cancer cells via induction of complete MCL-1 degradation. Wang AM, Qiu R, Zhang D, Zhao XY. Transl Oncol 15 101288 (2022)
  69. Cell-penetrating Alphabody protein scaffolds for intracellular drug targeting. Pannecoucke E, Van Trimpont M, Desmet J, Pieters T, Reunes L, Demoen L, Vuylsteke M, Loverix S, Vandenbroucke K, Alard P, Henderikx P, Deroo S, Baatz F, Lorent E, Thiolloy S, Somers K, McGrath Y, Van Vlierberghe P, Lasters I, Savvides SN. Sci Adv 7 (2021)
  70. Des3PI: a fragment-based approach to design cyclic peptides targeting protein-protein interactions. Delaunay M, Ha-Duong T. J Comput Aided Mol Des 36 605-621 (2022)
  71. Designing BH3-Mimetic Peptide Inhibitors for the Viral Bcl-2 Homologues A179L and BHRF1: Importance of Long-Range Electrostatic Interactions. Reddy CN, Sankararamakrishnan R. ACS Omega 6 26976-26989 (2021)
  72. Innate Conformational Dynamics Drive Binding Specificity in Anti-Apoptotic Proteins Mcl-1 and Bcl-2. Wolf E, Lento C, Pu J, Dickinson BC, Wilson DJ. Biochemistry 62 1619-1630 (2023)
  73. Intrinsically Disordered Bacterial Polar Organizing Protein Z, PopZ, Interacts with Protein Binding Partners Through an N-terminal Molecular Recognition Feature. Nordyke CT, Ahmed YM, Puterbaugh RZ, Bowman GR, Varga K. J Mol Biol 432 6092-6107 (2020)
  74. Phylogenetic analysis of the MCL1 BH3 binding groove and rBH3 sequence motifs in the p53 and INK4 protein families. McGriff A, Placzek WJ. PLoS One 18 e0277726 (2023)
  75. Structural Insight into KsBcl-2 Mediated Apoptosis Inhibition by Kaposi Sarcoma Associated Herpes Virus. Suraweera CD, Hinds MG, Kvansakul M. Viruses 14 738 (2022)
  76. Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1. Lim D, Choe SH, Jin S, Lee S, Kim Y, Shin HC, Choi JS, Oh DB, Kim SJ, Seo J, Ku B. PLoS Biol 21 e3002156 (2023)
  77. Structural transitions in TCTP tumor protein upon binding to the anti-apoptotic protein family member Mcl-1. Malard F, Sizun C, Thureau A, Carlier L, Lescop E. J Biol Chem 299 104830 (2023)