2q8h Citations

Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol.

Structure 15 992-1004 (2007)
Related entries: 2q8f, 2q8g, 2q8i

Cited: 111 times
EuropePMC logo PMID: 17683942

Abstract

Pyruvate dehydrogenase kinase (PDK) isoforms are molecular switches that downregulate the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation in mitochondria. We have determined structures of human PDK1 or PDK3 bound to the inhibitors AZD7545, dichloroacetate (DCA), and radicicol. We show that the trifluoromethylpropanamide end of AZD7545 projects into the lipoyl-binding pocket of PDK1. This interaction results in inhibition of PDK1 and PDK3 activities by aborting kinase binding to the PDC scaffold. Paradoxically, AZD7545 at saturating concentrations robustly increases scaffold-free PDK3 activity, similar to the inner lipoyl domain. Good DCA density is present in the helix bundle in the N-terminal domain of PDK1. Bound DCA promotes local conformational changes that are communicated to both nucleotide-binding and lipoyl-binding pockets of PDK1, leading to the inactivation of kinase activity. Finally, radicicol inhibits kinase activity by binding directly to the ATP-binding pocket of PDK3, similar to Hsp90 and Topo VI from the same ATPase/kinase superfamily.

Reviews - 2q8h mentioned but not cited (1)

Articles - 2q8h mentioned but not cited (5)

  1. Distinct structural mechanisms for inhibition of pyruvate dehydrogenase kinase isoforms by AZD7545, dichloroacetate, and radicicol. Kato M, Li J, Chuang JL, Chuang DT. Structure 15 992-1004 (2007)
  2. Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis. Ferriero R, Manco G, Lamantea E, Nusco E, Ferrante MI, Sordino P, Stacpoole PW, Lee B, Zeviani M, Brunetti-Pierri N. Sci Transl Med 5 175ra31 (2013)
  3. A Structurally-Validated Multiple Sequence Alignment of 497 Human Protein Kinase Domains. Modi V, Dunbrack RL. Sci Rep 9 19790 (2019)
  4. Multipose binding in molecular docking. Atkovska K, Samsonov SA, Paszkowski-Rogacz M, Pisabarro MT. Int J Mol Sci 15 2622-2645 (2014)
  5. Dichloroacetate and Pyruvate Metabolism: Pyruvate Dehydrogenase Kinases as Targets Worth Investigating for Effective Therapy of Toxoplasmosis. Ferrarini MG, Nisimura LM, Girard RMBM, Alencar MB, Fragoso MSI, Araújo-Silva CA, Veiga AA, Abud APR, Nardelli SC, Vommaro RC, Silber AM, France-Sagot M, Ávila AR. mSphere 6 e01002-20 (2021)


Reviews citing this publication (25)

  1. Targeting cellular metabolism to improve cancer therapeutics. Zhao Y, Butler EB, Tan M. Cell Death Dis 4 e532 (2013)
  2. Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Wondrak GT. Antioxid Redox Signal 11 3013-3069 (2009)
  3. The pyruvate dehydrogenase complexes: structure-based function and regulation. Patel MS, Nemeria NS, Furey W, Jordan F. J Biol Chem 289 16615-16623 (2014)
  4. Therapeutic Targeting of the Pyruvate Dehydrogenase Complex/Pyruvate Dehydrogenase Kinase (PDC/PDK) Axis in Cancer. Stacpoole PW. J Natl Cancer Inst 109 (2017)
  5. Anticancer agents that counteract tumor glycolysis. Granchi C, Minutolo F. ChemMedChem 7 1318-1350 (2012)
  6. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Amici SA, Dong J, Guerau-de-Arellano M. Front Immunol 8 1520 (2017)
  7. Therapies for mitochondrial diseases and current clinical trials. El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Mol Genet Metab 122 1-9 (2017)
  8. Pyruvate Dehydrogenase Kinases: Therapeutic Targets for Diabetes and Cancers. Jeoung NH. Diabetes Metab J 39 188-197 (2015)
  9. How to reprogram microglia toward beneficial functions. Fumagalli M, Lombardi M, Gressens P, Verderio C. Glia 66 2531-2549 (2018)
  10. Targeting Cancer Metabolism - Revisiting the Warburg Effects. Tran Q, Lee H, Park J, Kim SH, Park J. Toxicol Res 32 177-193 (2016)
  11. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. James MO, Jahn SC, Zhong G, Smeltz MG, Hu Z, Stacpoole PW. Pharmacol Ther 170 166-180 (2017)
  12. Emerging metabolic targets in cancer therapy. Zhao Y, Liu H, Riker AI, Fodstad O, Ledoux SP, Wilson GL, Tan M. Front Biosci (Landmark Ed) 16 1844-1860 (2011)
  13. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Cell Stress Chaperones 23 467-482 (2018)
  14. Novel drugs that target the metabolic reprogramming in renal cell cancer. van der Mijn JC, Panka DJ, Geissler AK, Verheul HM, Mier JW. Cancer Metab 4 14 (2016)
  15. Structure-based design of molecular cancer therapeutics. van Montfort RL, Workman P. Trends Biotechnol 27 315-328 (2009)
  16. The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance. Atas E, Oberhuber M, Kenner L. Front Oncol 10 583217 (2020)
  17. Development of pyruvate dehydrogenase kinase inhibitors in medicinal chemistry with particular emphasis as anticancer agents. Zhang SL, Hu X, Zhang W, Yao H, Tam KY. Drug Discov Today 20 1112-1119 (2015)
  18. Mitochondrial metabolism inhibitors for cancer therapy. Ramsay EE, Hogg PJ, Dilda PJ. Pharm Res 28 2731-2744 (2011)
  19. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Stevens JF, Revel JS, Maier CS. Antioxid Redox Signal 29 1589-1611 (2018)
  20. Beyond glycolysis: Hypoxia signaling as a master regulator of alternative metabolic pathways and the implications in clear cell renal cell carcinoma. Bacigalupa ZA, Rathmell WK. Cancer Lett 489 19-28 (2020)
  21. Mammalian NADH:ubiquinone oxidoreductase (Complex I) and nicotinamide nucleotide transhydrogenase (Nnt) together regulate the mitochondrial production of H₂O₂--implications for their role in disease, especially cancer. Albracht SP, Meijer AJ, Rydström J. J Bioenerg Biomembr 43 541-564 (2011)
  22. Influenza virus pathogenicity regulated by host cellular proteases, cytokines and metabolites, and its therapeutic options. Kido H. Proc Jpn Acad Ser B Phys Biol Sci 91 351-368 (2015)
  23. Dynamically Shaping Chaperones. Allosteric Modulators of HSP90 Family as Regulatory Tools of Cell Metabolism in Neoplastic Progression. Sanchez-Martin C, Serapian SA, Colombo G, Rasola A. Front Oncol 10 1177 (2020)
  24. Potential compounds for the treatment of mitochondrial disease. Rai PK, Russell OM, Lightowlers RN, Turnbull DM. Br Med Bull 116 5-18 (2015)
  25. Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Wang X, Shen X, Yan Y, Li H. Biosci Rep 41 BSR20204402 (2021)

Articles citing this publication (80)

  1. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME, Haeberli L, Huck C, Turka LA, Wood KC, Hale LP, Smith PA, Schneider MA, MacIver NJ, Locasale JW, Newgard CB, Shinohara ML, Rathmell JC. J Clin Invest 125 194-207 (2015)
  2. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, Ge Q, Gu TL, Polakiewicz RD, Roesel JL, Chen GZ, Boggon TJ, Lonial S, Fu H, Khuri FR, Kang S, Chen J. Mol Cell 44 864-877 (2011)
  3. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Mathieu J, Zhou W, Xing Y, Sperber H, Ferreccio A, Agoston Z, Kuppusamy KT, Moon RT, Ruohola-Baker H. Cell Stem Cell 14 592-605 (2014)
  4. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, Thomas CJ, Spranger S, Matheson NJ, Vander Heiden MG. Mol Cell 81 691-707.e6 (2021)
  5. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes. Kon S, Ishibashi K, Katoh H, Kitamoto S, Shirai T, Tanaka S, Kajita M, Ishikawa S, Yamauchi H, Yako Y, Kamasaki T, Matsumoto T, Watanabe H, Egami R, Sasaki A, Nishikawa A, Kameda I, Maruyama T, Narumi R, Morita T, Sasaki Y, Enoki R, Honma S, Imamura H, Oshima M, Soga T, Miyazaki JI, Duchen MR, Nam JM, Onodera Y, Yoshioka S, Kikuta J, Ishii M, Imajo M, Nishida E, Fujioka Y, Ohba Y, Sato T, Fujita Y. Nat Cell Biol 19 530-541 (2017)
  6. Monitoring phosphorylation of the pyruvate dehydrogenase complex. Rardin MJ, Wiley SE, Naviaux RK, Murphy AN, Dixon JE. Anal Biochem 389 157-164 (2009)
  7. PDK1 inhibition is a novel therapeutic target in multiple myeloma. Fujiwara S, Kawano Y, Yuki H, Okuno Y, Nosaka K, Mitsuya H, Hata H. Br J Cancer 108 170-178 (2013)
  8. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. Ganesan R, Hos NJ, Gutierrez S, Fischer J, Stepek JM, Daglidu E, Krönke M, Robinson N. PLoS Pathog 13 e1006227 (2017)
  9. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study. Le Page LM, Rider OJ, Lewis AJ, Ball V, Clarke K, Johansson E, Carr CA, Heather LC, Tyler DJ. Diabetes 64 2735-2743 (2015)
  10. Mito-DCA: a mitochondria targeted molecular scaffold for efficacious delivery of metabolic modulator dichloroacetate. Pathak RK, Marrache S, Harn DA, Dhar S. ACS Chem Biol 9 1178-1187 (2014)
  11. Structure-guided development of specific pyruvate dehydrogenase kinase inhibitors targeting the ATP-binding pocket. Tso SC, Qi X, Gui WJ, Wu CY, Chuang JL, Wernstedt-Asterholm I, Morlock LK, Owens KR, Scherer PE, Williams NS, Tambar UK, Wynn RM, Chuang DT. J Biol Chem 289 4432-4443 (2014)
  12. Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Liang Y, Hou L, Li L, Li L, Zhu L, Wang Y, Huang X, Hou Y, Zhu D, Zou H, Gu Y, Weng X, Wang Y, Li Y, Wu T, Yao M, Gross I, Gaiddon C, Luo M, Wang J, Meng X. Oncogene 39 469-485 (2020)
  13. Role of pyruvate dehydrogenase kinase 4 in regulation of blood glucose levels. Jeoung NH, Harris RA. Korean Diabetes J 34 274-283 (2010)
  14. Metabolic Modulation of Clear-cell Renal Cell Carcinoma with Dichloroacetate, an Inhibitor of Pyruvate Dehydrogenase Kinase. Kinnaird A, Dromparis P, Saleme B, Gurtu V, Watson K, Paulin R, Zervopoulos S, Stenson T, Sutendra G, Pink DB, Carmine-Simmen K, Moore R, Lewis JD, Michelakis ED. Eur Urol 69 734-744 (2016)
  15. Dichloroacetate induces apoptosis of epithelial ovarian cancer cells through a mechanism involving modulation of oxidative stress. Saed GM, Fletcher NM, Jiang ZL, Abu-Soud HM, Diamond MP. Reprod Sci 18 1253-1261 (2011)
  16. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation. Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, Doo Kim N, Choi YK, Do JY, Go Y, Ha CM, Choi JY, Huh S, Ho Jeoung N, Lee KU, Choi HS, Wang Y, Park KG, Harris RA, Lee IK. Sci Rep 5 16577 (2015)
  17. Diisopropylamine dichloroacetate, a novel pyruvate dehydrogenase kinase 4 inhibitor, as a potential therapeutic agent for metabolic disorders and multiorgan failure in severe influenza. Yamane K, Indalao IL, Chida J, Yamamoto Y, Hanawa M, Kido H. PLoS One 9 e98032 (2014)
  18. Structures of the human pyruvate dehydrogenase complex cores: a highly conserved catalytic center with flexible N-terminal domains. Yu X, Hiromasa Y, Tsen H, Stoops JK, Roche TE, Zhou ZH. Structure 16 104-114 (2008)
  19. Sodium dichloroacetate (DCA) reduces apoptosis in colorectal tumor hypoxia. Shahrzad S, Lacombe K, Adamcic U, Minhas K, Coomber BL. Cancer Lett 297 75-83 (2010)
  20. Pharmacologically increased tumor hypoxia can be measured by 18F-Fluoroazomycin arabinoside positron emission tomography and enhances tumor response to hypoxic cytotoxin PR-104. Cairns RA, Bennewith KL, Graves EE, Giaccia AJ, Chang DT, Denko NC. Clin Cancer Res 15 7170-7174 (2009)
  21. Dicumarol inhibits PDK1 and targets multiple malignant behaviors of ovarian cancer cells. Zhang W, Su J, Xu H, Yu S, Liu Y, Zhang Y, Sun L, Yue Y, Zhou X. PLoS One 12 e0179672 (2017)
  22. Use of hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate to probe the effects of the anticancer agent dichloroacetate on mitochondrial metabolism in vivo in the normal rat. Hu S, Yoshihara HA, Bok R, Zhou J, Zhu M, Kurhanewicz J, Vigneron DB. Magn Reson Imaging 30 1367-1372 (2012)
  23. Metabolic targeting of EGFRvIII/PDK1 axis in temozolomide resistant glioblastoma. Velpula KK, Guda MR, Sahu K, Tuszynski J, Asuthkar S, Bach SE, Lathia JD, Tsung AJ. Oncotarget 8 35639-35655 (2017)
  24. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases. Zhou X, Yu S, Su J, Sun L. Int J Mol Sci 17 340 (2016)
  25. Structural and functional insights into the molecular mechanisms responsible for the regulation of pyruvate dehydrogenase kinase 2. Green T, Grigorian A, Klyuyeva A, Tuganova A, Luo M, Popov KM. J Biol Chem 283 15789-15798 (2008)
  26. BODIPY-Decorated Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. Guan Q, Fu DD, Li YA, Kong XM, Wei ZY, Li WY, Zhang SJ, Dong YB. iScience 14 180-198 (2019)
  27. Increased Pyruvate Dehydrogenase Kinase 4 Expression in Lung Pericytes Is Associated with Reduced Endothelial-Pericyte Interactions and Small Vessel Loss in Pulmonary Arterial Hypertension. Yuan K, Shao NY, Hennigs JK, Discipulo M, Orcholski ME, Shamskhou E, Richter A, Hu X, Wu JC, de Jesus Perez VA. Am J Pathol 186 2500-2514 (2016)
  28. PHD2 Is a Regulator for Glycolytic Reprogramming in Macrophages. Guentsch A, Beneke A, Swain L, Farhat K, Nagarajan S, Wielockx B, Raithatha K, Dudek J, Rehling P, Zieseniss A, Jatho A, Chong M, Santos CXC, Shah AM, Katschinski DM. Mol Cell Biol 37 e00236-16 (2017)
  29. Pivotal role of the C-terminal DW-motif in mediating inhibition of pyruvate dehydrogenase kinase 2 by dichloroacetate. Li J, Kato M, Chuang DT. J Biol Chem 284 34458-34467 (2009)
  30. A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity. Wu CY, Satapati S, Gui W, Wynn RM, Sharma G, Lou M, Qi X, Burgess SC, Malloy C, Khemtong C, Sherry AD, Chuang DT, Merritt ME. J Biol Chem 293 9604-9613 (2018)
  31. Crosstalk among proteome, acetylome and succinylome in colon cancer HCT116 cell treated with sodium dichloroacetate. Zhu D, Hou L, Hu B, Zhao H, Sun J, Wang J, Meng X. Sci Rep 6 37478 (2016)
  32. Tissue-specific kinase expression and activity regulate flux through the pyruvate dehydrogenase complex. Klyuyeva A, Tuganova A, Kedishvili N, Popov KM. J Biol Chem 294 838-851 (2019)
  33. Ilimaquinone Induces the Apoptotic Cell Death of Cancer Cells by Reducing Pyruvate Dehydrogenase Kinase 1 Activity. Kwak CH, Jin L, Han JH, Han CW, Kim E, Cho M, Chung TW, Bae SJ, Jang SB, Ha KT. Int J Mol Sci 21 E6021 (2020)
  34. Repurposing dichloroacetate for the treatment of women with endometriosis. Horne AW, Ahmad SF, Carter R, Simitsidellis I, Greaves E, Hogg C, Morton NM, Saunders PTK. Proc Natl Acad Sci U S A 116 25389-25391 (2019)
  35. Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion. Škerlová J, Berndtsson J, Nolte H, Ott M, Stenmark P. Nat Commun 12 5277 (2021)
  36. Inhibitor-bound structures of human pyruvate dehydrogenase kinase 4. Kukimoto-Niino M, Tokmakov A, Terada T, Ohbayashi N, Fujimoto T, Gomi S, Shiromizu I, Kawamoto M, Matsusue T, Shirouzu M, Yokoyama S. Acta Crystallogr D Biol Crystallogr 67 763-773 (2011)
  37. Combination of Dichloroacetate and Atorvastatin Regulates Excessive Proliferation and Oxidative Stress in Pulmonary Arterial Hypertension Development via p38 Signaling. Li T, Li S, Feng Y, Zeng X, Dong S, Li J, Zha L, Luo H, Zhao L, Liu B, Ou Z, Lin W, Zhang M, Li S, Jiang Q, Qi Q, Xu Q, Yu Z. Oxid Med Cell Longev 2020 6973636 (2020)
  38. Dichloroacetic acid upregulates apoptosis of ovarian cancer cells by regulating mitochondrial function. Zhou L, Liu L, Chai W, Zhao T, Jin X, Guo X, Han L, Yuan C. Onco Targets Ther 12 1729-1739 (2019)
  39. Elevated acetyl-CoA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production. Yao L, Shen H, Wang N, Tatlay J, Li L, Tan TW, Lee YK. Plant Biotechnol J 15 497-509 (2017)
  40. Hemistepsin A suppresses colorectal cancer growth through inhibiting pyruvate dehydrogenase kinase activity. Jin L, Kim EY, Chung TW, Han CW, Park SY, Han JH, Bae SJ, Lee JR, Kim YW, Jang SB, Ha KT. Sci Rep 10 21940 (2020)
  41. Perturbation of cellular oxidative state induced by dichloroacetate and arsenic trioxide for treatment of acute myeloid leukemia. Emadi A, Sadowska M, Carter-Cooper B, Bhatnagar V, van der Merwe I, Levis MJ, Sausville EA, Lapidus RG. Leuk Res 39 719-729 (2015)
  42. Huzhangoside A Suppresses Tumor Growth through Inhibition of Pyruvate Dehydrogenase Kinase Activity. Kwak CH, Lee JH, Kim EY, Han CW, Kim KJ, Lee H, Cho M, Jang SB, Kim CH, Chung TW, Ha KT. Cancers (Basel) 11 E712 (2019)
  43. Inhibition of HIF1α and PDK Induces Cell Death of Glioblastoma Multiforme. Han JE, Lim PW, Na CM, Choi YS, Lee JY, Kim Y, Park HW, Moon HE, Heo MS, Park HR, Kim DG, Paek SH. Exp Neurobiol 26 295-306 (2017)
  44. Hexokinase II promotes the Warburg effect by phosphorylating alpha subunit of pyruvate dehydrogenase. Luo F, Li Y, Yuan F, Zuo J. Chin J Cancer Res 31 521-532 (2019)
  45. MondoA deficiency enhances sprint performance in mice. Imamura M, Chang BH, Kohjima M, Li M, Hwang B, Taegtmeyer H, Harris RA, Chan L. Biochem J 464 35-48 (2014)
  46. Structural ensemble-based docking simulation and biophysical studies discovered new inhibitors of Hsp90 N-terminal domain. Kim HH, Hyun JS, Choi J, Choi KE, Jee JG, Park SJ. Sci Rep 8 368 (2018)
  47. Chemical reversal of abnormalities in cells carrying mitochondrial DNA mutations. Kobayashi H, Hatakeyama H, Nishimura H, Yokota M, Suzuki S, Tomabechi Y, Shirouzu M, Osada H, Mimaki M, Goto YI, Yoshida M. Nat Chem Biol 17 335-343 (2021)
  48. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation. Misra SK, Ye M, Ostadhossein F, Pan D. Sci Rep 6 28196 (2016)
  49. Combination of Taxol® and dichloroacetate results in synergistically inhibitory effects on Taxol-resistant oral cancer cells under hypoxia. Xie Q, Zhang HF, Guo YZ, Wang PY, Liu ZS, Gao HD, Xie WL. Mol Med Rep 11 2935-2940 (2015)
  50. Dichloroacetate induces regulatory T-cell differentiation and suppresses Th17-cell differentiation by pyruvate dehydrogenase kinase-independent mechanism. Makita N, Ishiguro J, Suzuki K, Nara F. J Pharm Pharmacol 69 43-51 (2017)
  51. Elucidation of the interaction loci of the human pyruvate dehydrogenase complex E2·E3BP core with pyruvate dehydrogenase kinase 1 and kinase 2 by H/D exchange mass spectrometry and nuclear magnetic resonance. Wang J, Kumaran S, Zhou J, Nemeria NS, Tao H, Kakalis L, Park YH, Birkaya B, Patel MS, Jordan F. Biochemistry 54 69-82 (2015)
  52. Methionine oxidation activates pyruvate kinase M2 to promote pancreatic cancer metastasis. He D, Feng H, Sundberg B, Yang J, Powers J, Christian AH, Wilkinson JE, Monnin C, Avizonis D, Thomas CJ, Friedman RA, Kluger MD, Hollingsworth MA, Grandgenett PM, Klute KA, Toste FD, Chang CJ, Chio IIC. Mol Cell 82 3045-3060.e11 (2022)
  53. Molecular interaction studies on ellagic acid for its anticancer potential targeting pyruvate dehydrogenase kinase 3. Dahiya R, Mohammad T, Gupta P, Haque A, Alajmi MF, Hussain A, Hassan MI. RSC Adv 9 23302-23315 (2019)
  54. Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Chatterjee N, Pazarentzos E, Mayekar MK, Gui P, Allegakoen DV, Hrustanovic G, Olivas V, Lin L, Verschueren E, Johnson JR, Hofree M, Yan JJ, Newton BW, Dollen JV, Earnshaw CH, Flanagan J, Chan E, Asthana S, Ideker T, Wu W, Suzuki J, Barad BA, Kirichok Y, Fraser JS, Weiss WA, Krogan NJ, Tulpule A, Sabnis AJ, Bivona TG. Cell Rep 28 2317-2330.e8 (2019)
  55. The novel function of tumor protein D54 in regulating pyruvate dehydrogenase and metformin cytotoxicity in breast cancer. Zhuang Y, Ly RC, Frazier CV, Yu J, Qin S, Fan XY, Goetz MP, Boughey JC, Weinshilboum R, Wang L. Cancer Metab 7 1 (2019)
  56. Raman-Based in Situ Monitoring of Changes in Molecular Signatures during Mitochondrially Mediated Apoptosis. Shin HJ, Lee JH, Kim YD, Shin I, Sim T, Lim DK. ACS Omega 4 8188-8195 (2019)
  57. Drug evaluation based on phosphomimetic PDHA1 reveals the complexity of activity-related cell death in A549 non-small cell lung cancer cells. Jin L, Cho M, Kim BS, Han JH, Park S, Lee IK, Ryu D, Kim JH, Bae SJ, Ha KT. BMB Rep 54 563-568 (2021)
  58. Effects of adding sodium dichloroacetate to low-protein diets on nitrogen balance and amino acid metabolism in the portal-drained viscera and liver of pigs. Sun W, Li Y, Tang Z, Chen H, Wan K, An R, Wu L, Sun Z. J Anim Sci Biotechnol 11 36 (2020)
  59. Metabolic Response to Stress by the Immature Right Ventricle Exposed to Chronic Pressure Overload. Kajimoto M, Nuri M, Isern NG, Robillard-Frayne I, Des Rosiers C, Portman MA. J Am Heart Assoc 8 e013169 (2019)
  60. The Warburg Effect and lactate signaling augment Fgf-MAPK to promote sensory-neural development in the otic vesicle. Kantarci H, Gou Y, Riley BB. Elife 9 e56301 (2020)
  61. Understanding the Hsp90 N-terminal Dynamics: Structural and Molecular Insights into the Therapeutic Activities of Anticancer Inhibitors Radicicol (RD) and Radicicol Derivative (NVP-YUA922). Magwenyane AM, Mhlongo NN, Lawal MM, Amoako DG, Somboro AM, Sosibo SC, Shunmugam L, Khan RB, Kumalo HM. Molecules 25 E1785 (2020)
  62. Design and Synthesis of Hsp90 Inhibitors with B-Raf and PDHK1 Multi-Target Activity. Pinzi L, Foschi F, Christodoulou MS, Passarella D, Rastelli G. ChemistryOpen 10 1177-1185 (2021)
  63. Design, synthesis and biological evaluation of N-arylphenyl-2,2-dichloroacetamide analogues as anti-cancer agents. Li T, Yang Y, Cheng C, Tiwari AK, Tiwari AK, Sodani K, Zhao Y, Abraham I, Chen ZS. Bioorg Med Chem Lett 22 7268-7271 (2012)
  64. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Cai X, Ng CP, Jones O, Fung TS, Ryu KW, Li D, Thompson CB. Mol Cell 83 3904-3920.e7 (2023)
  65. Furoates and thenoates inhibit pyruvate dehydrogenase kinase 2 allosterically by binding to its pyruvate regulatory site. Masini T, Birkaya B, van Dijk S, Mondal M, Hekelaar J, Jäger M, Terwisscha van Scheltinga AC, Patel MS, Hirsch AK, Moman E. J Enzyme Inhib Med Chem 31 170-175 (2016)
  66. CircKIF4A Is a Prognostic Factor and Modulator of Natural Killer/T-Cell Lymphoma Progression. He R, Wen W, Fu B, Zhu R, Chen G, Bai S, Cao X, Wang H. Cancers (Basel) 14 4950 (2022)
  67. Discovery of the 3-Amino-1,2,4-triazine-Based Library as Selective PDK1 Inhibitors with Therapeutic Potential in Highly Aggressive Pancreatic Ductal Adenocarcinoma. Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall'Acqua S, Moro S, Gandin V, Diana P. Int J Mol Sci 24 3679 (2023)
  68. Evolution of kinase polypharmacology across HSP90 drug discovery. Antolin AA, Clarke PA, Collins I, Workman P, Al-Lazikani B. Cell Chem Biol 28 1433-1445.e3 (2021)
  69. Pyruvate Dehydrogenase Kinase Inhibition by Dichloroacetate in Melanoma Cells Unveils Metabolic Vulnerabilities. Tiersma JF, Evers B, Bakker BM, Jalving M, de Jong S. Int J Mol Sci 23 3745 (2022)
  70. Regarding the torsional flexibility of the dihydrolipoic acid's pharmacophore: 1,3-propanedithiol. Vigorito A, Calabrese C, Paltanin E, Melandri S, Maris A. Phys Chem Chem Phys 19 496-502 (2016)
  71. Two dichloric compounds inhibit in vivo U87 xenograft tumor growth. Ovcharenko D, Chitjian C, Kashkin A, Fanelli A, Ovcharenko V. Cancer Biol Ther 20 1281-1289 (2019)
  72. Applying a Gene Reversal Rate Computational Methodology to Identify Drugs for a Rare Cancer: Inflammatory Breast Cancer. Ji X, Williams KP, Zheng W. Cancer Inform 22 11769351231202588 (2023)
  73. Hypoxia-induced reprogramming of glucose-dependent metabolic pathways maintains the stemness of human bone marrow-derived endothelial progenitor cells. Lin D, Yan K, Chen L, Chen J, Xu J, Xie Z, Li Z, Lin S, Li J, Chen Z. Sci Rep 13 8776 (2023)
  74. Inhibition of pyruvate dehydrogenase kinase improves carbohydrate utilization in Nile tilapia by regulating PDK2/4-PDHE1α axis and insulin sensitivity. Luo Y, Zhou W, Li R, Limbu SM, Qiao F, Chen L, Zhang M, Du ZY. Anim Nutr 11 25-37 (2022)
  75. Multi-omic insight into the molecular networks of mitochondrial dysfunction in the pathogenesis of inflammatory bowel disease. Chen J, Ruan X, Sun Y, Lu S, Hu S, Yuan S, Li X. EBioMedicine 99 104934 (2024)
  76. Stimulating myocardial pyruvate dehydrogenase activity fails to alleviate cardiac abnormalities in a mouse model of human Barth syndrome. Greenwell AA, Tabatabaei Dakhili SA, Gopal K, Saed CT, Chan JSF, Kazungu Mugabo N, Zhabyeyev P, Eaton F, Kruger J, Oudit GY, Ussher JR. Front Cardiovasc Med 9 997352 (2022)
  77. Structural Manipulations of Marine Natural Products Inspire a New Library of 3-Amino-1,2,4-Triazine PDK Inhibitors Endowed with Antitumor Activity in Pancreatic Ductal Adenocarcinoma. Carbone D, De Franco M, Pecoraro C, Bassani D, Pavan M, Cascioferro S, Parrino B, Cirrincione G, Dall'Acqua S, Sut S, Moro S, Gandin V, Diana P. Mar Drugs 21 288 (2023)
  78. Structural studies identify angiotensin II receptor blocker-like compounds as branched-chain ketoacid dehydrogenase kinase inhibitors. Liu S, Kormos BL, Knafels JD, Sahasrabudhe PV, Rosado A, Sommese RF, Reyes AR, Ward J, Roth Flach RJ, Wang X, Buzon LM, Reese MR, Bhattacharya SK, Omoto K, Filipski KJ. J Biol Chem 299 102959 (2023)
  79. Synthesis and biological evaluation of (R)-3,3,3-trifluoro-2-hydroxy-2-methylpropionamides as pyruvate dehydrogenase kinase 1 (PDK1) inhibitors to reduce the growth of cancer cells. Zhang SL, Zhang W, Yang Z, Hu X, Tam KY. Eur J Pharm Sci 110 87-92 (2017)
  80. Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants. Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WL, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Hum Mol Genet 33 12-32 (2023)