2q5p Citations

Partial agonists activate PPARgamma using a helix 12 independent mechanism.

Structure 15 1258-71 (2007)
Related entries: 2q59, 2q5s, 2q61, 2q6r, 2q6s

Cited: 187 times
EuropePMC logo PMID: 17937915

Abstract

Binding to helix 12 of the ligand-binding domain of PPARgamma is required for full agonist activity. Previously, the degree of stabilization of the activation function 2 (AF-2) surface was thought to correlate with the degree of agonism and transactivation. To examine this mechanism, we probed structural dynamics of PPARgamma with agonists that induced graded transcriptional responses. Here we present crystal structures and amide H/D exchange (HDX) kinetics for six of these complexes. Amide HDX revealed each ligand induced unique changes to the dynamics of the ligand-binding domain (LBD). Full agonists stabilized helix 12, whereas intermediate and partial agonists did not at all, and rather differentially stabilized other regions of the binding pocket. The gradient of PPARgamma transactivation cannot be accounted for solely through changes to the dynamics of AF-2. Thus, our understanding of allosteric signaling must be extended beyond the idea of a dynamic helix 12 acting as a molecular switch.

Reviews - 2q5p mentioned but not cited (2)

  1. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions. Chalmers MJ, Busby SA, Pascal BD, West GM, Griffin PR. Expert Rev Proteomics 8 43-59 (2011)
  2. Review of the Structural and Dynamic Mechanisms of PPARγ Partial Agonism. Kroker AJ, Bruning JB. PPAR Res 2015 816856 (2015)

Articles - 2q5p mentioned but not cited (12)

  1. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Choi JH, Banks AS, Estall JL, Kajimura S, Boström P, Laznik D, Ruas JL, Chalmers MJ, Kamenecka TM, Blüher M, Griffin PR, Spiegelman BM. Nature 466 451-456 (2010)
  2. Ligand and receptor dynamics contribute to the mechanism of graded PPARγ agonism. Hughes TS, Chalmers MJ, Novick S, Kuruvilla DS, Chang MR, Kamenecka TM, Rance M, Johnson BA, Burris TP, Griffin PR, Kojetin DJ. Structure 20 139-150 (2012)
  3. Methods for the Analysis of High Precision Differential Hydrogen Deuterium Exchange Data. Chalmers MJ, Pascal BD, Willis S, Zhang J, Iturria SJ, Dodge JA, Griffin PR. Int J Mass Spectrom 302 59-68 (2011)
  4. Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode. Capelli D, Cerchia C, Montanari R, Loiodice F, Tortorella P, Laghezza A, Cervoni L, Pochetti G, Lavecchia A. Sci Rep 6 34792 (2016)
  5. Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. Guasch L, Sala E, Castell-Auví A, Cedó L, Liedl KR, Wolber G, Muehlbacher M, Mulero M, Pinent M, Ardévol A, Valls C, Pujadas G, Garcia-Vallvé S. PLoS One 7 e50816 (2012)
  6. A combined ligand- and structure-based virtual screening protocol identifies submicromolar PPARγ partial agonists. Vidović D, Busby SA, Griffin PR, Schürer SC. ChemMedChem 6 94-103 (2011)
  7. SR2067 Reveals a Unique Kinetic and Structural Signature for PPARγ Partial Agonism. van Marrewijk LM, Polyak SW, Hijnen M, Kuruvilla D, Chang MR, Shin Y, Kamenecka TM, Griffin PR, Bruning JB. ACS Chem Biol 11 273-283 (2016)
  8. Virtual Screening as a Technique for PPAR Modulator Discovery. Lewis SN, Bassaganya-Riera J, Bevan DR. PPAR Res 2010 861238 (2010)
  9. Chemical Crosslinking Mass Spectrometry Reveals the Conformational Landscape of the Activation Helix of PPARγ; a Model for Ligand-Dependent Antagonism. Zheng J, Corzo C, Chang MR, Shang J, Lam VQ, Brust R, Blayo AL, Bruning JB, Kamenecka TM, Kojetin DJ, Griffin PR. Structure 26 1431-1439.e6 (2018)
  10. Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR. J Comput Aided Mol Des 29 421-439 (2015)
  11. Biological Screening and Crystallographic Studies of Hydroxy γ-Lactone Derivatives to Investigate PPARγ Phosphorylation Inhibition. Capelli D, Cazzaniga G, Mori M, Laghezza A, Loiodice F, Quaglia M, Negro E, Meneghetti F, Villa S, Montanari R. Biomolecules 13 694 (2023)
  12. Phloretin enhances remyelination by stimulating oligodendrocyte precursor cell differentiation. Dierckx T, Vanherle S, Haidar M, Grajchen E, Mingneau F, Gervois P, Wolfs E, Bylemans D, Voet A, Nguyen T, Hamad I, Kleinewietfeld M, Bogie JFJ, Hendriks JJA. Proc Natl Acad Sci U S A 119 e2120393119 (2022)


Reviews citing this publication (26)

  1. MITF in melanoma: mechanisms behind its expression and activity. Hartman ML, Czyz M. Cell Mol Life Sci 72 1249-1260 (2015)
  2. Understanding nuclear receptor form and function using structural biology. Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. J Mol Endocrinol 51 T1-T21 (2013)
  3. The therapeutic potential of nuclear receptor modulators for treatment of metabolic disorders: PPARγ, RORs, and Rev-erbs. Marciano DP, Chang MR, Corzo CA, Goswami D, Lam VQ, Pascal BD, Griffin PR. Cell Metab 19 193-208 (2014)
  4. Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Simons SS, Edwards DP, Kumar R. Mol Endocrinol 28 173-182 (2014)
  5. Small molecule modulation of nuclear receptor conformational dynamics: implications for function and drug discovery. Kojetin DJ, Burris TP. Mol Pharmacol 83 1-8 (2013)
  6. HDX-MS guided drug discovery: small molecules and biopharmaceuticals. Marciano DP, Dharmarajan V, Griffin PR. Curr Opin Struct Biol 28 105-111 (2014)
  7. Peroxisome proliferator-activated receptor-γ cross-regulation of signaling events implicated in liver fibrogenesis. Zhang F, Lu Y, Zheng S. Cell Signal 24 596-605 (2012)
  8. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma. Sauer S. Trends Pharmacol Sci 36 688-704 (2015)
  9. The Endocannabinoid System and PPARs: Focus on Their Signalling Crosstalk, Action and Transcriptional Regulation. Iannotti FA, Vitale RM. Cells 10 586 (2021)
  10. Discovery and development of selective PPAR gamma modulators as safe and effective antidiabetic agents. Doshi LS, Brahma MK, Bahirat UA, Dixit AV, Nemmani KV. Expert Opin Investig Drugs 19 489-512 (2010)
  11. Signaling Mechanisms of Selective PPARγ Modulators in Alzheimer's Disease. Govindarajulu M, Pinky PD, Bloemer J, Ghanei N, Suppiramaniam V, Amin R. PPAR Res 2018 2010675 (2018)
  12. Selective class IIa HDAC inhibitors: myth or reality. Di Giorgio E, Gagliostro E, Brancolini C. Cell Mol Life Sci 72 73-86 (2015)
  13. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. Prog Lipid Res 61 149-162 (2016)
  14. Lysophospholipid interactions with protein targets. Parrill AL. Biochim Biophys Acta 1781 540-546 (2008)
  15. Amorfrutins: A promising class of natural products that are beneficial to health. Sauer S. Chembiochem 15 1231-1238 (2014)
  16. Nitro-fatty acids as novel electrophilic ligands for peroxisome proliferator-activated receptors. Ferreira AM, Minarrieta L, Lamas Bervejillo M, Rubbo H. Free Radic Biol Med 53 1654-1663 (2012)
  17. Dietary modification of metabolic pathways via nuclear hormone receptors. Caiozzi G, Wong BS, Ricketts ML. Cell Biochem Funct 30 531-551 (2012)
  18. Development of an In Vitro Screening Platform for the Identification of Partial PPARγ Agonists as a Source for Antidiabetic Lead Compounds. Porskjær Christensen L, Bahij El-Houri R. Molecules 23 E2431 (2018)
  19. The therapeutic potential of inhibiting PPARγ phosphorylation to treat type 2 diabetes. Frkic RL, Richter K, Bruning JB. J Biol Chem 297 101030 (2021)
  20. Structural Biology-Based Exploration of Subtype-Selective Agonists for Peroxisome Proliferator-Activated Receptors. Miyachi H. Int J Mol Sci 22 9223 (2021)
  21. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. Kaupang Å, Hansen TV. PPAR Res 2020 9657380 (2020)
  22. Inspired by vitamin A for anti-ageing: Searching for plant-derived functional retinoid analogues. Sadgrove NJ, Oblong JE, Simmonds MSJ. Skin Health Dis 1 e36 (2021)
  23. The Structure Basis of Phytochemicals as Metabolic Signals for Combating Obesity. Li X, Zheng L, Zhang B, Deng ZY, Luo T. Front Nutr 9 913883 (2022)
  24. International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily-Update 2023. Burris TP, de Vera IMS, Cote I, Flaveny CA, Wanninayake US, Chatterjee A, Walker JK, Steinauer N, Zhang J, Coons LA, Korach KS, Cain DW, Hollenberg AN, Webb P, Forrest D, Jetten AM, Edwards DP, Grimm SL, Hartig S, Lange CA, Richer JK, Sartorius CA, Tetel M, Billon C, Elgendy B, Hegazy L, Griffett K, Peinetti N, Burnstein KL, Hughes TS, Sitaula S, Stayrook KR, Culver A, Murray MH, Finck BN, Cidlowski JA. Pharmacol Rev 75 1233-1318 (2023)
  25. Marine Natural and Nature-Inspired Compounds Targeting Peroxisome Proliferator Activated Receptors (PPARs). D'Aniello E, Amodeo P, Vitale RM. Mar Drugs 21 89 (2023)
  26. PPAR-γ Partial Agonists in Disease-Fate Decision with Special Reference to Cancer. Ballav S, Biswas B, Sahu VK, Ranjan A, Basu S. Cells 11 3215 (2022)

Articles citing this publication (147)

  1. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Ohno H, Shinoda K, Spiegelman BM, Kajimura S. Cell Metab 15 395-404 (2012)
  2. Structure of the intact PPAR-gamma-RXR- nuclear receptor complex on DNA. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F. Nature 456 350-356 (2008)
  3. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Choi JH, Banks AS, Kamenecka TM, Busby SA, Chalmers MJ, Kumar N, Kuruvilla DS, Shin Y, He Y, Bruning JB, Marciano DP, Cameron MD, Laznik D, Jurczak MJ, Schürer SC, Vidović D, Shulman GI, Spiegelman BM, Griffin PR. Nature 477 477-481 (2011)
  4. Structural basis for the activation of PPARgamma by oxidized fatty acids. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint BL, Nagy L, Yamamoto K, Schwabe JW. Nat Struct Mol Biol 15 924-931 (2008)
  5. Peroxisome proliferator-activated receptor γ is a target for halogenated analogs of bisphenol A. Riu A, Grimaldi M, le Maire A, Bey G, Phillips K, Boulahtouf A, Perdu E, Zalko D, Bourguet W, Balaguer P. Environ Health Perspect 119 1227-1232 (2011)
  6. Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C, Garcia-Ordonez RD, Stayrook KR, Zhang X, Novick S, Chalmers MJ, Griffin PR, Burris TP. J Biol Chem 285 5013-5025 (2010)
  7. DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Wang Y, Busby SA, Pascal BD, Garcia-Ordonez RD, Bruning JB, Istrate MA, Kojetin DJ, Dodge JA, Burris TP, Griffin PR. Nat Struct Mol Biol 18 556-563 (2011)
  8. Amorfrutins are potent antidiabetic dietary natural products. Weidner C, de Groot JC, Prasad A, Freiwald A, Quedenau C, Kliem M, Witzke A, Kodelja V, Han CT, Giegold S, Baumann M, Klebl B, Siems K, Müller-Kuhrt L, Schürmann A, Schüler R, Pfeiffer AF, Schroeder FC, Büssow K, Sauer S. Proc Natl Acad Sci U S A 109 7257-7262 (2012)
  9. Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. Liberato MV, Nascimento AS, Ayers SD, Lin JZ, Cvoro A, Silveira RL, Martínez L, Souza PC, Saidemberg D, Deng T, Amato AA, Togashi M, Hsueh WA, Phillips K, Palma MS, Neves FA, Skaf MS, Webb P, Polikarpov I. PLoS One 7 e36297 (2012)
  10. NFkappaB selectivity of estrogen receptor ligands revealed by comparative crystallographic analyses. Nettles KW, Bruning JB, Gil G, Nowak J, Sharma SK, Hahm JB, Kulp K, Hochberg RB, Zhou H, Katzenellenbogen JA, Katzenellenbogen BS, Kim Y, Joachmiak A, Greene GL. Nat Chem Biol 4 241-247 (2008)
  11. An alternate binding site for PPARγ ligands. Hughes TS, Giri PK, de Vera IM, Marciano DP, Kuruvilla DS, Shin Y, Blayo AL, Kamenecka TM, Burris TP, Griffin PR, Kojetin DJ. Nat Commun 5 3571 (2014)
  12. Ligand binding and activation of PPARγ by Firemaster® 550: effects on adipogenesis and osteogenesis in vitro. Pillai HK, Fang M, Beglov D, Kozakov D, Vajda S, Stapleton HM, Webster TF, Schlezinger JJ. Environ Health Perspect 122 1225-1232 (2014)
  13. Coupling of receptor conformation and ligand orientation determine graded activity. Bruning JB, Parent AA, Gil G, Zhao M, Nowak J, Pace MC, Smith CL, Afonine PV, Adams PD, Katzenellenbogen JA, Nettles KW. Nat Chem Biol 6 837-843 (2010)
  14. Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids. Waku T, Shiraki T, Oyama T, Fujimoto Y, Maebara K, Kamiya N, Jingami H, Morikawa K. J Mol Biol 385 188-199 (2009)
  15. The nuclear receptor PPARγ individually responds to serotonin- and fatty acid-metabolites. Waku T, Shiraki T, Oyama T, Maebara K, Nakamori R, Morikawa K. EMBO J 29 3395-3407 (2010)
  16. Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Kojetin DJ, Matta-Camacho E, Hughes TS, Srinivasan S, Nwachukwu JC, Cavett V, Nowak J, Chalmers MJ, Marciano DP, Kamenecka TM, Shulman AI, Rance M, Griffin PR, Bruning JB, Nettles KW. Nat Commun 6 8013 (2015)
  17. Pharmacological repression of PPARγ promotes osteogenesis. Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, Corzo CA, Khan TM, Novick SJ, Park H, Kojetin DJ, Phinney DG, Bruning JB, Kamenecka TM, Griffin PR. Nat Commun 6 7443 (2015)
  18. Hydrogen/deuterium exchange reveals distinct agonist/partial agonist receptor dynamics within vitamin D receptor/retinoid X receptor heterodimer. Zhang J, Chalmers MJ, Stayrook KR, Burris LL, Garcia-Ordonez RD, Pascal BD, Burris TP, Dodge JA, Griffin PR. Structure 18 1332-1341 (2010)
  19. GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain. Amato AA, Rajagopalan S, Lin JZ, Carvalho BM, Figueira AC, Lu J, Ayers SD, Mottin M, Silveira RL, Souza PC, Mourão RH, Saad MJ, Togashi M, Simeoni LA, Abdalla DS, Skaf MS, Polikparpov I, Lima MC, Galdino SL, Brennan RG, Baxter JD, Pitta IR, Webb P, Phillips KJ, Neves FA. J Biol Chem 287 28169-28179 (2012)
  20. Structure of SF-1 bound by different phospholipids: evidence for regulatory ligands. Sablin EP, Blind RD, Krylova IN, Ingraham JG, Cai F, Williams JD, Fletterick RJ, Ingraham HA. Mol Endocrinol 23 25-34 (2009)
  21. Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Artis DR, Lin JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J, Plotnikov AN, Marimuthu A, Nguyen H, Will S, Signaevsky M, Kral J, Cantwell J, Settachatgull C, Yan DS, Fong D, Oh A, Shi S, Womack P, Powell B, Habets G, West BL, Zhang KY, Milburn MV, Vlasuk GP, Hirth KP, Nolop K, Bollag G, Ibrahim PN, Tobin JF. Proc Natl Acad Sci U S A 106 262-267 (2009)
  22. A novel non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity. Choi SS, Kim ES, Koh M, Lee SJ, Lim D, Yang YR, Jang HJ, Seo KA, Min SH, Lee IH, Park SB, Suh PG, Choi JH. J Biol Chem 289 26618-26629 (2014)
  23. Automated hydrogen/deuterium exchange electron transfer dissociation high resolution mass spectrometry measured at single-amide resolution. Landgraf RR, Chalmers MJ, Griffin PR. J Am Soc Mass Spectrom 23 301-309 (2012)
  24. Bisphenol S- and bisphenol A-induced adipogenesis of murine preadipocytes occurs through direct peroxisome proliferator-activated receptor gamma activation. Ahmed S, Atlas E. Int J Obes (Lond) 40 1566-1573 (2016)
  25. MBX-102/JNJ39659100, a novel peroxisome proliferator-activated receptor-ligand with weak transactivation activity retains antidiabetic properties in the absence of weight gain and edema. Gregoire FM, Zhang F, Clarke HJ, Gustafson TA, Sears DD, Favelyukis S, Lenhard J, Rentzeperis D, Clemens LE, Mu Y, Lavan BE. Mol Endocrinol 23 975-988 (2009)
  26. Mode of peroxisome proliferator-activated receptor γ activation by luteolin. Puhl AC, Bernardes A, Silveira RL, Yuan J, Campos JL, Saidemberg DM, Palma MS, Cvoro A, Ayers SD, Webb P, Reinach PS, Skaf MS, Polikarpov I. Mol Pharmacol 81 788-799 (2012)
  27. Targeting PPARγ Signaling Cascade for the Prevention and Treatment of Prostate Cancer. Sikka S, Chen L, Sethi G, Kumar AP. PPAR Res 2012 968040 (2012)
  28. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. Bernardes A, Souza PC, Muniz JR, Ricci CG, Ayers SD, Parekh NM, Godoy AS, Trivella DB, Reinach P, Webb P, Skaf MS, Polikarpov I. J Mol Biol 425 2878-2893 (2013)
  29. Time window expansion for HDX analysis of an intrinsically disordered protein. Goswami D, Devarakonda S, Chalmers MJ, Pascal BD, Spiegelman BM, Griffin PR. J Am Soc Mass Spectrom 24 1584-1592 (2013)
  30. Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S. Sci Rep 5 9530 (2015)
  31. Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs. Puhl AC, Milton FA, Cvoro A, Sieglaff DH, Campos JC, Bernardes A, Filgueira CS, Lindemann JL, Deng T, Neves FA, Polikarpov I, Webb P. Nucl Recept Signal 13 e004 (2015)
  32. Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ. Zhang L, Ren XM, Wan B, Guo LH. Toxicol Appl Pharmacol 279 275-283 (2014)
  33. Unique ligand binding patterns between estrogen receptor alpha and beta revealed by hydrogen-deuterium exchange. Dai SY, Burris TP, Dodge JA, Montrose-Rafizadeh C, Wang Y, Pascal BD, Chalmers MJ, Griffin PR. Biochemistry 48 9668-9676 (2009)
  34. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, Kojetin DJ. Elife 7 e43320 (2018)
  35. Defining a conformational ensemble that directs activation of PPARγ. Chrisman IM, Nemetchek MD, de Vera IMS, Shang J, Heidari Z, Long Y, Reyes-Caballero H, Galindo-Murillo R, Cheatham TE, Blayo AL, Shin Y, Fuhrmann J, Griffin PR, Kamenecka TM, Kojetin DJ, Hughes TS. Nat Commun 9 1794 (2018)
  36. Nutraceuticals as Ligands of PPARγ. Penumetcha M, Santanam N. PPAR Res 2012 858352 (2012)
  37. Structural basis for telmisartan-mediated partial activation of PPAR gamma. Amano Y, Yamaguchi T, Ohno K, Niimi T, Orita M, Sakashita H, Takeuchi M. Hypertens Res 35 715-719 (2012)
  38. Ligand unbinding pathways from the vitamin D receptor studied by molecular dynamics simulations. Peräkylä M. Eur Biophys J 38 185-198 (2009)
  39. Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex. Ricci CG, Silveira RL, Rivalta I, Batista VS, Skaf MS. Sci Rep 6 19940 (2016)
  40. Defining a Canonical Ligand-Binding Pocket in the Orphan Nuclear Receptor Nurr1. de Vera IMS, Munoz-Tello P, Zheng J, Dharmarajan V, Marciano DP, Matta-Camacho E, Giri PK, Shang J, Hughes TS, Rance M, Griffin PR, Kojetin DJ. Structure 27 66-77.e5 (2019)
  41. Structural Basis for the Enhanced Anti-Diabetic Efficacy of Lobeglitazone on PPARγ. Jang JY, Bae H, Lee YJ, Choi YI, Kim HJ, Park SB, Suh SW, Kim SW, Han BW. Sci Rep 8 31 (2018)
  42. Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds. Harada S, Hiromori Y, Nakamura S, Kawahara K, Fukakusa S, Maruno T, Noda M, Uchiyama S, Fukui K, Nishikawa J, Nagase H, Kobayashi Y, Yoshida T, Ohkubo T, Nakanishi T. Sci Rep 5 8520 (2015)
  43. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures. Oyama T, Toyota K, Waku T, Hirakawa Y, Nagasawa N, Kasuga JI, Hashimoto Y, Miyachi H, Morikawa K. Acta Crystallogr D Biol Crystallogr 65 786-795 (2009)
  44. PPARα Ligand-Binding Domain Structures with Endogenous Fatty Acids and Fibrates. Kamata S, Oyama T, Saito K, Honda A, Yamamoto Y, Suda K, Ishikawa R, Itoh T, Watanabe Y, Shibata T, Uchida K, Suematsu M, Ishii I. iScience 23 101727 (2020)
  45. Activation of AMP-activated protein kinase revealed by hydrogen/deuterium exchange mass spectrometry. Landgraf RR, Goswami D, Rajamohan F, Harris MS, Calabrese MF, Hoth LR, Magyar R, Pascal BD, Chalmers MJ, Busby SA, Kurumbail RG, Griffin PR. Structure 21 1942-1953 (2013)
  46. GQ-16, a TZD-Derived Partial PPARγ Agonist, Induces the Expression of Thermogenesis-Related Genes in Brown Fat and Visceral White Fat and Decreases Visceral Adiposity in Obese and Hyperglycemic Mice. Coelho MS, de Lima CL, Royer C, Silva JB, Oliveira FC, Christ CG, Pereira SA, Bao SN, Lima MC, Pitta MG, Pitta IR, Neves FA, Amato AA. PLoS One 11 e0154310 (2016)
  47. Selective targeting of PPARγ by the natural product chelerythrine with a unique binding mode and improved antidiabetic potency. Zheng W, Qiu L, Wang R, Feng X, Han Y, Zhu Y, Chen D, Liu Y, Jin L, Li Y. Sci Rep 5 12222 (2015)
  48. H/D exchange centroid monitoring is insufficient to show differences in the behavior of protein states. Zhang J, Ramachandran P, Kumar R, Gross ML. J Am Soc Mass Spectrom 24 450-453 (2013)
  49. News Insights into PPARgamma from structures with endogenous and covalently bound ligands. Nettles KW. Nat Struct Mol Biol 15 893-895 (2008)
  50. Extending SAR of bile acids as FXR ligands: discovery of 23-N-(carbocinnamyloxy)-3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-amine. Gioiello A, Macchiarulo A, Carotti A, Filipponi P, Costantino G, Rizzo G, Adorini L, Pellicciari R. Bioorg Med Chem 19 2650-2658 (2011)
  51. Helix 11 dynamics is critical for constitutive androstane receptor activity. Wright E, Busby SA, Wisecarver S, Vincent J, Griffin PR, Fernandez EJ. Structure 19 37-44 (2011)
  52. Probing the intermolecular interactions of PPARγ-LBD with polyunsaturated fatty acids and their anti-inflammatory metabolites to infer most potential binding moieties. Muralikumar S, Vetrivel U, Narayanasamy A, N Das U. Lipids Health Dis 16 17 (2017)
  53. Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Lee MA, Tan L, Yang H, Im YG, Im YJ. Sci Rep 7 16837 (2017)
  54. The novel PPAR α/γ dual agonist MHY 966 modulates UVB-induced skin inflammation by inhibiting NF-κB activity. Park MH, Park JY, Lee HJ, Kim DH, Chung KW, Park D, Jeong HO, Kim HR, Park CH, Kim SR, Chun P, Byun Y, Moon HR, Chung HY. PLoS One 8 e76820 (2013)
  55. Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. Brust R, Lin H, Fuhrmann J, Asteian A, Kamenecka TM, Kojetin DJ. ACS Chem Biol 12 969-978 (2017)
  56. Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. Guasch L, Sala E, Valls C, Blay M, Mulero M, Arola L, Pujadas G, Garcia-Vallvé S. J Comput Aided Mol Des 25 717-728 (2011)
  57. A molecular switch regulating transcriptional repression and activation of PPARγ. Shang J, Mosure SA, Zheng J, Brust R, Bass J, Nichols A, Solt LA, Griffin PR, Kojetin DJ. Nat Commun 11 956 (2020)
  58. A structural mechanism for directing corepressor-selective inverse agonism of PPARγ. Brust R, Shang J, Fuhrmann J, Mosure SA, Bass J, Cano A, Heidari Z, Chrisman IM, Nemetchek MD, Blayo AL, Griffin PR, Kamenecka TM, Hughes TS, Kojetin DJ. Nat Commun 9 4687 (2018)
  59. Mechanistic elucidation guided by covalent inhibitors for the development of anti-diabetic PPARγ ligands. Bae H, Jang JY, Choi SS, Lee JJ, Kim H, Jo A, Lee KJ, Choi JH, Suh SW, Park SB. Chem Sci 7 5523-5529 (2016)
  60. PPARγ in Complex with an Antagonist and Inverse Agonist: a Tumble and Trap Mechanism of the Activation Helix. Frkic RL, Marshall AC, Blayo AL, Pukala TL, Kamenecka TM, Griffin PR, Bruning JB. iScience 5 69-79 (2018)
  61. Structural investigation of ginsenoside Rf with PPARγ major transcriptional factor of adipogenesis and its impact on adipocyte. Siraj FM, Natarajan S, Huq MA, Kim YJ, Yang DC. J Ginseng Res 39 141-147 (2015)
  62. 15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-γ) to promote Cryptococcus neoformans growth during infection. Evans RJ, Pline K, Loynes CA, Needs S, Aldrovandi M, Tiefenbach J, Bielska E, Rubino RE, Nicol CJ, May RC, Krause HM, O'Donnell VB, Renshaw SA, Johnston SA. PLoS Pathog 15 e1007597 (2019)
  63. Crosstalk between circulating peroxisome proliferator-activated receptor gamma, adipokines and metabolic syndrome in obese subjects. Mirzaei K, Hossein-Nezhad A, Keshavarz SA, Koohdani F, Saboor-Yaraghi AA, Hosseini S, Eshraghian MR, Djalali M. Diabetol Metab Syndr 5 79 (2013)
  64. Identification of a Novel Liver X Receptor Agonist that Regulates the Expression of Key Cholesterol Homeostasis Genes with Distinct Pharmacological Characteristics. Li N, Wang X, Xu Y, Lin Y, Zhu N, Liu P, Lu D, Si S. Mol Pharmacol 91 264-276 (2017)
  65. In Vitro and In Vivo Characterizations of Chiglitazar, a Newly Identified PPAR Pan-Agonist. He BK, Ning ZQ, Li ZB, Shan S, Pan DS, Ko BC, Li PP, Shen ZF, Dou GF, Zhang BL, Lu XP, Gao Y. PPAR Res 2012 546548 (2012)
  66. Structure-based virtual screening and discovery of New PPARδ/γ dual agonist and PPARδ and γ agonists. Maltarollo VG, Togashi M, Nascimento AS, Honorio KM. PLoS One 10 e0118790 (2015)
  67. Different structures of the two peroxisome proliferator-activated receptor gamma (PPARγ) ligand-binding domains in homodimeric complex with partial agonist, but not full agonist. Ohashi M, Oyama T, Miyachi H. Bioorg Med Chem Lett 25 2639-2644 (2015)
  68. Dynamic correlation networks in human peroxisome proliferator-activated receptor-γ nuclear receptor protein. Fidelak J, Ferrer S, Oberlin M, Moras D, Dejaegere A, Stote RH. Eur Biophys J 39 1503-1512 (2010)
  69. HDX reveals the conformational dynamics of DNA sequence specific VDR co-activator interactions. Zheng J, Chang MR, Stites RE, Wang Y, Bruning JB, Pascal BD, Novick SJ, Garcia-Ordonez RD, Stayrook KR, Chalmers MJ, Dodge JA, Griffin PR. Nat Commun 8 923 (2017)
  70. Molecular mechanism of allosteric communication in the human PPARalpha-RXRalpha heterodimer. Venäläinen T, Molnár F, Oostenbrink C, Carlberg C, Peräkylä M. Proteins 78 873-887 (2010)
  71. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes. El-Houri RB, Kotowska D, Christensen KB, Bhattacharya S, Oksbjerg N, Wolber G, Kristiansen K, Christensen LP. Food Funct 6 2135-2144 (2015)
  72. Structure-based identification of novel PPAR gamma ligands. da Silva FM, dos Santos JC, Campos JL, Mafud AC, Polikarpov I, Figueira AC, Nascimento AS. Bioorg Med Chem Lett 23 5795-5802 (2013)
  73. Conformational modulation of the farnesoid X receptor by prenylflavonoids: Insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. Yang L, Broderick D, Campbell Y, Gombart AF, Stevens JF, Jiang Y, Hsu VL, Bisson WH, Maier CS. Biochim Biophys Acta 1864 1667-1677 (2016)
  74. Mass spectrometric analysis of protein-ligand interactions. Ishii K, Noda M, Uchiyama S. Biophys Physicobiol 13 87-95 (2016)
  75. Novel transcriptome profiling analyses demonstrate that selective peroxisome proliferator-activated receptor γ (PPARγ) modulators display attenuated and selective gene regulatory activity in comparison with PPARγ full agonists. Tan Y, Muise ES, Dai H, Raubertas R, Wong KK, Thompson GM, Wood HB, Meinke PT, Lum PY, Thompson JR, Berger JP. Mol Pharmacol 82 68-79 (2012)
  76. Definition of functionally and structurally distinct repressive states in the nuclear receptor PPARγ. Heidari Z, Chrisman IM, Nemetchek MD, Novick SJ, Blayo AL, Patton T, Mendes DE, Diaz P, Kamenecka TM, Griffin PR, Hughes TS. Nat Commun 10 5825 (2019)
  77. Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. Tsakovska I, Al Sharif M, Alov P, Diukendjieva A, Fioravanzo E, Cronin MT, Pajeva I. Int J Mol Sci 15 7651-7666 (2014)
  78. Novel Benzylidene Thiazolidinedione Derivatives as Partial PPARγ Agonists and their Antidiabetic Effects on Type 2 Diabetes. Yasmin S, Capone F, Laghezza A, Piaz FD, Loiodice F, Vijayan V, Devadasan V, Mondal SK, Atlı Ö, Baysal M, Pattnaik AK, Jayaprakash V, Lavecchia A. Sci Rep 7 14453 (2017)
  79. Structure-based pharmacophore screening for natural-product-derived PPARgamma agonists. Tanrikulu Y, Rau O, Schwarz O, Proschak E, Siems K, Müller-Kuhrt L, Schubert-Zsilavecz M, Schneider G. Chembiochem 10 75-78 (2009)
  80. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Fratev F. Phys Chem Chem Phys 17 13403-13420 (2015)
  81. Analyzing Resistance to Design Selective Chemical Inhibitors for AAA Proteins. Pisa R, Cupido T, Steinman JB, Jones NH, Kapoor TM. Cell Chem Biol 26 1263-1273.e5 (2019)
  82. Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ. dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. J Struct Biol 191 332-340 (2015)
  83. HDX reveals unique fragment ligands for the vitamin D receptor. Carson MW, Zhang J, Chalmers MJ, Bocchinfuso WP, Holifield KD, Masquelin T, Stites RE, Stayrook KR, Griffin PR, Dodge JA. Bioorg Med Chem Lett 24 3459-3463 (2014)
  84. Pharmacology and in vitro profiling of a novel peroxisome proliferator-activated receptor γ ligand, Cerco-A. Wakabayashi K, Hayashi S, Matsui Y, Matsumoto T, Furukawa A, Kuroha M, Tanaka N, Inaba T, Kanda S, Tanaka J, Okuyama R, Wakimoto S, Ogata T, Araki K, Ohsumi J. Biol Pharm Bull 34 1094-1104 (2011)
  85. Structural development studies of PPARs ligands based on tyrosine scaffold. De Filippis B, Linciano P, Ammazzalorso A, Di Giovanni C, Fantacuzzi M, Giampietro L, Laghezza A, Maccallini C, Tortorella P, Lavecchia A, Loiodice F, Amoroso R. Eur J Med Chem 89 817-825 (2015)
  86. miR-30a targets gene networks that promote browning of human and mouse adipocytes. Saha PK, Hamilton MP, Rajapakshe K, Putluri V, Felix JB, Masschelin P, Cox AR, Bajaj M, Putluri N, Coarfa C, Hartig SM. Am J Physiol Endocrinol Metab 319 E667-E677 (2020)
  87. Chiglitazar Preferentially Regulates Gene Expression via Configuration-Restricted Binding and Phosphorylation Inhibition of PPARγ. Pan DS, Wang W, Liu NS, Yang QJ, Zhang K, Zhu JZ, Shan S, Li ZB, Ning ZQ, Huang L, Lu XP. PPAR Res 2017 4313561 (2017)
  88. Couple dynamics: PPARγ and its ligand partners. Yu S, Xu HE. Structure 20 2-4 (2012)
  89. New diphenylmethane derivatives as peroxisome proliferator-activated receptor alpha/gamma dual agonists endowed with anti-proliferative effects and mitochondrial activity. Piemontese L, Cerchia C, Laghezza A, Ziccardi P, Sblano S, Tortorella P, Iacobazzi V, Infantino V, Convertini P, Dal Piaz F, Lupo A, Colantuoni V, Lavecchia A, Loiodice F. Eur J Med Chem 127 379-397 (2017)
  90. Phosphorylation of PPARγ Affects the Collective Motions of the PPARγ-RXRα-DNA Complex. Lemkul JA, Lewis SN, Bassaganya-Riera J, Bevan DR. PLoS One 10 e0123984 (2015)
  91. Structural Basis of Altered Potency and Efficacy Displayed by a Major in Vivo Metabolite of the Antidiabetic PPARγ Drug Pioglitazone. Mosure SA, Shang J, Eberhardt J, Brust R, Zheng J, Griffin PR, Forli S, Kojetin DJ. J Med Chem 62 2008-2023 (2019)
  92. Structural analysis identifies an escape route from the adverse lipogenic effects of liver X receptor ligands. Belorusova AY, Evertsson E, Hovdal D, Sandmark J, Bratt E, Maxvall I, Schulman IG, Åkerblad P, Lindstedt EL. Commun Biol 2 431 (2019)
  93. Cyclin-Dependent Kinase 5 Inhibitor Butyrolactone I Elicits a Partial Agonist Activity of Peroxisome Proliferator-Activated Receptor γ. Ahn S, Jang DM, Park SC, An S, Shin J, Han BW, Noh M. Biomolecules 10 E275 (2020)
  94. Identification of a novel selective PPARγ ligand with a unique binding mode and improved therapeutic profile in vitro. Yi W, Shi J, Zhao G, Zhou XE, Suino-Powell K, Melcher K, Xu HE. Sci Rep 7 41487 (2017)
  95. Selective Tissue Distribution Mediates Tissue-Dependent PPARγ Activation and Insulin Sensitization by INT131, a Selective PPARγ Modulator. Xie X, Chen W, Zhang N, Yuan M, Xu C, Zheng Z, Li H, Wang L. Front Pharmacol 8 317 (2017)
  96. Structural and Dynamical Insight into PPARγ Antagonism: In Silico Study of the Ligand-Receptor Interactions of Non-Covalent Antagonists. Fratev F, Tsakovska I, Al Sharif M, Mihaylova E, Pajeva I. Int J Mol Sci 16 15405-15424 (2015)
  97. Structure-Activity Relationship of 2,4-Dichloro-N-(3,5-dichloro-4-(quinolin-3-yloxy)phenyl)benzenesulfonamide (INT131) Analogs for PPARγ-Targeted Antidiabetics. Frkic RL, He Y, Rodriguez BB, Chang MR, Kuruvilla D, Ciesla A, Abell AD, Kamenecka TM, Griffin PR, Bruning JB. J Med Chem 60 4584-4593 (2017)
  98. N-Arylsulfonyl Indolines as Retinoic Acid Receptor-Related Orphan Receptor γ (RORγ) Agonists. Doebelin C, Patouret R, Garcia-Ordonez RD, Chang MR, Dharmarajan V, Kuruvilla DS, Novick SJ, Lin L, Cameron MD, Griffin PR, Kamenecka TM. ChemMedChem 11 2607-2620 (2016)
  99. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes. Hartig SM, Bader DA, Abadie KV, Motamed M, Hamilton MP, Long W, York B, Mueller M, Wagner M, Trauner M, Chan L, Bajaj M, Moore DD, Mancini MA, McGuire SE. Mol Endocrinol 29 1320-1333 (2015)
  100. A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability. Vasaturo M, Fiengo L, De Tommasi N, Sabatino L, Ziccardi P, Colantuoni V, Bruno M, Cerchia C, Novellino E, Lupo A, Lavecchia A, Piaz FD. Sci Rep 7 41273 (2017)
  101. Bisphenol AF promotes inflammation in human white adipocytes. Chernis N, Masschelin P, Cox AR, Hartig SM. Am J Physiol Cell Physiol 318 C63-C72 (2020)
  102. Design and synthesis of novel Y-shaped barbituric acid derivatives as PPARγ activators. Dixit VA, Rathi PC, Bhagat S, Gohlke H, Petersen RK, Kristiansen K, Chakraborti AK, Bharatam PV. Eur J Med Chem 108 423-435 (2016)
  103. Heterodimer formation with retinoic acid receptor RXRα modulates coactivator recruitment by peroxisome proliferator-activated receptor PPARγ. Kilu W, Merk D, Steinhilber D, Proschak E, Heering J. J Biol Chem 297 100814 (2021)
  104. New Insights on the mechanism of PPAR-targeted drugs. Grether U, Klaus W, Kuhn B, Maerki HP, Mohr P, Wright MB. ChemMedChem 5 1973-1976 (2010)
  105. Structural Basis for the Regulation of PPARγ Activity by Imatinib. Jang JY, Kim HJ, Han BW. Molecules 24 E3562 (2019)
  106. Structural mechanism underlying ligand binding and activation of PPARγ. Shang J, Kojetin DJ. Structure 29 940-950.e4 (2021)
  107. Structure-activity relationships of rosiglitazone for peroxisome proliferator-activated receptor gamma transrepression. Toyota Y, Nomura S, Makishima M, Hashimoto Y, Ishikawa M. Bioorg Med Chem Lett 27 2776-2780 (2017)
  108. Coffee component hydroxyl hydroquinone (HHQ) as a putative ligand for PPAR gamma and implications in breast cancer. Shashni B, Sharma K, Singh R, Sakharkar KR, Dhillon SK, Nagasaki Y, Sakharkar MK. BMC Genomics 14 Suppl 5 S6 (2013)
  109. Importance of 5/6-aryl substitution on the pharmacological profile of 4'-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1'-biphenyl]-2-carboxylic acid derived PPARγ agonists. Obermoser V, Mauersberger R, Schuster D, Czifersky M, Lipova M, Siegl M, Kintscher U, Gust R. Eur J Med Chem 126 590-603 (2017)
  110. PPARγ non-covalent antagonists exhibit mutable binding modes with a similar free energy of binding: a case study. Fratev F. J Biomol Struct Dyn 35 476-485 (2017)
  111. The Area Between Exchange Curves as a Measure of Conformational Differences in Hydrogen-Deuterium Exchange Mass Spectrometry Studies. Mazur SJ, Weber DP. J Am Soc Mass Spectrom 28 978-981 (2017)
  112. Characterization of telmisartan-derived PPARγ agonists: importance of moiety shift from position 6 to 5 on potency, efficacy and cofactor recruitment. Herbst L, Goebel M, Bandholtz S, Gust R, Kintscher U. ChemMedChem 7 1935-1942 (2012)
  113. Design, Synthesis, and Biological Evaluation of Thiazolidine-2,4-dione Conjugates as PPAR-γ Agonists. Nazreen S, Alam MS, Hamid H, Shahar Yar M, Dhulap A, Alam P, Pasha MA, Bano S, Alam MM, Haider S, Kharbanda C, Ali Y, Pillai K. Arch Pharm (Weinheim) 348 421-432 (2015)
  114. PPARγ helix 12 exhibits an antagonist conformation. Fratev F. Phys Chem Chem Phys 18 9272-9280 (2016)
  115. Structural and Dynamic Elucidation of a Non-acid PPARγ Partial Agonist: SR1988. Frkic RL, Chua BS, Shin Y, Pascal BD, Novick SJ, Kamenecka TM, Griffin PR, Bruning JB. Nucl Receptor Res 5 101350 (2018)
  116. Structural requirement for PPARgamma binding revealed by a meta analysis of holo-crystal structures. Nascimento AS. Biochimie 92 499-506 (2010)
  117. Synthesis of a Coumarin-Based PPARγ Fluorescence Probe for Competitive Binding Assay. Yoshikawa C, Ishida H, Ohashi N, Itoh T. Int J Mol Sci 22 4034 (2021)
  118. Synthesis, In Vitro, In Vivo and In Silico Antidiabetic Bioassays of 4-Nitro(thio)phenoxyisobutyric Acids Acting as Unexpected PPARγ Modulators: An In Combo Study. Colin-Lozano B, Torres-Gomez H, Hidalgo-Figueroa S, Chávez-Silva F, Estrada-Soto S, Almanza-Pérez JC, Navarrete-Vazquez G. Pharmaceuticals (Basel) 15 102 (2022)
  119. A computational study to identify the key residues of peroxisome proliferator-activated receptor gamma in the interactions with its antagonists. Sharifi T, Ghayeb Y. J Biomol Struct Dyn 36 1822-1833 (2018)
  120. A structural mechanism of nuclear receptor biased agonism. Nemetchek MD, Chrisman IM, Rayl ML, Voss AH, Hughes TS. Proc Natl Acad Sci U S A 119 e2215333119 (2022)
  121. Design, synthesis, and evaluation of potent novel peroxisome proliferator-activated receptor γ indole partial agonists. Eeda V, Wu D, Lim HY, Wang W. Bioorg Med Chem Lett 29 126664 (2019)
  122. Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARγ. Jang DM, Jang JY, Kim HJ, Han BW. Cancers (Basel) 12 E3580 (2020)
  123. Sanggenol F exerts anti-diabetic effects via promoting adipocyte differentiation and modifying adipokines expression. Zhu JJ, Huang JS, Wang T, Ji J, Hou AJ, Wang HY. Endocrine 56 73-81 (2017)
  124. Editorial Selective PPARγ modulators for Type 2 diabetes treatment: how far have we come and what does the future hold? Lavecchia A, Cerchia C. Future Med Chem 10 703-705 (2018)
  125. Development of an ELISA for High-Throughput Screening of Inhibitors of Cdk5-Mediated PPARγ Phosphorylation. Prokoph N, Ormö M, O'Mahony G, Hogner A, McPheat J, Karlsson U, Holmberg Schiavone L, Liu J. Assay Drug Dev Technol 14 261-272 (2016)
  126. Discovery by Virtual Screening of an Inhibitor of CDK5-Mediated PPARγ Phosphorylation. O'Mahony G, Petersen J, Ek M, Rae R, Johansson C, Jianming L, Prokoph N, Bergström F, Bamberg K, Giordanetto F, Zarrouki B, Karlsson D, Hogner A. ACS Med Chem Lett 13 681-686 (2022)
  127. Dynamics of nuclear receptors. Hamuro Y. Structure 18 1225-1227 (2010)
  128. Identification and characterisation of a prototype for a new class of competitive PPARγ antagonists. Knape T, Flesch D, Kuchler L, Sha LK, Giegerich AK, Labocha S, Ferreirós N, Schmid T, Wurglics M, Schubert-Zsilavecz M, Proschak E, Brüne B, Parnham MJ, von Knethen A. Eur J Pharmacol 755 16-26 (2015)
  129. PPARγ partial agonist GQ-16 strongly represses a subset of genes in 3T3-L1 adipocytes. Milton FA, Cvoro A, Amato AA, Sieglaff DH, Filgueira CS, Arumanayagam AS, de Lima Mdo C, Pitta IR, de Assis Rocha Neves F, Webb P. Biochem Biophys Res Commun 464 718-723 (2015)
  130. Structural review of PPARγ in complex with ligands: Cartesian- and dihedral angle principal component analyses of X-ray crystallographic data. Kaupang Å, Laitinen T, Poso A, Hansen TV. Proteins 85 1684-1698 (2017)
  131. To Probe Full and Partial Activation of Human Peroxisome Proliferator-Activated Receptors by Pan-Agonist Chiglitazar Using Molecular Dynamics Simulations. Sullivan HJ, Wang X, Nogle S, Liao S, Wu C. PPAR Res 2020 5314187 (2020)
  132. A New Fungal Triterpene from the Fungus Aspergillus flavus Stimulates Glucose Uptake without Fat Accumulation. Li DD, Wang Y, Kim E, Hong J, Jung JH. Mar Drugs 20 203 (2022)
  133. A novel peroxisome proliferator-activated receptor gamma ligand improves insulin sensitivity and promotes browning of white adipose tissue in obese mice. Wu D, Eeda V, Undi RB, Mann S, Stout M, Lim HY, Wang W. Mol Metab 54 101363 (2021)
  134. Atractylodin Ameliorates Colitis via PPARα Agonism. Heo G, Kim Y, Kim EL, Park S, Rhee SH, Jung JH, Im E. Int J Mol Sci 24 802 (2023)
  135. CHARMM Force Field Parameterization of Peroxisome Proliferator-Activated Receptor γ Ligands. Mottin M, Souza PC, Ricci CG, Skaf MS. Int J Mol Sci 18 E15 (2016)
  136. Deciphering the relational dynamics of AF-2 domain of PAN PPAR through drug repurposing and comparative simulations. Gul F, Parvaiz N, Azam SS. PLoS One 18 e0283743 (2023)
  137. Effects of structural and electronic characteristics of chalcones on the activation of peroxisome proliferator-activated receptor gamma. Schott JT, Mordaunt CE, Vargas AJ, Leon MA, Chen KH, Singh M, Satoh M, Cardenas EL, Maitra S, Patel NV, de Lijser HJ. Chem Pharm Bull (Tokyo) 61 229-236 (2013)
  138. Identification of Selective PPAR-γ Modulators by Combining Pharmacophore Modeling, Molecular Docking, and Adipogenesis Assay. Li Y, Ks N, Byran G, Krishnamurthy PT. Appl Biochem Biotechnol 195 1014-1041 (2023)
  139. Lobeglitazone attenuates fibrosis in corneal fibroblasts by interrupting TGF-beta-mediated Smad signaling. Nuwormegbe S, Park NY, Kim SW. Graefes Arch Clin Exp Ophthalmol 260 149-162 (2022)
  140. Macakurzin C Derivatives as a Novel Pharmacophore for Pan-Peroxisome Proliferator-Activated Receptor Modulator. Ko H, An S, Jang H, Ahn S, Park IG, Hwang SY, Gong J, Oh S, Kwak SY, Choi WJ, Kim H, Noh M. Biomol Ther (Seoul) 31 312-318 (2023)
  141. Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ. Almahmoud S, Zhong HA. Biomolecules 12 1614 (2022)
  142. Peptide Helix-Y12 as Potential Effector for Peroxisome Proliferator-Activated Receptors. Carrillo-Tripp M, Reyes Y, Delgado-Coello B, Mas-Oliva J, Gutiérrez-Vidal R. PPAR Res 2023 8047378 (2023)
  143. Prenylated Chrysin Derivatives as Partial PPARγ Agonists with Adiponectin Secretion-Inducing Activity. An S, Ko H, Jang H, Park IG, Ahn S, Hwang SY, Gong J, Oh S, Kwak SY, Lee Y, Kim H, Noh M. ACS Med Chem Lett 14 425-431 (2023)
  144. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer's disease. He Z, Li X, Wang Z, Cao Y, Han S, Li N, Cai J, Cheng S, Liu Q. Redox Biol 66 102848 (2023)
  145. Rational design of stapled helical peptides as antidiabetic PPARγ antagonists to target coactivator site by decreasing unfavorable entropy penalty instead of increasing favorable enthalpy contribution. Zhang Y, Wang J, Li W, Guo Y. Eur Biophys J 51 535-543 (2022)
  146. Synthesis, molecular docking, and in vivo antidiabetic evaluation of new benzylidene-2,4-thiazolidinediones as partial PPAR-γ agonists. Najmi A, Alam MS, Thangavel N, Taha MME, Meraya AM, Albratty M, Alhazmi HA, Ahsan W, Haque A, Azam F. Sci Rep 13 19869 (2023)
  147. Targeting the Alternative Vitamin E Metabolite Binding Site Enables Noncanonical PPARγ Modulation. Arifi S, Marschner JA, Pollinger J, Isigkeit L, Heitel P, Kaiser A, Obeser L, Höfner G, Proschak E, Knapp S, Chaikuad A, Heering J, Merk D. J Am Chem Soc 145 14802-14810 (2023)