2pse Citations

Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis.

J. Mol. Biol. 374 1017-28 (2007)
Related entries: 2psd, 2psf, 2psh, 2psj, 2rh7

Cited: 57 times
EuropePMC logo PMID: 17980388


Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 A and demonstrate a classic alpha/beta-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.

Articles - 2pse mentioned but not cited (2)

  1. Conformational changes of the HIV-1 envelope protein during membrane fusion are inhibited by the replacement of its membrane-spanning domain. Kondo N, Miyauchi K, Meng F, Iwamoto A, Matsuda Z. J. Biol. Chem. 285 14681-14688 (2010)
  2. Epstein-Barr Virus Fusion with Epithelial Cells Triggered by gB Is Restricted by a gL Glycosylation Site. Möhl BS, Chen J, Park SJ, Jardetzky TS, Longnecker R. J. Virol. 91 (2017)

Reviews citing this publication (13)

  1. Surveying the landscape of optogenetic methods for detection of protein-protein interactions. Wiens MD, Campbell RE. Wiley Interdiscip Rev Syst Biol Med 10 e1415 (2018)
  2. Light emission miracle in the sea and preeminent applications of bioluminescence in recent new biotechnology. Sharifian S, Homaei A, Hemmati R, Khajeh K. J. Photochem. Photobiol. B, Biol. 172 115-128 (2017)
  3. New insight into cofactor-free oxygenation from combined experimental and computational approaches. Bui S, Steiner RA. Curr. Opin. Struct. Biol. 41 109-118 (2016)
  4. Coelenterazine-dependent luciferases. Markova SV, Vysotski ES. Biochemistry Mosc. 80 714-732 (2015)
  5. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins. Saw WT, Matsuda Z, Eisenberg RJ, Cohen GH, Atanasiu D. Methods 90 68-75 (2015)
  6. Fluorescent proteins for live-cell imaging with super-resolution. Nienhaus K, Nienhaus GU. Chem Soc Rev 43 1088-1106 (2014)
  7. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK. Int Rev Cell Mol Biol 302 221-278 (2013)
  8. Chemical biology-based approaches on fluorescent labeling of proteins in live cells. Jung D, Min K, Jung J, Jang W, Kwon Y. Mol Biosyst 9 862-872 (2013)
  9. Protein-protein complexation in bioluminescence. Titushin MS, Feng Y, Lee J, Vysotski ES, Liu ZJ. Protein Cell 2 957-972 (2011)
  10. Cofactor-independent oxidases and oxygenases. Fetzner S, Steiner RA. Appl. Microbiol. Biotechnol. 86 791-804 (2010)
  11. Factors modulating expression of Renilla luciferase from control plasmids used in luciferase reporter gene assays. Shifera AS, Hardin JA. Anal. Biochem. 396 167-172 (2010)
  12. Fluorescent proteins and their applications in imaging living cells and tissues. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Physiol. Rev. 90 1103-1163 (2010)
  13. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Thorne N, Inglese J, Auld DS. Chem. Biol. 17 646-657 (2010)

Articles citing this publication (42)

  1. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Auld DS, Thorne N, Maguire WF, Inglese J. Proc. Natl. Acad. Sci. U.S.A. 106 3585-3590 (2009)
  2. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Javid B, Sorrentino F, Toosky M, Zheng W, Pinkham JT, Jain N, Pan M, Deighan P, Rubin EJ. Proc. Natl. Acad. Sci. U.S.A. 111 1132-1137 (2014)
  3. Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Ishikawa H, Meng F, Kondo N, Iwamoto A, Matsuda Z. Protein Eng. Des. Sel. 25 813-820 (2012)
  4. Letter A red-shifted Renilla luciferase for transient reporter-gene expression. Loening AM, Dragulescu-Andrasi A, Gambhir SS. Nat. Methods 7 5-6 (2010)
  5. Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the alpha/beta-hydrolase fold. Steiner RA, Janssen HJ, Roversi P, Oakley AJ, Fetzner S. Proc. Natl. Acad. Sci. U.S.A. 107 657-662 (2010)
  6. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA. Nat Commun 7 12178 (2016)
  7. Structure-function studies on the active site of the coelenterazine-dependent luciferase from Renilla. Woo J, Howell MH, von Arnim AG. Protein Sci. 17 725-735 (2008)
  8. Synthetic and Receptor Signaling Explorations of the Mitragyna Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. Kruegel AC, Gassaway MM, Kapoor A, Váradi A, Majumdar S, Filizola M, Javitch JA, Sames D. J. Am. Chem. Soc. 138 6754-6764 (2016)
  9. NMR-derived topology of a GFP-photoprotein energy transfer complex. Titushin MS, Feng Y, Stepanyuk GA, Li Y, Markova SV, Golz S, Wang BC, Lee J, Wang J, Vysotski ES, Liu ZJ. J. Biol. Chem. 285 40891-40900 (2010)
  10. Mutational optimization of the coelenterazine-dependent luciferase from Renilla. Woo J, von Arnim AG. Plant Methods 4 23 (2008)
  11. Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells. Uprety R, Luo J, Liu J, Naro Y, Samanta S, Deiters A. Chembiochem 15 1793-1799 (2014)
  12. A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation. Bernstock JD, Lee YJ, Peruzzotti-Jametti L, Southall N, Johnson KR, Maric D, Volpe G, Kouznetsova J, Zheng W, Pluchino S, Hallenbeck JM. J. Cereb. Blood Flow Metab. 36 426-441 (2016)
  13. IL23R (Interleukin 23 Receptor) Variants Protective against Inflammatory Bowel Diseases (IBD) Display Loss of Function due to Impaired Protein Stability and Intracellular Trafficking. Sivanesan D, Beauchamp C, Quinou C, Lee J, Lesage S, Chemtob S, Rioux JD, Michnick SW. J. Biol. Chem. 291 8673-8685 (2016)
  14. Origin of the proton-transfer step in the cofactor-free (1H)-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase: effect of the basicity of an active site His residue. Hernandez-Ortega A, Quesne MG, Bui S, Heuts DP, Steiner RA, Heyes DJ, de Visser SP, Scrutton NS. J. Biol. Chem. 289 8620-8632 (2014)
  15. The single T65S mutation generates brighter cyan fluorescent proteins with increased photostability and pH insensitivity. Fredj A, Pasquier H, Demachy I, Jonasson G, Levy B, Derrien V, Bousmah Y, Manoussaris G, Wien F, Ridard J, Erard M, Merola F. PLoS ONE 7 e49149 (2012)
  16. Bioluminescence resonance energy transfer (BRET) imaging in plant seedlings and mammalian cells. Xie Q, Soutto M, Xu X, Zhang Y, Johnson CH. Methods Mol. Biol. 680 3-28 (2011)
  17. Expression, purification and characterization of the secreted luciferase of the copepod Metridia longa from Sf9 insect cells. Stepanyuk GA, Xu H, Wu CK, Markova SV, Lee J, Vysotski ES, Wang BC. Protein Expr. Purif. 61 142-148 (2008)
  18. A stable and sensitive testing system for potential carcinogens based on DNA damage-induced gene expression in human HepG2 cell. Zhang R, Niu Y, Du H, Cao X, Shi D, Hao Q, Zhou Y. Toxicol In Vitro 23 158-165 (2009)
  19. Bioluminescent coelenterazine derivatives with imidazopyrazinone C-6 extended substitution. Nishihara R, Suzuki H, Hoshino E, Suganuma S, Sato M, Saitoh T, Nishiyama S, Iwasawa N, Citterio D, Suzuki K. Chem. Commun. (Camb.) 51 391-394 (2015)
  20. Structure based mechanism of the Ca(2+)-induced release of coelenterazine from the Renilla binding protein. Stepanyuk GA, Liu ZJ, Vysotski ES, Lee J, Rose JP, Wang BC. Proteins 74 583-593 (2009)
  21. Expression, purification and luminescence properties of coelenterazine-utilizing luciferases from Renilla, Oplophorus and Gaussia: comparison of substrate specificity for C2-modified coelenterazines. Inouye S, Sahara-Miura Y, Sato J, Iimori R, Yoshida S, Hosoya T. Protein Expr. Purif. 88 150-156 (2013)
  22. Evidence for aggregation of protein kinase CK2 in the cell: a novel strategy for studying CK2 holoenzyme interaction by BRET(2). Hübner GM, Larsen JN, Guerra B, Niefind K, Vrecl M, Issinger OG. Mol. Cell. Biochem. 397 285-293 (2014)
  23. New bioluminescent coelenterazine derivatives with various C-6 substitutions. Jiang T, Yang X, Zhou Y, Yampolsky I, Du L, Li M. Org. Biomol. Chem. 15 7008-7018 (2017)
  24. Salmeterol Efficacy and Bias in the Activation and Kinase-Mediated Desensitization of β2-Adrenergic Receptors. Gimenez LE, Baameur F, Vayttaden SJ, Clark RB. Mol. Pharmacol. 87 954-964 (2015)
  25. Structural Consequences of Chromophore Formation and Exploration of Conserved Lid Residues amongst Naturally Occurring Fluorescent Proteins. Zimmer MH, Li B, Shahid RS, Peshkepija P, Zimmer M. Chem Phys 429 5-11 (2014)
  26. Super RLuc8: A novel engineered Renilla luciferase with a red-shifted spectrum and stable light emission. Rahnama S, Saffar B, Kahrani ZF, Nazari M, Emamzadeh R. Enzyme Microb. Technol. 96 60-66 (2017)
  27. A puzzling homology: a brittle star using a putative cnidarian-type luciferase for bioluminescence. Delroisse J, Ullrich-Lüter E, Blaue S, Ortega-Martinez O, Eeckhaut I, Flammang P, Mallefet J. Open Biol 7 (2017)
  28. Creation of different bioluminescence resonance energy transfer based biosensors with high affinity to VEGF. Stumpf C, Wimmer T, Lorenz B, Stieger K. PLoS One 15 e0230344 (2020)
  29. Current advanced bioluminescence technology in drug discovery. Hoshino H. Expert Opin Drug Discov 4 373-389 (2009)
  30. Design and development of high bioluminescent resonance energy transfer efficiency hybrid-imaging constructs. Kumar M, Kovalski L, Broyles D, Hunt EA, Daftarian P, Dikici E, Daunert S, Deo SK. Anal. Biochem. 498 1-7 (2016)
  31. Highly active BRET-reporter based on yellow mutant of Renilla muelleri luciferase. Eremeeva EV, Markova SV, Vysotski ES. Dokl. Biochem. Biophys. 450 147-150 (2013)
  32. Substrate cooperativity in marine luciferases. Tzertzinis G, Schildkraut E, Schildkraut I. PLoS ONE 7 e40099 (2012)
  33. A putative chordate luciferase from a cosmopolitan tunicate indicates convergent bioluminescence evolution across phyla. Tessler M, Gaffney JP, Oliveira AG, Guarnaccia A, Dobi KC, Gujarati NA, Galbraith M, Mirza JD, Sparks JS, Pieribone VA, Wood RJ, Gruber DF. Sci Rep 10 17724 (2020)
  34. Intracellular Ionic Strength Sensing Using NanoLuc. Altamash T, Ahmed W, Rasool S, Biswas KH. Int J Mol Sci 22 (2021)
  35. Novel fluorescent protein from Hydnophora rigida possesses green emission. Idrees M, Thangavelu K, Sikaroodi M, Smith C, Sivaraman J, Gillevet PM, Bokhari H. Biochem. Biophys. Res. Commun. 448 33-38 (2014)
  36. Palette of Luciferases: Natural Biotools for New Applications in Biomedicine. Kotlobay AA, Kaskova ZM, Yampolsky IV. Acta Naturae 12 15-27 (2020)
  37. Probing the emitter site of Renilla luciferase using small organic molecules; an attempt to understand the molecular architecture of the emitter site. Salehi F, Emamzadeh R, Nazari M, Rasa SM. Int. J. Biol. Macromol. 93 1253-1260 (2016)
  38. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase. Li K, Fielding EN, Condurso HL, Bruner SD. Acta Crystallogr D Struct Biol 73 573-580 (2017)
  39. Super RLuc8-sFv; a new luciferase-labeled probe for detection of human CD4+ cells. Safavi A, Emamzadeh R, Nazari M, Ehsani M, Zarkesh-Esfahani SH, Rahgozar S. Mol Biosyst 13 470-475 (2017)
  40. Symplectin evolved from multiple duplications in bioluminescent squid. Francis WR, Christianson LM, Haddock SHD. PeerJ 5 e3633 (2017)
  41. The PINK1 kinase-driven ubiquitin ligase Parkin promotes mitochondrial protein import through the presequence pathway in living cells. Jacoupy M, Hamon-Keromen E, Ordureau A, Erpapazoglou Z, Coge F, Corvol JC, Nosjean O, Mannoury la Cour C, Millan MJ, Boutin JA, Harper JW, Brice A, Guedin D, Gautier CA, Corti O. Sci Rep 9 11829 (2019)
  42. Tyr72 and Tyr80 are Involved in the Formation of an Active Site of a Luciferase of Copepod Metridia longa. Larionova MD, Markova SV, Vysotski ES. Photochem. Photobiol. 93 503-510 (2017)