2pbn Citations

Structural genomics of protein phosphatases.

Abstract

The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

Reviews - 2pbn mentioned but not cited (1)

  1. Structural genomics of protein phosphatases. Almo SC, Bonanno JB, Sauder JM, Emtage S, Dilorenzo TP, Malashkevich V, Wasserman SR, Swaminathan S, Eswaramoorthy S, Agarwal R, Kumaran D, Madegowda M, Ragumani S, Patskovsky Y, Alvarado J, Ramagopal UA, Faber-Barata J, Chance MR, Sali A, Fiser A, Zhang ZY, Lawrence DS, Burley SK. J Struct Funct Genomics 8 121-140 (2007)


Reviews citing this publication (24)

  1. Aiding and abetting roles of NOX oxidases in cellular transformation. Block K, Gorin Y. Nat Rev Cancer 12 627-637 (2012)
  2. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects. Tanner JJ, Parsons ZD, Cummings AH, Zhou H, Gates KS. Antioxid Redox Signal 15 77-97 (2011)
  3. Human HAD phosphatases: structure, mechanism, and roles in health and disease. Seifried A, Schultz J, Gohla A. FEBS J 280 549-571 (2013)
  4. The use of polyoxometalates in protein crystallography - An attempt to widen a well-known bottleneck. Bijelic A, Rompel A. Coord Chem Rev 299 22-38 (2015)
  5. Global phenotypic screening for antimalarials. Guiguemde WA, Shelat AA, Garcia-Bustos JF, Diagana TT, Gamo FJ, Guy RK. Chem Biol 19 116-129 (2012)
  6. Lafora disease: insights into neurodegeneration from plant metabolism. Gentry MS, Dixon JE, Worby CA. Trends Biochem Sci 34 628-639 (2009)
  7. Chemical screening in zebrafish for novel biological and therapeutic discovery. Wiley DS, Redfield SE, Zon LI. Methods Cell Biol 138 651-679 (2017)
  8. Sequence, structure, function, immunity: structural genomics of costimulation. Chattopadhyay K, Lazar-Molnar E, Yan Q, Rubinstein R, Zhan C, Vigdorovich V, Ramagopal UA, Bonanno J, Nathenson SG, Almo SC. Immunol Rev 229 356-386 (2009)
  9. Trypanosomatid protein phosphatases. Szöör B. Mol Biochem Parasitol 173 53-63 (2010)
  10. Signalling by protein phosphatases and drug development: a systems-centred view. Nguyen LK, Matallanas D, Croucher DR, von Kriegsheim A, Kholodenko BN. FEBS J 280 751-765 (2013)
  11. Large-scale structural biology of the human proteome. Edwards A. Annu Rev Biochem 78 541-568 (2009)
  12. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Coles CH, Jones EY, Aricescu AR. Semin Cell Dev Biol 37 98-107 (2015)
  13. Protein tyrosine phosphatase σ in proteoglycan-mediated neural regeneration regulation. Chien PN, Ryu SE. Mol Neurobiol 47 220-227 (2013)
  14. Structure and catalytic mechanism of human protein tyrosine phosphatome. Kim SJ, Ryu SE. BMB Rep 45 693-699 (2012)
  15. Cellular biochemistry methods for investigating protein tyrosine phosphatases. Stanford SM, Ahmed V, Barrios AM, Bottini N. Antioxid Redox Signal 20 2160-2178 (2014)
  16. Inhibitors of Serine/Threonine Protein Phosphatases: Biochemical and Structural Studies Provide Insight for Further Development. Swingle MR, Honkanen RE. Curr Med Chem 26 2634-2660 (2019)
  17. Screening for small molecule inhibitors of Toxoplasma gondii. Kortagere S. Expert Opin Drug Discov 7 1193-1206 (2012)
  18. Structural mechanisms of plant glucan phosphatases in starch metabolism. Meekins DA, Vander Kooi CW, Gentry MS. FEBS J 283 2427-2447 (2016)
  19. The Potential of Secondary Metabolites from Plants as Drugs or Leads against Protozoan Neglected Diseases-Part III: In-Silico Molecular Docking Investigations. Ogungbe IV, Setzer WN. Molecules 21 E1389 (2016)
  20. Structural genomics and the Protein Data Bank. Michalska K, Joachimiak A. J Biol Chem 296 100747 (2021)
  21. Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Seok SH. Life (Basel) 11 957 (2021)
  22. Targeting the C-Terminal Domain Small Phosphatase 1. Rallabandi HR, Ganesan P, Kim YJ. Life (Basel) 10 E57 (2020)
  23. Genetic approaches for understanding virulence in Toxoplasma gondii. Weilhammer DR, Rasley A. Brief Funct Genomics 10 365-373 (2011)
  24. Bi-domain protein tyrosine phosphatases reveal an evolutionary adaptation to optimize signal transduction. Ahuja LG, Gopal B. Antioxid Redox Signal 20 2141-2159 (2014)

Articles citing this publication (62)

  1. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang Y, Li J, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE. Nature 462 602-608 (2009)
  2. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Barr AJ, Ugochukwu E, Lee WH, King ON, Filippakopoulos P, Alfano I, Savitsky P, Burgess-Brown NA, Müller S, Knapp S. Cell 136 352-363 (2009)
  3. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Molina G, Vogt A, Bakan A, Dai W, Queiroz de Oliveira P, Znosko W, Smithgall TE, Bahar I, Lazo JS, Day BW, Tsang M, Tsang M. Nat Chem Biol 5 680-687 (2009)
  4. Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Moes D, Himmelbach A, Korte A, Haberer G, Grill E. Plant J 54 806-819 (2008)
  5. Redox modulation of global phosphatase activity and protein phosphorylation in intact skeletal muscle. Wright VP, Reiser PJ, Clanton TL. J Physiol 587 5767-5781 (2009)
  6. Poly-small ubiquitin-like modifier (PolySUMO)-binding proteins identified through a string search. Sun H, Hunter T. J Biol Chem 287 42071-42083 (2012)
  7. Contributions to the NIH-NIGMS Protein Structure Initiative from the PSI Production Centers. Burley SK, Joachimiak A, Montelione GT, Wilson IA. Structure 16 5-11 (2008)
  8. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Kaneko T, Joshi R, Feller SM, Li SS. Cell Commun Signal 10 32 (2012)
  9. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate. Bijelic A, Molitor C, Mauracher SG, Al-Oweini R, Kortz U, Rompel A. Chembiochem 16 233-241 (2015)
  10. Structural basis of SALM5-induced PTPδ dimerization for synaptic differentiation. Lin Z, Liu J, Ding H, Xu F, Liu H. Nat Commun 9 268 (2018)
  11. Optimization of a cyclic peptide inhibitor of Ser/Thr phosphatase PPM1D (Wip1). Hayashi R, Tanoue K, Durell SR, Chatterjee DK, Jenkins LM, Appella DH, Appella E. Biochemistry 50 4537-4549 (2011)
  12. The ApaH-like phosphatase TbALPH1 is the major mRNA decapping enzyme of trypanosomes. Kramer S. PLoS Pathog 13 e1006456 (2017)
  13. The family-wide structure and function of human dual-specificity protein phosphatases. Jeong DG, Wei CH, Ku B, Jeon TJ, Chien PN, Kim JK, Park SY, Hwang HS, Ryu SY, Park H, Kim DS, Kim SJ, Ryu SE. Acta Crystallogr D Biol Crystallogr 70 421-435 (2014)
  14. Identification of small molecule inhibitors of PTPσ through an integrative virtual and biochemical approach. Martin KR, Narang P, Xu Y, Kauffman AL, Petit J, Xu HE, Meurice N, MacKeigan JP. PLoS One 7 e50217 (2012)
  15. The pseudophosphatase STYX targets the F-box of FBXW7 and inhibits SCFFBXW7 function. Reiterer V, Figueras-Puig C, Le Guerroue F, Confalonieri S, Vecchi M, Jalapothu D, Kanse SM, Deshaies RJ, Di Fiore PP, Behrends C, Farhan H. EMBO J 36 260-273 (2017)
  16. Development of inhibitors of receptor protein tyrosine phosphatase β/ζ (PTPRZ1) as candidates for CNS disorders. Pastor M, Fernández-Calle R, Di Geronimo B, Vicente-Rodríguez M, Zapico JM, Gramage E, Coderch C, Pérez-García C, Lasek AW, Puchades-Carrasco L, Pineda-Lucena A, de Pascual-Teresa B, Herradón G, Ramos A. Eur J Med Chem 144 318-329 (2018)
  17. Structural and biochemical characterization of human mitochondrial branched-chain α-ketoacid dehydrogenase phosphatase. Wynn RM, Li J, Brautigam CA, Chuang JL, Chuang DT. J Biol Chem 287 9178-9192 (2012)
  18. Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies. Pieper U, Chiang R, Seffernick JJ, Brown SD, Glasner ME, Kelly L, Eswar N, Sauder JM, Bonanno JB, Swaminathan S, Burley SK, Zheng X, Chance MR, Almo SC, Gerlt JA, Raushel FM, Jacobson MP, Babbitt PC, Sali A. J Struct Funct Genomics 10 107-125 (2009)
  19. Targeting ovarian cancer and endothelium with an allosteric PTP4A3 phosphatase inhibitor. McQueeney KE, Salamoun JM, Burnett JC, Barabutis N, Pekic P, Lewandowski SL, Llaneza DC, Cornelison R, Bai Y, Zhang ZY, Catravas JD, Landen CN, Wipf P, Lazo JS, Sharlow ER. Oncotarget 9 8223-8240 (2018)
  20. Evolutionary and structural analyses of mammalian haloacid dehalogenase-type phosphatases AUM and chronophin provide insight into the basis of their different substrate specificities. Seifried A, Knobloch G, Duraphe PS, Segerer G, Manhard J, Schindelin H, Schultz J, Gohla A. J Biol Chem 289 3416-3431 (2014)
  21. Polyoxometalates: more than a phasing tool in protein crystallography. Bijelic A, Rompel A. ChemTexts 4 10 (2018)
  22. Alpha7 helix plays an important role in the conformational stability of PTP1B. Olmez EO, Alakent B. J Biomol Struct Dyn 28 675-693 (2011)
  23. Small molecule receptor protein tyrosine phosphatase γ (RPTPγ) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. Sheriff S, Beno BR, Zhai W, Kostich WA, McDonnell PA, Kish K, Goldfarb V, Gao M, Kiefer SE, Yanchunas J, Huang Y, Shi S, Zhu S, Dzierba C, Bronson J, Macor JE, Appiah KK, Westphal RS, O'Connell J, Gerritz SW. J Med Chem 54 6548-6562 (2011)
  24. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. Critton DA, Tautz L, Page R. J Mol Biol 405 619-629 (2011)
  25. Chronophin dimerization is required for proper positioning of its substrate specificity loop. Kestler C, Knobloch G, Tessmer I, Jeanclos E, Schindelin H, Gohla A. J Biol Chem 289 3094-3103 (2014)
  26. Evaluating transition state structures of vanadium-phosphatase protein complexes using shape analysis. Sánchez-Lombardo I, Alvarez S, McLauchlan CC, Crans DC. J Inorg Biochem 147 153-164 (2015)
  27. Pathophysiologic changes in IA-2/IA-2β null mice are secondary to alterations in the secretion of hormones and neurotransmitters. Cai T, Notkins AL. Acta Diabetol 53 7-12 (2016)
  28. Targeting of PP2Cδ By a Small Molecule C23 Inhibits High Glucose-Induced Breast Cancer Progression In Vivo. Wu K, Yu X, Huang Z, Zhu D, Yi X, Wu YL, Hao Q, Kemp KT, Elshimali Y, Iyer R, Nguyen KT, Zheng S, Chen G, Chen QH, Wang G, Vadgama JV, Wu Y. Antioxid Redox Signal 30 1983-1998 (2019)
  29. Toxoplasma gondii PPM3C, a secreted protein phosphatase, affects parasitophorous vacuole effector export. Mayoral J, Tomita T, Tu V, Aguilan JT, Sidoli S, Weiss LM. PLoS Pathog 16 e1008771 (2020)
  30. Atypical mitogen-activated protein kinase phosphatase implicated in regulating transition from pre-S-Phase asexual intraerythrocytic development of Plasmodium falciparum. Balu B, Campbell C, Sedillo J, Maher S, Singh N, Thomas P, Zhang M, Pance A, Otto TD, Rayner JC, Adams JH. Eukaryot Cell 12 1171-1178 (2013)
  31. High-resolution crystal structure of the catalytic domain of human dual-specificity phosphatase 26. Won EY, Xie Y, Takemoto C, Chen L, Liu ZJ, Wang BC, Lee D, Woo EJ, Park SG, Shirouzu M, Yokoyama S, Kim SJ, Chi SW. Acta Crystallogr D Biol Crystallogr 69 1160-1170 (2013)
  32. Atomic resolution crystal structure of VcLMWPTP-1 from Vibrio cholerae O395: insights into a novel mode of dimerization in the low molecular weight protein tyrosine phosphatase family. Nath S, Banerjee R, Sen U. Biochem Biophys Res Commun 450 390-395 (2014)
  33. Computational Strategy for Bound State Structure Prediction in Structure-Based Virtual Screening: A Case Study of Protein Tyrosine Phosphatase Receptor Type O Inhibitors. Hou X, Rooklin D, Yang D, Liang X, Li K, Lu J, Wang C, Xiao P, Zhang Y, Sun JP, Fang H. J Chem Inf Model 58 2331-2342 (2018)
  34. RPTPα phosphatase activity is allosterically regulated by the membrane-distal catalytic domain. Wen Y, Yang S, Wakabayashi K, Svensson MND, Stanford SM, Santelli E, Bottini N. J Biol Chem 295 4923-4936 (2020)
  35. Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates. Yu KR, Kim YJ, Jung SK, Ku B, Park H, Cho SY, Jung H, Chung SJ, Bae KH, Lee SC, Kim BY, Erikson RL, Ryu SE, Kim SJ. Acta Crystallogr D Biol Crystallogr 69 1522-1529 (2013)
  36. Tumor suppressor properties of the small C-terminal domain phosphatases in non-small cell lung cancer. Krasnov GS, Puzanov GA, Afanasyeva MA, Dashinimaev EB, Vishnyakova KS, Beniaminov AD, Adzhubei AA, Kondratieva TT, Yegorov YE, Senchenko VN. Biosci Rep 39 BSR20193094 (2019)
  37. Discovery of novel DUSP16 phosphatase inhibitors through virtual screening with homology modeled protein structure. Park H, Park SY, Nam SW, Ryu SE. J Biomol Screen 19 1383-1390 (2014)
  38. Protein phosphatases potentially associated with regulation of microtubules, their spatial structure reconstruction and analysis. Samofalova DO, Karpov PA, Raevsky AV, Blume YB. Cell Biol Int 43 1081-1090 (2019)
  39. Structural insights into selective interaction between type IIa receptor protein tyrosine phosphatases and Liprin-α. Wakita M, Yamagata A, Shiroshima T, Izumi H, Maeda A, Sendo M, Imai A, Kubota K, Goto-Ito S, Sato Y, Mori H, Yoshida T, Fukai S. Nat Commun 11 649 (2020)
  40. Structural insights into the homology and differences between mouse protein tyrosine phosphatase-sigma and human protein tyrosine phosphatase-sigma. Hou L, Wang J, Zhou Y, Li J, Zang Y, Li J. Acta Biochim Biophys Sin (Shanghai) 43 977-988 (2011)
  41. Structure of the catalytic domain of protein tyrosine phosphatase sigma in the sulfenic acid form. Jeon TJ, Chien PN, Chun HJ, Ryu SE. Mol Cells 36 55-61 (2013)
  42. Structural characterization of a pathogenic mutant of human protein tyrosine phosphatase PTPN2 (Cys216Gly) that causes very early onset autoimmune enteropathy. Nian Q, Berthelet J, Parlato M, Mechaly AE, Liu R, Dupret JM, Cerf-Bensussan N, Haouz A, Rodrigues Lima F. Protein Sci 31 538-544 (2022)
  43. The core cysteines, (C909) of islet antigen-2 and (C945) of islet antigen-2β, are crucial to autoantibody binding in type 1 diabetes. Elvers KT, Geoghegan I, Shoemark DK, Lampasona V, Bingley PJ, Williams AJ. Diabetes 62 214-222 (2013)
  44. Against the odds? De novo structure determination of a pilin with two cysteine residues by sulfur SAD. Gorgel M, Bøggild A, Ulstrup JJ, Weiss MS, Müller U, Nissen P, Boesen T. Acta Crystallogr D Biol Crystallogr 71 1095-1101 (2015)
  45. Identification of HN252 as a potent inhibitor of protein phosphatase PPM1B. Lu Z, Xiao P, Zhou Y, Li Z, Yu X, Sun J, Shen Y, Zhao B. J Cell Mol Med 24 13463-13471 (2020)
  46. Structural and biochemical analysis of atypically low dephosphorylating activity of human dual-specificity phosphatase 28. Ku B, Hong W, Keum CW, Kim M, Ryu H, Jeon D, Shin HC, Kim JH, Kim SJ, Ryu SE. PLoS One 12 e0187701 (2017)
  47. Structural basis for the specificity of PPM1H phosphatase for Rab GTPases. Waschbüsch D, Berndsen K, Lis P, Knebel A, Lam YP, Alessi DR, Khan AR. EMBO Rep 22 e52675 (2021)
  48. Wzb of Vibrio vulnificus represents a new group of low-molecular-weight protein tyrosine phosphatases with a unique insertion in the W-loop. Wang X, Ma Q. J Biol Chem 296 100280 (2021)
  49. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms. Pons T, Paramonov I, Boullosa C, Ibáñez K, Rojas AM, Valencia A. Proteins 82 103-118 (2014)
  50. A novel binding pocket in the D2 domain of protein tyrosine phosphatase mu (PTPmu) guides AI screen to identify small molecules that modulate tumour cell adhesion, growth and migration. Molyneaux K, Laggner C, Brady-Kalnay SM. J Cell Mol Med 27 3553-3564 (2023)
  51. Bioinformatic identification of novel protein phosphatases in the dog genome. Karmacharya MB, Soh JW. Mol Cell Biochem 351 149-156 (2011)
  52. Oxidative stress promotes fibrosis in systemic sclerosis through stabilization of a kinase-phosphatase complex. Zhang R, Kumar GS, Hansen U, Zoccheddu M, Sacchetti C, Holmes ZJ, Lee MC, Beckmann D, Wen Y, Mikulski Z, Yang S, Santelli E, Page R, Boin F, Peti W, Bottini N. JCI Insight 7 e155761 (2022)
  53. Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development. Henderson IM, Zeng F, Bhuiyan NH, Luo D, Martinez M, Smoake J, Bi F, Perera C, Johnson D, Prisinzano TE, Wang W, Uhl GR. Biochem Pharmacol 195 114868 (2022)
  54. Substrate-selective positive allosteric modulation of PTPRD's phosphatase by flavonols. Henderson IM, Marez C, Dokladny K, Smoake J, Martinez M, Johnson D, Uhl GR. Biochem Pharmacol 202 115109 (2022)
  55. The biosynthetic origin of ribofuranose in bacterial polysaccharides. Kelly SD, Williams DM, Nothof JT, Kim T, Lowary TL, Kimber MS, Whitfield C. Nat Chem Biol 18 530-537 (2022)
  56. The inhibitory mechanism of aurintricarboxylic acid targeting serine/threonine phosphatase Stp1 in Staphylococcus aureus: insights from molecular dynamics simulations. Liu TT, Yang T, Gao MN, Chen KX, Yang S, Yu KQ, Jiang HL. Acta Pharmacol Sin 40 850-858 (2019)
  57. A unique mRNA decapping complex in trypanosomes. Kramer S, Karolak NK, Odenwald J, Gabiatti B, Castañeda Londoño PA, Zavřelová A, Freire ER, Almeida KS, Braune S, Moreira C, Eder A, Goos C, Field M, Carrington M, Holetz F, Górna MW, Zoltner M. Nucleic Acids Res 51 7520-7540 (2023)
  58. Clustering of phosphatase RPTPα promotes Src signaling and the arthritogenic action of synovial fibroblasts. Sendo S, Kiosses WB, Yang S, Wu DJ, Lee DWK, Liu L, Aschner Y, Vela AJ, Downey GP, Santelli E, Bottini N. Sci Signal 16 eabn8668 (2023)
  59. Crystal structure of the catalytic domain of human RPTPH. Kim M, Ryu SE. Acta Crystallogr F Struct Biol Commun 78 265-269 (2022)
  60. Small molecule antagonists of PTPmu identified by artificial intelligence-based computational screening block glioma cell migration and growth. Molyneaux K, Laggner C, Vincent J, Brady-Kalnay S. PLoS One 18 e0288980 (2023)
  61. Structure-Activity Relationship of Synthetic Ginkgolic Acid Analogs for Treating Type 2 Diabetes by PTPN9 Inhibition. Kim J, Son J, Ahn D, Nam G, Zhao X, Park H, Jeong W, Chung SJ. Int J Mol Sci 23 3927 (2022)
  62. Synthesis and hypoglycemic activity of quinoxaline derivatives. Jia W, Wang J, Wei C, Bian M, Bao S, Yu L. Front Chem 11 1197124 (2023)