2p9i Citations

Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex.

Mol Cell 26 449-57 (2007)
Related entries: 2p9k, 2p9l, 2p9n, 2p9p, 2p9s, 2p9u

Cited: 55 times
EuropePMC logo PMID: 17499050

Abstract

ATP is required for nucleation of actin filament branches by Arp2/3 complex, but the influence of ATP binding and hydrolysis are poorly understood. We determined crystal structures of bovine Arp2/3 complex cocrystallized with various bound adenine nucleotides and cations. Nucleotide binding favors closure of the nucleotide-binding cleft of Arp3, but no large-scale conformational changes in the complex. Thus, ATP binding does not directly activate Arp2/3 complex but is part of a network of interactions that contribute to nucleation. We compared nucleotide-induced conformational changes of residues lining the cleft in Arp3 and actin structures to construct a movie depicting the proposed ATPase cycle for the actin family. Chemical crosslinking stabilized subdomain 1 of Arp2, revealing new electron density for 69 residues in this subdomain. Steric clashes with Arp3 appear to be responsible for intrinsic disorder of subdomains 1 and 2 of Arp2 in inactive Arp2/3 complex.

Articles - 2p9i mentioned but not cited (5)

  1. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, Goddard TD, Meng EC, Sali A, Ferrin TE. J Struct Biol 179 269-278 (2012)
  2. Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex. Nolen BJ, Pollard TD. Mol. Cell 26 449-457 (2007)
  3. Three-dimensional reconstructions of Arp2/3 complex with bound nucleation promoting factors. Xu XP, Rouiller I, Slaughter BD, Egile C, Kim E, Unruh JR, Fan X, Pollard TD, Li R, Hanein D, Volkmann N. EMBO J. 31 236-247 (2012)
  4. Cryo-EM reveals the transition of Arp2/3 complex from inactive to nucleation-competent state. Shaaban M, Chowdhury S, Nolen BJ. Nat Struct Mol Biol 27 1009-1016 (2020)
  5. Identification of an ATP-controlled allosteric switch that controls actin filament nucleation by Arp2/3 complex. Rodnick-Smith M, Liu SL, Balzer CJ, Luan Q, Nolen BJ. Nat Commun 7 12226 (2016)


Reviews citing this publication (11)

  1. Regulation of actin filament assembly by Arp2/3 complex and formins. Pollard TD. Annu Rev Biophys Biomol Struct 36 451-477 (2007)
  2. A nucleator arms race: cellular control of actin assembly. Campellone KG, Welch MD. Nat. Rev. Mol. Cell Biol. 11 237-251 (2010)
  3. Actin dynamics at the leading edge: from simple machinery to complex networks. Insall RH, Machesky LM. Dev. Cell 17 310-322 (2009)
  4. Actin filament nucleation and elongation factors--structure-function relationships. Dominguez R. Crit. Rev. Biochem. Mol. Biol. 44 351-366 (2009)
  5. Structural insights into de novo actin polymerization. Dominguez R. Curr. Opin. Struct. Biol. 20 217-225 (2010)
  6. Mathematical models and simulations of cellular processes based on actin filaments. Pollard TD, Berro J. J. Biol. Chem. 284 5433-5437 (2009)
  7. Regulation of actin by ion-linked equilibria. Kang H, Bradley MJ, Elam WA, De La Cruz EM. Biophys. J. 105 2621-2628 (2013)
  8. Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. Altschuler GM, Willison KR. J R Soc Interface 5 1391-1408 (2008)
  9. Function and dynamics of macromolecular complexes explored by integrative structural and computational biology. Purdy MD, Bennett BC, McIntire WE, Khan AK, Kasson PM, Yeager M. Curr. Opin. Struct. Biol. 27 138-148 (2014)
  10. Peering deeply inside the branch. Cai L, Bear JE. J. Cell Biol. 180 853-855 (2008)
  11. Towards a structural understanding of the remodeling of the actin cytoskeleton. Merino F, Pospich S, Raunser S. Semin Cell Dev Biol 102 51-64 (2020)

Articles citing this publication (39)

  1. The nature of the globular- to fibrous-actin transition. Oda T, Iwasa M, Aihara T, Maéda Y, Narita A. Nature 457 441-445 (2009)
  2. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nolen BJ, Tomasevic N, Russell A, Pierce DW, Jia Z, McCormick CD, Hartman J, Sakowicz R, Pollard TD. Nature 460 1031-1034 (2009)
  3. The structural basis of actin filament branching by the Arp2/3 complex. Rouiller I, Xu XP, Amann KJ, Egile C, Nickell S, Nicastro D, Li R, Pollard TD, Volkmann N, Hanein D. J. Cell Biol. 180 887-895 (2008)
  4. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Ti SC, Jurgenson CT, Nolen BJ, Pollard TD. Proc. Natl. Acad. Sci. U.S.A. 108 E463-71 (2011)
  5. Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Chu JW, Voth GA. Biophys. J. 93 3860-3871 (2007)
  6. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. Hetrick B, Han MS, Helgeson LA, Nolen BJ. Chem. Biol. 20 701-712 (2013)
  7. Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Murakami K, Yasunaga T, Noguchi TQ, Gomibuchi Y, Ngo KX, Uyeda TQ, Wakabayashi T. Cell 143 275-287 (2010)
  8. Nucleotide-dependent conformational states of actin. Pfaendtner J, Branduardi D, Parrinello M, Pollard TD, Voth GA. Proc. Natl. Acad. Sci. U.S.A. 106 12723-12728 (2009)
  9. X-ray scattering study of activated Arp2/3 complex with bound actin-WCA. Boczkowska M, Rebowski G, Petoukhov MV, Hayes DB, Svergun DI, Dominguez R. Structure 16 695-704 (2008)
  10. The structure of bacterial ParM filaments. Orlova A, Garner EC, Galkin VE, Heuser J, Mullins RD, Egelman EH. Nat. Struct. Mol. Biol. 14 921-926 (2007)
  11. Nucleotide-mediated conformational changes of monomeric actin and Arp3 studied by molecular dynamics simulations. Dalhaimer P, Pollard TD, Nolen BJ. J. Mol. Biol. 376 166-183 (2008)
  12. GMF is an evolutionarily developed Adf/cofilin-super family protein involved in the Arp2/3 complex-mediated organization of the actin cytoskeleton. Nakano K, Kuwayama H, Kawasaki M, Numata O, Takaine M. Cytoskeleton (Hoboken) 67 373-382 (2010)
  13. An actin-filament-binding interface on the Arp2/3 complex is critical for nucleation and branch stability. Goley ED, Rammohan A, Znameroski EA, Firat-Karalar EN, Sept D, Welch MD. Proc. Natl. Acad. Sci. U.S.A. 107 8159-8164 (2010)
  14. Structure of an actin-related subcomplex of the SWI/SNF chromatin remodeler. Schubert HL, Wittmeyer J, Kasten MM, Hinata K, Rawling DC, Héroux A, Cairns BR, Hill CP. Proc. Natl. Acad. Sci. U.S.A. 110 3345-3350 (2013)
  15. Structural basis for regulation of Arp2/3 complex by GMF. Luan Q, Nolen BJ. Nat. Struct. Mol. Biol. 20 1062-1068 (2013)
  16. The bacterial effector VopL organizes actin into filament-like structures. Zahm JA, Padrick SB, Chen Z, Pak CW, Yunus AA, Henry L, Tomchick DR, Chen Z, Rosen MK. Cell 155 423-434 (2013)
  17. Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs. Boczkowska M, Rebowski G, Kast DJ, Dominguez R. Nat Commun 5 3308 (2014)
  18. Structure and biochemical properties of fission yeast Arp2/3 complex lacking the Arp2 subunit. Nolen BJ, Pollard TD. J. Biol. Chem. 283 26490-26498 (2008)
  19. Mechanisms of leiomodin 2-mediated regulation of actin filament in muscle cells. Chen X, Ni F, Kondrashkina E, Ma J, Wang Q. Proc. Natl. Acad. Sci. U.S.A. 112 12687-12692 (2015)
  20. Molecular dynamics simulation and coarse-grained analysis of the Arp2/3 complex. Pfaendtner J, Voth GA. Biophys. J. 95 5324-5333 (2008)
  21. Key structural features of the actin filament Arp2/3 complex branch junction revealed by molecular simulation. Pfaendtner J, Volkmann N, Hanein D, Dalhaimer P, Pollard TD, Voth GA. J. Mol. Biol. 416 148-161 (2012)
  22. Molecular dynamics simulations of Arp2/3 complex activation. Dalhaimer P, Pollard TD. Biophys. J. 99 2568-2576 (2010)
  23. Nucleotide- and activator-dependent structural and dynamic changes of arp2/3 complex monitored by hydrogen/deuterium exchange and mass spectrometry. Zencheck WD, Xiao H, Nolen BJ, Angeletti RH, Pollard TD, Almo SC. J. Mol. Biol. 390 414-427 (2009)
  24. Phosphorylation of the Arp2 subunit relieves auto-inhibitory interactions for Arp2/3 complex activation. Narayanan A, LeClaire LL, Barber DL, Jacobson MP. PLoS Comput. Biol. 7 e1002226 (2011)
  25. Arp2/3 complex subunit ARPC2 binds to microtubules. Havelková L, Nanda G, Martinek J, Bellinvia E, Sikorová L, Šlajcherová K, Seifertová D, Fischer L, Fišerová J, Petrášek J, Schwarzerová K. Plant Sci. 241 96-108 (2015)
  26. Crystals of the Arp2/3 complex in two new space groups with structural information about actin-related protein 2 and potential WASP binding sites. Jurgenson CT, Pollard TD. Acta Crystallogr F Struct Biol Commun 71 1161-1168 (2015)
  27. DNA binding properties of the actin-related protein Arp8 and its role in DNA repair. Osakabe A, Takahashi Y, Murakami H, Otawa K, Tachiwana H, Oma Y, Nishijima H, Shibahara KI, Kurumizaka H, Harata M. PLoS ONE 9 e108354 (2014)
  28. Role and structural mechanism of WASP-triggered conformational changes in branched actin filament nucleation by Arp2/3 complex. Rodnick-Smith M, Luan Q, Liu SL, Nolen BJ. Proc. Natl. Acad. Sci. U.S.A. 113 E3834-43 (2016)
  29. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM. Merino F, Pospich S, Funk J, Wagner T, Küllmer F, Arndt HD, Bieling P, Raunser S. Nat. Struct. Mol. Biol. 25 528-537 (2018)
  30. Identification of Wiskott-Aldrich syndrome protein (WASP) binding sites on the branched actin filament nucleator Arp2/3 complex. Luan Q, Zelter A, MacCoss MJ, Davis TN, Nolen BJ. Proc. Natl. Acad. Sci. U.S.A. 115 E1409-E1418 (2018)
  31. Conformational changes in Arp2/3 complex induced by ATP, WASp-VCA, and actin filaments. Espinoza-Sanchez S, Metskas LA, Chou SZ, Rhoades E, Pollard TD. Proc. Natl. Acad. Sci. U.S.A. 115 E8642-E8651 (2018)
  32. Subunit Rtt102 controls the conformation of the Arp7/9 heterodimer and its interactions with nucleotide and the catalytic subunit of SWI/SNF remodelers. Turegun B, Kast DJ, Dominguez R. J. Biol. Chem. 288 35758-35768 (2013)
  33. Arabidopsis thaliana plants lacking the ARP2/3 complex show defects in cell wall assembly and auxin distribution. Pratap Sahi V, Cifrová P, García-González J, Kotannal Baby I, Mouillé G, Gineau E, Müller K, Baluška F, Soukup A, Petrášek J, Schwarzerová K. Ann. Bot. 122 777-789 (2018)
  34. Cryo-EM of human Arp2/3 complexes provides structural insights into actin nucleation modulation by ARPC5 isoforms. von Loeffelholz O, Purkiss A, Cao L, Kjaer S, Kogata N, Romet-Lemonne G, Way M, Moores CA. Biol Open 9 (2020)
  35. ERK3/MAPK6 dictates CDC42/RAC1 activity and ARP2/3-dependent actin polymerization. Bogucka-Janczi K, Harms G, Coissieux MM, Bentires-Alj M, Thiede B, Rajalingam K. Elife 12 e85167 (2023)
  36. Mechanism of actin filament branch formation by Arp2/3 complex revealed by a high-resolution cryo-EM structureof the branch junction. Chou SZ, Chatterjee M, Pollard TD. Proc Natl Acad Sci U S A 119 e2206722119 (2022)
  37. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. Chou SZ, Pollard TD. Proc. Natl. Acad. Sci. U.S.A. (2019)
  38. Three-dimensional reconstructions of actin filaments capped by Arp2/3 complex. Volkmann N, Page C, Li R, Hanein D. Eur. J. Cell Biol. 93 179-183 (2014)
  39. Transition State of Arp2/3 Complex Activation by Actin-Bound Dimeric Nucleation-Promoting Factor. van Eeuwen T, Boczkowska M, Rebowski G, Carman PJ, Fregoso FE, Dominguez R. Proc Natl Acad Sci U S A 120 e2306165120 (2023)