2p8y Citations

Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation.

EMBO J 26 2421-31 (2007)
Related entries: 2p8w, 2p8x, 2p8z

Cited: 124 times
EuropePMC logo PMID: 17446867

Abstract

On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA-tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF-G in bacteria). We have obtained cryo-EM reconstructions of eukaryotic ribosomes complexed with ADP-ribosylated eEF2 (ADPR-eEF2), before and after GTP hydrolysis, providing a structural basis for analyzing the GTPase-coupled mechanism of translocation. Using the ADP-ribosyl group as a distinct marker, we observe conformational changes of ADPR-eEF2 that are due strictly to GTP hydrolysis. These movements are likely representative of native eEF2 motions in a physiological context and are sufficient to uncouple the mRNA-tRNA complex from two universally conserved bases in the ribosomal decoding center (A1492 and A1493 in Escherichia coli) during translocation. Interpretation of these data provides a detailed two-step model of translocation that begins with the eEF2/EF-G binding-induced ratcheting motion of the small ribosomal subunit. GTP hydrolysis then uncouples the mRNA-tRNA complex from the decoding center so translocation of the mRNA-tRNA moiety may be completed by a head rotation of the small subunit.

Reviews - 2p8y mentioned but not cited (1)

Articles - 2p8y mentioned but not cited (1)

  1. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J. EMBO J. 26 2421-2431 (2007)


Reviews citing this publication (34)

  1. The molecular sociology of the cell. Robinson CV, Sali A, Baumeister W. Nature 450 973-982 (2007)
  2. Structure and dynamics of a processive Brownian motor: the translating ribosome. Frank J, Gonzalez RL. Annu. Rev. Biochem. 79 381-412 (2010)
  3. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Kaul G, Pattan G, Rafeequi T. Cell Biochem. Funct. 29 227-234 (2011)
  4. Structural dynamics of the ribosome. Korostelev A, Ermolenko DN, Noller HF. Curr Opin Chem Biol 12 674-683 (2008)
  5. Recent mechanistic insights into eukaryotic ribosomes. Rodnina MV, Wintermeyer W. Curr. Opin. Cell Biol. 21 435-443 (2009)
  6. Single-particle reconstruction of biological macromolecules in electron microscopy--30 years. Frank J. Q. Rev. Biophys. 42 139-158 (2009)
  7. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation. Rodnina MV, Wintermeyer W. Biochem. Soc. Trans. 39 658-662 (2011)
  8. The structure and function of the eukaryotic ribosome. Wilson DN, Doudna Cate JH. Cold Spring Harb Perspect Biol 4 (2012)
  9. Ribosomal translocation: one step closer to the molecular mechanism. Shoji S, Walker SE, Fredrick K. ACS Chem. Biol. 4 93-107 (2009)
  10. IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Hellen CU. Biochim. Biophys. Acta 1789 558-570 (2009)
  11. Ribosome structure and dynamics during translocation and termination. Dunkle JA, Cate JH. Annu Rev Biophys 39 227-244 (2010)
  12. A new view of protein synthesis: mapping the free energy landscape of the ribosome using single-molecule FRET. Munro JB, Vaiana A, Sanbonmatsu KY, Blanchard SC. Biopolymers 89 565-577 (2008)
  13. Mechanism and Regulation of Protein Synthesis in Saccharomyces cerevisiae. Dever TE, Kinzy TG, Pavitt GD. Genetics 203 65-107 (2016)
  14. The diphthamide modification pathway from Saccharomyces cerevisiae--revisited. Schaffrath R, Abdel-Fattah W, Klassen R, Stark MJ. Mol. Microbiol. 94 1213-1226 (2014)
  15. Structural basis for protein synthesis: snapshots of the ribosome in motion. Noeske J, Cate JH. Curr. Opin. Struct. Biol. 22 743-749 (2012)
  16. Synchronous tRNA movements during translocation on the ribosome are orchestrated by elongation factor G and GTP hydrolysis. Holtkamp W, Wintermeyer W, Rodnina MV. Bioessays 36 908-918 (2014)
  17. Macromolecular structure modeling from 3D EM using VolRover 2.0. Zhang Q, Bettadapura R, Bajaj C. Biopolymers 97 709-731 (2012)
  18. Roadblocks and resolutions in eukaryotic translation. Schuller AP, Green R. Nat. Rev. Mol. Cell Biol. 19 526-541 (2018)
  19. The mechanics of translocation: a molecular "spring-and-ratchet" system. Moran SJ, Flanagan JF, Namy O, Stuart DI, Brierley I, Gilbert RJ. Structure 16 664-672 (2008)
  20. Translation Elongation and Recoding in Eukaryotes. Dever TE, Dinman JD, Green R. Cold Spring Harb Perspect Biol 10 (2018)
  21. Extensions, Extra Factors, and Extreme Complexity: Ribosomal Structures Provide Insights into Eukaryotic Translation. Weisser M, Ban N. Cold Spring Harb Perspect Biol 11 a032367 (2019)
  22. Structural Insights into tRNA Dynamics on the Ribosome. Agirrezabala X, Valle M. Int J Mol Sci 16 9866-9895 (2015)
  23. Almost lost in translation. Cryo-EM of a dynamic macromolecular complex: the ribosome. Valle M. Eur. Biophys. J. 40 589-597 (2011)
  24. Maturation of pre-40S particles in yeast and humans. Cerezo E, Plisson-Chastang C, Henras AK, Lebaron S, Gleizes PE, O'Donohue MF, Romeo Y, Henry Y. Wiley Interdiscip Rev RNA 10 e1516 (2019)
  25. New Insights into Ribosome Structure and Function. Jobe A, Liu Z, Gutierrez-Vargas C, Frank J. Cold Spring Harb Perspect Biol 11 (2019)
  26. Dysregulation of mRNA translation and energy metabolism in cancer. Leibovitch M, Topisirovic I. Adv Biol Regul 67 30-39 (2018)
  27. Translational regulation in response to stress in Saccharomyces cerevisiae. Crawford RA, Pavitt GD. Yeast 36 5-21 (2019)
  28. From DNA to proteins via the ribosome: structural insights into the workings of the translation machinery. Agirrezabala X, Frank J. Hum. Genomics 4 226-237 (2010)
  29. Oncogenic kinases and perturbations in protein synthesis machinery and energetics in neoplasia. Uchenunu O, Pollak M, Topisirovic I, Hulea L. J. Mol. Endocrinol. 62 R83-R103 (2019)
  30. The hidden nature of protein translational control by diphthamide: the secrets under the leather. Tsuda-Sakurai K, Miura M. J. Biochem. 165 1-8 (2019)
  31. Alcohol, Resistance Exercise, and mTOR Pathway Signaling: An Evidence-Based Narrative Review. Levitt DE, Luk HY, Vingren JL. Biomolecules 13 2 (2022)
  32. Genome Expansion by tRNA +1 Frameshifting at Quadruplet Codons. Gamper H, Masuda I, Hou YM. J Mol Biol 434 167440 (2022)
  33. Ribosome as a Translocase and Helicase. Bao C, Ermolenko DN. Biochemistry (Mosc) 86 992-1002 (2021)
  34. Translation Phases in Eukaryotes. Blanchet S, Ranjan N. Methods Mol Biol 2533 217-228 (2022)

Articles citing this publication (88)

  1. SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs. Shaikh TR, Gao H, Baxter WT, Asturias FJ, Boisset N, Leith A, Frank J. Nat Protoc 3 1941-1974 (2008)
  2. Structures of the human and Drosophila 80S ribosome. Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson DN, Beckmann R. Nature 497 80-85 (2013)
  3. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H. Nature 466 329-333 (2010)
  4. The mechanism for activation of GTP hydrolysis on the ribosome. Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. Science 330 835-838 (2010)
  5. The process of mRNA-tRNA translocation. Frank J, Gao H, Sengupta J, Gao N, Taylor DJ. Proc. Natl. Acad. Sci. U.S.A. 104 19671-19678 (2007)
  6. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, Armache JP, Sieber H, Ungewickell C, Berninghausen O, Daberkow I, Karcher A, Thomm M, Hopfner KP, Green R, Beckmann R. Nature 482 501-506 (2012)
  7. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Zhou J, Lancaster L, Donohue JP, Noller HF. Science 340 1236086 (2013)
  8. Comprehensive molecular structure of the eukaryotic ribosome. Taylor DJ, Devkota B, Huang AD, Topf M, Narayanan E, Sali A, Harvey SC, Frank J. Structure 17 1591-1604 (2009)
  9. Spontaneous formation of the unlocked state of the ribosome is a multistep process. Munro JB, Altman RB, Tung CS, Cate JH, Sanbonmatsu KY, Blanchard SC. Proc. Natl. Acad. Sci. U.S.A. 107 709-714 (2010)
  10. A steric block in translation caused by the antibiotic spectinomycin. Borovinskaya MA, Shoji S, Holton JM, Fredrick K, Cate JHD. ACS Chem. Biol. 2 545-552 (2007)
  11. Reinitiation and other unconventional posttermination events during eukaryotic translation. Skabkin MA, Skabkina OV, Hellen CU, Pestova TV. Mol. Cell 51 249-264 (2013)
  12. Preparation of macromolecular complexes for cryo-electron microscopy. Grassucci RA, Taylor DJ, Frank J. Nat Protoc 2 3239-3246 (2007)
  13. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Ramrath DJ, Lancaster L, Sprink T, Mielke T, Loerke J, Noller HF, Spahn CM. Proc. Natl. Acad. Sci. U.S.A. 110 20964-20969 (2013)
  14. Structural characterization of mRNA-tRNA translocation intermediates. Agirrezabala X, Liao HY, Schreiner E, Fu J, Ortiz-Meoz RF, Schulten K, Green R, Frank J. Proc. Natl. Acad. Sci. U.S.A. 109 6094-6099 (2012)
  15. A fast dynamic mode of the EF-G-bound ribosome. Munro JB, Altman RB, Tung CS, Sanbonmatsu KY, Blanchard SC. EMBO J. 29 770-781 (2010)
  16. Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. Bussiere C, Hashem Y, Arora S, Frank J, Johnson AW. J. Cell Biol. 197 747-759 (2012)
  17. Role of hybrid tRNA-binding states in ribosomal translocation. Walker SE, Shoji S, Pan D, Cooperman BS, Fredrick K. Proc. Natl. Acad. Sci. U.S.A. 105 9192-9197 (2008)
  18. Structure of EF-G-ribosome complex in a pretranslocation state. Chen Y, Feng S, Kumar V, Ero R, Gao YG. Nat. Struct. Mol. Biol. 20 1077-1084 (2013)
  19. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N. Mol. Cell 35 502-510 (2009)
  20. The ribosome as a conveying thermal ratchet machine. Spirin AS. J. Biol. Chem. 284 21103-21119 (2009)
  21. The structure of LepA, the ribosomal back translocase. Evans RN, Blaha G, Bailey S, Steitz TA. Proc. Natl. Acad. Sci. U.S.A. 105 4673-4678 (2008)
  22. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Sternberg SH, Fei J, Prywes N, McGrath KA, Gonzalez RL. Nat. Struct. Mol. Biol. 16 861-868 (2009)
  23. GTP hydrolysis by EF-G synchronizes tRNA movement on small and large ribosomal subunits. Holtkamp W, Cunha CE, Peske F, Konevega AL, Wintermeyer W, Rodnina MV. EMBO J. 33 1073-1085 (2014)
  24. Functional role of the sarcin-ricin loop of the 23S rRNA in the elongation cycle of protein synthesis. Shi X, Khade PK, Sanbonmatsu KY, Joseph S. J. Mol. Biol. 419 125-138 (2012)
  25. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase. Hizli AA, Chi Y, Swanger J, Carter JH, Liao Y, Welcker M, Ryazanov AG, Clurman BE. Mol. Cell. Biol. 33 596-604 (2013)
  26. Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. Abeyrathne PD, Koh CS, Grant T, Grigorieff N, Korostelev AA. Elife 5 (2016)
  27. Determination of signal-to-noise ratios and spectral SNRs in cryo-EM low-dose imaging of molecules. Baxter WT, Grassucci RA, Gao H, Frank J. J. Struct. Biol. 166 126-132 (2009)
  28. Structural characterization of ribosome recruitment and translocation by type IV IRES. Murray J, Savva CG, Shin BS, Dever TE, Ramakrishnan V, Fernández IS. Elife 5 (2016)
  29. A conserved eEF2 coding variant in SCA26 leads to loss of translational fidelity and increased susceptibility to proteostatic insult. Hekman KE, Yu GY, Brown CD, Zhu H, Du X, Gervin K, Undlien DE, Peterson A, Stevanin G, Clark HB, Pulst SM, Bird TD, White KP, Gomez CM. Hum. Mol. Genet. 21 5472-5483 (2012)
  30. Messenger RNA interactions in the decoding center control the rate of translocation. Khade PK, Joseph S. Nat. Struct. Mol. Biol. 18 1300-1302 (2011)
  31. Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. Ticu C, Nechifor R, Nguyen B, Desrosiers M, Wilson KS. EMBO J. 28 2053-2065 (2009)
  32. Molecular dynamics of EF-G during translocation. Li W, Trabuco LG, Schulten K, Frank J. Proteins 79 1478-1486 (2011)
  33. Cleavage of the sarcin-ricin loop of 23S rRNA differentially affects EF-G and EF-Tu binding. García-Ortega L, Alvarez-García E, Gavilanes JG, Martínez-del-Pozo A, Joseph S. Nucleic Acids Res. 38 4108-4119 (2010)
  34. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O). Li W, Atkinson GC, Thakor NS, Allas U, Lu CC, Chan KY, Tenson T, Schulten K, Wilson KS, Hauryliuk V, Frank J. Nat Commun 4 1477 (2013)
  35. The impact of aminoglycosides on the dynamics of translation elongation. Tsai A, Uemura S, Johansson M, Puglisi EV, Marshall RA, Aitken CE, Korlach J, Ehrenberg M, Puglisi JD. Cell Rep 3 497-508 (2013)
  36. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Heuer A, Gerovac M, Schmidt C, Trowitzsch S, Preis A, Kötter P, Berninghausen O, Becker T, Beckmann R, Tampé R. Nat. Struct. Mol. Biol. 24 453-460 (2017)
  37. Contribution of ribosomal residues to P-site tRNA binding. Shoji S, Abdi NM, Bundschuh R, Fredrick K. Nucleic Acids Res. 37 4033-4042 (2009)
  38. A chemical genomic screen in Saccharomyces cerevisiae reveals a role for diphthamidation of translation elongation factor 2 in inhibition of protein synthesis by sordarin. Botet J, Rodríguez-Mateos M, Ballesta JP, Revuelta JL, Remacha M. Antimicrob. Agents Chemother. 52 1623-1629 (2008)
  39. Consensus among flexible fitting approaches improves the interpretation of cryo-EM data. Ahmed A, Whitford PC, Sanbonmatsu KY, Tama F. J. Struct. Biol. 177 561-570 (2012)
  40. Simulation and analysis of single-ribosome translation. Tinoco I, Wen JD. Phys Biol 6 025006 (2009)
  41. Visualization of macromolecular complexes using cryo-electron microscopy with FEI Tecnai transmission electron microscopes. Grassucci RA, Taylor D, Frank J. Nat Protoc 3 330-339 (2008)
  42. Model of ribosome translation and mRNA unwinding. Xie P. Eur. Biophys. J. 42 347-354 (2013)
  43. Visualization of the eEF2-80S ribosome transition-state complex by cryo-electron microscopy. Sengupta J, Nilsson J, Gursky R, Kjeldgaard M, Nissen P, Frank J. J. Mol. Biol. 382 179-187 (2008)
  44. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit. Shin BS, Kim JR, Acker MG, Maher KN, Lorsch JR, Dever TE. Mol. Cell. Biol. 29 808-821 (2009)
  45. Precise alignment of peptidyl tRNA by the decoding center is essential for EF-G-dependent translocation. Garcia-Ortega L, Stephen J, Joseph S. Mol. Cell 32 292-299 (2008)
  46. ADP-ribosylation of translation elongation factor 2 by diphtheria toxin in yeast inhibits translation and cell separation. Mateyak MK, Kinzy TG. J. Biol. Chem. 288 24647-24655 (2013)
  47. Direct interaction between EFL1 and SBDS is mediated by an intrinsically disordered insertion domain. Asano N, Atsuumi H, Nakamura A, Tanaka Y, Tanaka I, Yao M. Biochem. Biophys. Res. Commun. 443 1251-1256 (2014)
  48. Direct observation of distinct A/P hybrid-state tRNAs in translocating ribosomes. Flanagan JF, Namy O, Brierley I, Gilbert RJC. Structure 18 257-264 (2010)
  49. The critical roles of information and nonequilibrium thermodynamics in evolution of living systems. Gatenby RA, Frieden BR. Bull. Math. Biol. 75 589-601 (2013)
  50. The molecular choreography of protein synthesis: translational control, regulation, and pathways. Chen J, Choi J, O'Leary SE, Prabhakar A, Petrov A, Grosely R, Puglisi EV, Puglisi JD. Q Rev Biophys 49 e11 (2016)
  51. An explanation of biphasic characters of mRNA translocation in the ribosome. Xie P. BioSystems 118 1-7 (2014)
  52. The ATPase Fap7 Tests the Ability to Carry Out Translocation-like Conformational Changes and Releases Dim1 during 40S Ribosome Maturation. Ghalei H, Trepreau J, Collins JC, Bhaskaran H, Strunk BS, Karbstein K. Mol. Cell 67 990-1000.e3 (2017)
  53. A dynamical model of programmed -1 ribosomal frameshifting. Xie P. J. Theor. Biol. 336 119-131 (2013)
  54. Free-energy landscape of reverse tRNA translocation through the ribosome analyzed by electron microscopy density maps and molecular dynamics simulations. Ishida H, Matsumoto A. PLoS ONE 9 e101951 (2014)
  55. Dynamics of forward and backward translocation of mRNA in the ribosome. Xie P. PLoS ONE 8 e70789 (2013)
  56. Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. Susorov D, Zakharov N, Shuvalova E, Ivanov A, Egorova T, Shuvalov A, Shatsky IN, Alkalaeva E. J. Biol. Chem. 293 5220-5229 (2018)
  57. Importance of individual amino acids in the Switch I region in eEF2 studied by functional complementation in S. cerevisiae. Bartish G, Nygård O. Biochimie 90 736-748 (2008)
  58. Structural insights into the mechanism of translational inhibition by the fungicide sordarin. Chakraborty B, Mukherjee R, Sengupta J. J. Comput. Aided Mol. Des. 27 173-184 (2013)
  59. Yeast translation elongation factor eEF3 promotes late stages of tRNA translocation. Ranjan N, Pochopien AA, Chih-Chien Wu C, Beckert B, Blanchet S, Green R, V Rodnina M, Wilson DN. EMBO J 40 e106449 (2021)
  60. Dynamic relationships between ribosomal conformational and RNA positional changes during ribosomal translocation. Xie P. Heliyon 2 e00214 (2016)
  61. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing. Osuna BA, Howard CJ, Kc S, Frost A, Weinberg DE. Elife 6 (2017)
  62. Dynamics of +1 ribosomal frameshifting. Xie P. Math Biosci 249 44-51 (2014)
  63. Site-Specific K63 Ubiquitinomics Provides Insights into Translation Regulation under Stress. Back S, Gorman AW, Vogel C, Silva GM. J. Proteome Res. 18 309-318 (2019)
  64. Translocation dynamics of tRNA-mRNA in the ribosome. Xie P. Biophys. Chem. 180-181 22-28 (2013)
  65. FitEM2EM--tools for low resolution study of macromolecular assembly and dynamics. Frankenstein Z, Sperling J, Sperling R, Eisenstein M. PLoS ONE 3 e3594 (2008)
  66. On the pathway of ribosomal translocation. Xie P. Int. J. Biol. Macromol. 92 401-415 (2016)
  67. Quantitative Characterization of Domain Motions in Molecular Machines. Maji S, Shahoei R, Schulten K, Frank J. J Phys Chem B 121 3747-3756 (2017)
  68. Varying strength of selection contributes to the intragenomic diversity of rRNA genes. Sultanov D, Hochwagen A. Nat Commun 13 7245 (2022)
  69. tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Flis J, Holm M, Rundlet EJ, Loerke J, Hilal T, Dabrowski M, Bürger J, Mielke T, Blanchard SC, Spahn CMT, Budkevich TV. Cell Rep 25 2676-2688.e7 (2018)
  70. Does AlphaFold2 model proteins' intracellular conformations? An experimental test using cross-linking mass spectrometry of endogenous ciliary proteins. McCafferty CL, Pennington EL, Papoulas O, Taylor DW, Marcotte EM. Commun Biol 6 421 (2023)
  71. High-resolution structures of a thermophilic eukaryotic 80S ribosome reveal atomistic details of translocation. Kišonaitė M, Wild K, Lapouge K, Ruppert T, Sinning I. Nat Commun 13 476 (2022)
  72. Induction of eEF2-specific antitumor CTL responses in vivo by vaccination with eEF2-derived 9mer-peptides. Nakajima H, Murakami Y, Morii E, Akao T, Tatsumi N, Odajima S, Fukuda M, Machitani T, Iwai M, Kawata S, Hojo N, Oka Y, Sugiyama H, Oji Y. Oncol. Rep. 35 1959-1966 (2016)
  73. Model of ribosomal translocation coupled with intra- and inter-subunit rotations. Xie P. Biochem Biophys Rep 2 87-93 (2015)
  74. Nhs: network-based hierarchical segmentation for cryo-electron microscopy density maps. Burger V, Chennubhotla C. Biopolymers 97 732-741 (2012)
  75. A thermal ratchet model of tRNA-mRNA translocation by the ribosome. Xie P. BioSystems 96 19-28 (2009)
  76. Accuracy mechanism of eukaryotic ribosome translocation. Djumagulov M, Demeshkina N, Jenner L, Rozov A, Yusupov M, Yusupova G. Nature 600 543-546 (2021)
  77. Expanding the ribosomal universe. Dinman JD, Kinzy TG. Structure 17 1547-1548 (2009)
  78. Genetic code degeneracy is established by the decoding center of the ribosome. Ye S, Lehmann J. Nucleic Acids Res 50 4113-4126 (2022)
  79. Insights into genome recoding from the mechanism of a classic +1-frameshifting tRNA. Gamper H, Li H, Masuda I, Miklos Robkis D, Christian T, Conn AB, Blaha G, Petersson EJ, Gonzalez RL, Hou YM. Nat Commun 12 328 (2021)
  80. Model of the pathway of -1 frameshifting: Kinetics. Xie P. Biochem Biophys Rep 5 453-467 (2016)
  81. Modes of action of ADP-ribosylated elongation factor 2 in inhibiting the polypeptide elongation cycle: a modeling study. Chen KC, Xie H, Cai Y. PLoS ONE 8 e66446 (2013)
  82. Real-time evidence for EF-G-induced dynamics of helix 44 in 16S rRNA. Tanner DR, Hedrick EG, Hill WE. J. Mol. Biol. 422 45-57 (2012)
  83. Regulation of translation by ribosomal RNA pseudouridylation. Zhao Y, Rai J, Li H. Sci Adv 9 eadg8190 (2023)
  84. Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state. Zhou J, Lancaster L, Donohue JP, Noller HF. Proc. Natl. Acad. Sci. U.S.A. 116 7813-7818 (2019)
  85. The FAM86 domain of FAM86A confers substrate specificity to promote EEF2-Lys525 methylation. Francis JW, Shao Z, Narkhede P, Trinh AT, Lu J, Song J, Gozani O. J Biol Chem 299 104842 (2023)
  86. The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation. Wieland M, Holm M, Rundlet EJ, Morici M, Koller TO, Maviza TP, Pogorevc D, Osterman IA, Müller R, Blanchard SC, Wilson DN. Proc Natl Acad Sci U S A 119 e2114214119 (2022)
  87. The flexible N-terminal motif of uL11 unique to eukaryotic ribosomes interacts with P-complex and facilitates protein translation. Yang L, Lee KM, Yu CW, Imai H, Choi AK, Banfield DK, Ito K, Uchiumi T, Wong KB. Nucleic Acids Res 50 5335-5348 (2022)
  88. mRNA reading frame maintenance during eukaryotic ribosome translocation. Milicevic N, Jenner L, Myasnikov A, Yusupov M, Yusupova G. Nature (2023)