2p20 Citations

Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase.

Biochemistry 46 6536-46 (2007)
Related entries: 2p2b, 2p2f, 2p2j, 2p2m, 2p2q

Cited: 81 times
EuropePMC logo PMID: 17497934

Abstract

The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140 degrees rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

Reviews - 2p20 mentioned but not cited (1)

Articles - 2p20 mentioned but not cited (3)

  1. Biochemical and crystallographic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Reger AS, Carney JM, Gulick AM. Biochemistry 46 6536-6546 (2007)
  2. Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis. Yang M, Wang Y, Chen Y, Cheng Z, Gu J, Deng J, Bi L, Chen C, Mo R, Wang X, Ge F. Mol Cell Proteomics 14 796-811 (2015)
  3. Expression of the sarA family of genes in different strains of Staphylococcus aureus. Ballal A, Manna AC. Microbiology (Reading) 155 2342-2352 (2009)


Reviews citing this publication (4)

  1. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Hur GH, Vickery CR, Burkart MD. Nat Prod Rep 29 1074-1098 (2012)
  2. Recent advances in engineering nonribosomal peptide assembly lines. Winn M, Fyans JK, Zhuo Y, Micklefield J. Nat Prod Rep 33 317-347 (2016)
  3. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Lammers M. Front Microbiol 12 757179 (2021)
  4. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Nat Prod Rep 40 1550-1582 (2023)

Articles citing this publication (73)

  1. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Drake EJ, Miller BR, Shi C, Tarrasch JT, Sundlov JA, Allen CL, Skiniotis G, Aldrich CC, Gulick AM. Nature 529 235-238 (2016)
  2. Structural characterization of a 140 degrees domain movement in the two-step reaction catalyzed by 4-chlorobenzoate:CoA ligase. Reger AS, Wu R, Dunaway-Mariano D, Gulick AM. Biochemistry 47 8016-8025 (2008)
  3. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Mitchell CA, Shi C, Aldrich CC, Gulick AM. Biochemistry 51 3252-3263 (2012)
  4. Automated Design of Efficient and Functionally Diverse Enzyme Repertoires. Khersonsky O, Lipsh R, Avizemer Z, Ashani Y, Goldsmith M, Leader H, Dym O, Rogotner S, Trudeau DL, Prilusky J, Amengual-Rigo P, Guallar V, Tawfik DS, Fleishman SJ. Mol Cell 72 178-186.e5 (2018)
  5. Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Sundlov JA, Fontaine DM, Southworth TL, Branchini BR, Gulick AM. Biochemistry 51 6493-6495 (2012)
  6. Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Crosby HA, Heiniger EK, Harwood CS, Escalante-Semerena JC. Mol Microbiol 76 874-888 (2010)
  7. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor MatB. Hughes AJ, Keatinge-Clay A. Chem Biol 18 165-176 (2011)
  8. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM. Proc Natl Acad Sci U S A 113 13917-13922 (2016)
  9. System-wide studies of N-lysine acetylation in Rhodopseudomonas palustris reveal substrate specificity of protein acetyltransferases. Crosby HA, Pelletier DA, Hurst GB, Escalante-Semerena JC. J Biol Chem 287 15590-15601 (2012)
  10. Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A. Kochan G, Pilka ES, von Delft F, Oppermann U, Yue WW. J Mol Biol 388 997-1008 (2009)
  11. Structural Biology of Nonribosomal Peptide Synthetases. Miller BR, Gulick AM. Methods Mol Biol 1401 3-29 (2016)
  12. Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis. Wu R, Cao J, Lu X, Reger AS, Gulick AM, Dunaway-Mariano D. Biochemistry 47 8026-8039 (2008)
  13. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Léger M, Gavalda S, Guillet V, van der Rest B, Slama N, Montrozier H, Mourey L, Quémard A, Daffé M, Marrakchi H. Chem Biol 16 510-519 (2009)
  14. Spatially-resolved metabolic cooperativity within dense bacterial colonies. Cole JA, Kohler L, Hedhli J, Luthey-Schulten Z. BMC Syst Biol 9 15 (2015)
  15. Biochemical and structural characterization of bisubstrate inhibitors of BasE, the self-standing nonribosomal peptide synthetase adenylate-forming enzyme of acinetobactin synthesis. Drake EJ, Duckworth BP, Neres J, Aldrich CC, Gulick AM. Biochemistry 49 9292-9305 (2010)
  16. Biosynthesis of macrolactam BE-14106 involves two distinct PKS systems and amino acid processing enzymes for generation of the aminoacyl starter unit. Jørgensen H, Degnes KF, Sletta H, Fjaervik E, Dikiy A, Herfindal L, Bruheim P, Klinkenberg G, Bredholt H, Nygård G, Døskeland SO, Ellingsen TE, Zotchev SB. Chem Biol 16 1109-1121 (2009)
  17. Design and in vitro realization of carbon-conserving photorespiration. Trudeau DL, Edlich-Muth C, Zarzycki J, Scheffen M, Goldsmith M, Khersonsky O, Avizemer Z, Fleishman SJ, Cotton CAR, Erb TJ, Tawfik DS, Bar-Even A. Proc Natl Acad Sci U S A 115 E11455-E11464 (2018)
  18. In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate. Chan CH, Garrity J, Crosby HA, Escalante-Semerena JC. Mol Microbiol 80 168-183 (2011)
  19. Insights into the evolution of macrolactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macrocyclic lactam, ML-449. Jørgensen H, Degnes KF, Dikiy A, Fjaervik E, Klinkenberg G, Zotchev SB. Appl Environ Microbiol 76 283-293 (2010)
  20. Structure of a eukaryotic nonribosomal peptide synthetase adenylation domain that activates a large hydroxamate amino acid in siderophore biosynthesis. Lee TV, Johnson LJ, Johnson RD, Koulman A, Lane GA, Lott JS, Arcus VL. J Biol Chem 285 2415-2427 (2010)
  21. The mechanism of domain alternation in the acyl-adenylate forming ligase superfamily member 4-chlorobenzoate: coenzyme A ligase. Wu R, Reger AS, Lu X, Gulick AM, Dunaway-Mariano D. Biochemistry 48 4115-4125 (2009)
  22. Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP. Osman KT, Du L, He Y, Luo Y. J Mol Biol 388 345-355 (2009)
  23. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis. Goyal A, Verma P, Anandhakrishnan M, Gokhale RS, Sankaranarayanan R. J Mol Biol 416 221-238 (2012)
  24. Analysis of the linker region joining the adenylation and carrier protein domains of the modular nonribosomal peptide synthetases. Miller BR, Sundlov JA, Drake EJ, Makin TA, Gulick AM. Proteins 82 2691-2702 (2014)
  25. Molecular cloning of rat acss3 and characterization of mammalian propionyl-CoA synthetase in the liver mitochondrial matrix. Yoshimura Y, Araki A, Maruta H, Takahashi Y, Yamashita H. J Biochem 161 279-289 (2017)
  26. Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N(ε)-lysine acetyltransferase involved in carbon and energy metabolism. Thao S, Escalante-Semerena JC. mBio 2 e00216-11 (2011)
  27. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli. Sikora AL, Wilson DJ, Aldrich CC, Blanchard JS. Biochemistry 49 3648-3657 (2010)
  28. Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Summers RL, Pasaje CFA, Pisco JP, Striepen J, Luth MR, Kumpornsin K, Carpenter EF, Munro JT, Lin, Plater A, Punekar AS, Shepherd AM, Shepherd SM, Vanaerschot M, Murithi JM, Rubiano K, Akidil A, Ottilie S, Mittal N, Dilmore AH, Won M, Mandt REK, McGowen K, Owen E, Walpole C, Llinás M, Lee MCS, Winzeler EA, Fidock DA, Gilbert IH, Wirth DF, Niles JC, Baragaña B, Lukens AK. Cell Chem Biol 29 191-201.e8 (2022)
  29. Structure-guided expansion of the substrate range of methylmalonyl coenzyme A synthetase (MatB) of Rhodopseudomonas palustris. Crosby HA, Rank KC, Rayment I, Escalante-Semerena JC. Appl Environ Microbiol 78 6619-6629 (2012)
  30. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis. Vergnolle O, Xu H, Tufariello JM, Favrot L, Malek AA, Jacobs WR, Blanchard JS. J Biol Chem 291 22315-22326 (2016)
  31. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages. Dubois D, Fernandes S, Amiar S, Dass S, Katris NJ, Botté CY, Yamaryo-Botté Y. J Lipid Res 59 994-1004 (2018)
  32. Defining a structural and kinetic rationale for paralogous copies of phenylacetate-CoA ligases from the cystic fibrosis pathogen Burkholderia cenocepacia J2315. Law A, Boulanger MJ. J Biol Chem 286 15577-15585 (2011)
  33. The acetylation motif in AMP-forming Acyl coenzyme A synthetases contains residues critical for acetylation and recognition by the protein acetyltransferase pat of Rhodopseudomonas palustris. Crosby HA, Escalante-Semerena JC. J Bacteriol 196 1496-1504 (2014)
  34. AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. Mayer F, Küper U, Meyer C, Daxer S, Müller V, Rachel R, Huber H. J Bacteriol 194 1572-1581 (2012)
  35. An enzyme-coupled assay measuring acetate production for profiling histone deacetylase specificity. Wolfson NA, Pitcairn CA, Sullivan ED, Joseph CG, Fierke CA. Anal Biochem 456 61-69 (2014)
  36. A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii. Hess V, Vitt S, Müller V. J Bacteriol 193 971-978 (2011)
  37. Computational discovery of specificity-conferring sites in non-ribosomal peptide synthetases. Knudsen M, Søndergaard D, Tofting-Olesen C, Hansen FT, Brodersen DE, Pedersen CN. Bioinformatics 32 325-329 (2016)
  38. Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction. Noy T, Xu H, Blanchard JS. Arch Biochem Biophys 550-551 42-49 (2014)
  39. Structural insights into the substrate specificity of the Rhodopseudomonas palustris protein acetyltransferase RpPat: identification of a loop critical for recognition by RpPat. Crosby HA, Rank KC, Rayment I, Escalante-Semerena JC. J Biol Chem 287 41392-41404 (2012)
  40. The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates. Shah MB, Ingram-Smith C, Cooper LL, Qu J, Meng Y, Smith KS, Gulick AM. Proteins 77 685-698 (2009)
  41. Cyclic AMP Inhibits the Activity and Promotes the Acetylation of Acetyl-CoA Synthetase through Competitive Binding to the ATP/AMP Pocket. Han X, Shen L, Wang Q, Cen X, Wang J, Wu M, Li P, Zhao W, Zhang Y, Zhao G. J Biol Chem 292 1374-1384 (2017)
  42. In Streptomyces lividans, acetyl-CoA synthetase activity is controlled by O-serine and Nɛ -lysine acetylation. VanDrisse CM, Escalante-Semerena JC. Mol Microbiol 107 577-594 (2018)
  43. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Shao X, Cao HY, Zhao F, Peng M, Wang P, Li CY, Shi WL, Wei TD, Yuan Z, Zhang XH, Chen XL, Todd JD, Zhang YZ. Mol Microbiol 111 1057-1073 (2019)
  44. The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Bernhardsgrütter I, Vögeli B, Wagner T, Peter DM, Cortina NS, Kahnt J, Bange G, Engilberge S, Girard E, Riobé F, Maury O, Shima S, Zarzycki J, Erb TJ. Nat Chem Biol 14 1127-1132 (2018)
  45. Salmonella typhimurium and Escherichia coli dissimilarity: Closely related bacteria with distinct metabolic profiles. Sargo CR, Sargo CR, Campani G, Silva GG, Giordano RC, Da Silva AJ, Zangirolami TC, Correia DM, Ferreira EC, Rocha I. Biotechnol Prog 31 1217-1225 (2015)
  46. Structural Basis for the ATP-dependent Configuration of Adenylation Active Site in Bacillus subtilis o-Succinylbenzoyl-CoA Synthetase. Chen Y, Sun Y, Song H, Guo Z. J Biol Chem 290 23971-23983 (2015)
  47. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif. Soumya N, Kumar IS, Shivaprasad S, Gorakh LN, Dinesh N, Swamy KK, Singh S. Int J Biol Macromol 75 364-372 (2015)
  48. Thiolation-enhanced substrate recognition by D-alanyl carrier protein ligase DltA from Bacillus cereus. Du L, Luo Y. F1000Res 3 106 (2014)
  49. Structure of the adenylation domain Thr1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093-protein flexibility and molecular bases of substrate specificity. Scaglione A, Fullone MR, Montemiglio LC, Parisi G, Zamparelli C, Vallone B, Savino C, Grgurina I. FEBS J 284 2981-2999 (2017)
  50. A substitution mutation in a conserved domain of mammalian acetate-dependent acetyl CoA synthetase 2 results in destabilized protein and impaired HIF-2 signaling. Nagati JS, Xu M, Garcia T, Comerford SA, Hammer RE, Garcia JA. PLoS One 14 e0225105 (2019)
  51. Computational study of the binding mechanism of medium chain acyl-CoA synthetase with substrate in Methanosarcina acetivorans. Du J, Wang X, Nie Q, Yang J, Yao X. J Biotechnol 259 160-167 (2017)
  52. Adenylate-forming enzymes of rubradirin biosynthesis: RubC1 is a bifunctional enzyme with aminocoumarin acyl ligase and tyrosine-activating domains. Boll B, Hennig S, Xie C, Sohng JK, Heide L. Chembiochem 12 1105-1114 (2011)
  53. Characterization and expression of AMP-forming Acetyl-CoA Synthetase from Dunaliella tertiolecta and its response to nitrogen starvation stress. Liang MH, Liang MH, Qv XY, Jin HH, Jiang JG. Sci Rep 6 23445 (2016)
  54. Context-dependent activity of A domains in the tyrocidine synthetase. Degen A, Mayerthaler F, Mootz HD, Di Ventura B. Sci Rep 9 5119 (2019)
  55. Crystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode. Chen Y, Li TL, Lin X, Li X, Li XD, Guo Z. J Biol Chem 292 12296-12310 (2017)
  56. DltC acts as an interaction hub for AcpS, DltA and DltB in the teichoic acid D-alanylation pathway of Lactiplantibacillus plantarum. Nikolopoulos N, Matos RC, Courtin P, Ayala I, Akherraz H, Simorre JP, Chapot-Chartier MP, Leulier F, Ravaud S, Grangeasse C. Sci Rep 12 13133 (2022)
  57. Mechanistic insight into acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria. Wang P, Cao HY, Chen XL, Li CY, Li PY, Zhang XY, Qin QL, Todd JD, Zhang YZ. Mol Microbiol 105 674-688 (2017)
  58. New AMP-forming acid:CoA ligases from Streptomyces lividans, some of which are posttranslationally regulated by reversible lysine acetylation. Burckhardt RM, VanDrisse CM, Tucker AC, Escalante-Semerena JC. Mol Microbiol 113 253-269 (2020)
  59. The structure of S. lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain. Mitchell CA, Tucker AC, Escalante-Semerena JC, Gulick AM. Proteins 83 575-581 (2015)
  60. A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation. Patil GS, Kinatukara P, Mondal S, Shambhavi S, Patel KD, Pramanik S, Dubey N, Narasimhan S, Madduri MK, Pal B, Gokhale RS, Sankaranarayanan R. Elife 10 e70067 (2021)
  61. Enzyme engineering and in vivo testing of a formate reduction pathway. Wang J, Anderson K, Yang E, He L, Lidstrom ME. Synth Biol (Oxf) 6 ysab020 (2021)
  62. Inter-Modular Linkers play a crucial role in governing the biosynthesis of non-ribosomal peptides. Farag S, Bleich RM, Shank EA, Isayev O, Bowers AA, Tropsha A. Bioinformatics 35 3584-3591 (2019)
  63. Role of motif III in catalysis by acetyl-CoA synthetase. Ingram-Smith C, Thurman JL, Zimowski K, Smith KS. Archaea 2012 509579 (2012)
  64. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Biochemistry 58 1918-1930 (2019)
  65. Ligand binding at the A-cluster in full-length or truncated acetyl-CoA synthase studied by X-ray absorption spectroscopy. Schrapers P, Ilina J, Gregg CM, Mebs S, Jeoung JH, Dau H, Dobbek H, Haumann M. PLoS One 12 e0171039 (2017)
  66. Mammalian acetate-dependent acetyl CoA synthetase 2 contains multiple protein destabilization and masking elements. Nagati JS, Kobeissy PH, Nguyen MQ, Xu M, Garcia T, Comerford SA, Hammer RE, Garcia JA. J Biol Chem 297 101037 (2021)
  67. Sirtuin-Dependent Reversible Lysine Acetylation Controls the Activity of Acetyl Coenzyme A Synthetase in Campylobacter jejuni. Jeter VL, Escalante-Semerena JC. J Bacteriol 203 e0033321 (2021)
  68. The Key Roles of Mycobacterium tuberculosis FadD23 C-terminal Domain in Catalytic Mechanisms. Yan M, Cao L, Zhao L, Zhou W, Liu X, Zhang W, Rao Z. Front Microbiol 14 1090534 (2023)
  69. Characterization of a Cytosolic Acyl-Activating Enzyme Catalyzing the Formation of 4-Methylvaleryl-CoA for Pogostone Biosynthesis in Pogostemon Cablin. Chen J, Liu L, Wang Y, Li Z, Wang G, Kraus GA, Pichersky E, Xu H. Plant Cell Physiol 62 1556-1571 (2021)
  70. High-Throughput Engineering of Nonribosomal Extension Modules. Camus A, Gantz M, Hilvert D. ACS Chem Biol 18 2516-2523 (2023)
  71. Solution and Membrane Interaction Dynamics of Mycobacterium tuberculosis Fatty Acyl-CoA Synthetase FadD13. Lundgren CAK, Lerche M, Norling C, Högbom M. Biochemistry 60 1520-1532 (2021)
  72. Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases. Sun X, Alfermann J, Li H, Watkins MB, Chen YT, Morrell TE, Mayerthaler F, Wang CY, Komatsuzaki T, Chu JW, Ando N, Mootz HD, Yang H. Nat Chem 16 259-268 (2024)
  73. The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases. Meng Y, Ingram-Smith C, Ahmed O, Smith K. Life (Basel) 13 1643 (2023)