2otk Citations

Stabilization of a beta-hairpin in monomeric Alzheimer's amyloid-beta peptide inhibits amyloid formation.

Proc Natl Acad Sci U S A 105 5099-104 (2008)
Cited: 230 times
EuropePMC logo PMID: 18375754

Abstract

According to the amyloid hypothesis, the pathogenesis of Alzheimer's disease is triggered by the oligomerization and aggregation of the amyloid-beta (Abeta) peptide into protein plaques. Formation of the potentially toxic oligomeric and fibrillar Abeta assemblies is accompanied by a conformational change toward a high content of beta-structure. Here, we report the solution structure of Abeta(1-40) in complex with the phage-display selected affibody protein Z(Abeta3), a binding protein of nanomolar affinity. Bound Abeta(1-40) features a beta-hairpin comprising residues 17-36, providing the first high-resolution structure of Abeta in beta conformation. The positions of the secondary structure elements strongly resemble those observed for fibrillar Abeta. Z(Abeta3) stabilizes the beta-sheet by extending it intermolecularly and by burying both of the mostly nonpolar faces of the Abeta hairpin within a large hydrophobic tunnel-like cavity. Consequently, Z(Abeta3) acts as a stoichiometric inhibitor of Abeta fibrillation. The selected Abeta conformation allows us to suggest a structural mechanism for amyloid formation based on soluble oligomeric hairpin intermediates.

Reviews - 2otk mentioned but not cited (7)

  1. Amyloid beta: structure, biology and structure-based therapeutic development. Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Acta Pharmacol Sin 38 1205-1235 (2017)
  2. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Zhang T, Wang C, Derreumaux P. Chem. Rev. 115 3518-3563 (2015)
  3. Structural insights for engineering binding proteins based on non-antibody scaffolds. Gilbreth RN, Koide S. Curr Opin Struct Biol 22 413-420 (2012)
  4. The elusive nature and diagnostics of misfolded Aβ oligomers. Cerasoli E, Ryadnov MG, Austen BM. Front Chem 3 17 (2015)
  5. Alzheimer's disease--a panorama glimpse. Zhao LN, Lu L, Chew LY, Mu Y. Int J Mol Sci 15 12631-12650 (2014)
  6. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. Fändrich M, Nyström S, Nilsson KPR, Böckmann A, LeVine H, Hammarström P. J. Intern. Med. 283 218-237 (2018)
  7. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Sedov I, Khaibrakhmanova D. Int J Mol Sci 23 13428 (2022)

Articles - 2otk mentioned but not cited (32)

  1. Stabilization of a beta-hairpin in monomeric Alzheimer's amyloid-beta peptide inhibits amyloid formation. Hoyer W, Grönwall C, Jonsson A, Ståhl S, Härd T. Proc. Natl. Acad. Sci. U.S.A. 105 5099-5104 (2008)
  2. Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering. Sandberg A, Luheshi LM, Söllvander S, Pereira de Barros T, Macao B, Knowles TP, Biverstål H, Lendel C, Ekholm-Petterson F, Dubnovitsky A, Lannfelt L, Dobson CM, Härd T. Proc. Natl. Acad. Sci. U.S.A. 107 15595-15600 (2010)
  3. Toxic fibrillar oligomers of amyloid-β have cross-β structure. Stroud JC, Liu C, Teng PK, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 109 7717-7722 (2012)
  4. Aβ monomers transiently sample oligomer and fibril-like configurations: ensemble characterization using a combined MD/NMR approach. Rosenman DJ, Connors CR, Chen W, Wang C, García AE. J. Mol. Biol. 425 3338-3359 (2013)
  5. Solid-state NMR reveals a close structural relationship between amyloid-β protofibrils and oligomers. Scheidt HA, Morgado I, Huster D. J. Biol. Chem. 287 22822-22826 (2012)
  6. X-ray Crystallographic Structures of a Trimer, Dodecamer, and Annular Pore Formed by an Aβ17-36 β-Hairpin. Kreutzer AG, Hamza IL, Spencer RK, Nowick JS. J. Am. Chem. Soc. 138 4634-4642 (2016)
  7. Peptide-Based Vaccines: Current Progress and Future Challenges. Malonis RJ, Lai JR, Vergnolle O. Chem Rev 120 3210-3229 (2020)
  8. β-Hairpin of Islet Amyloid Polypeptide Bound to an Aggregation Inhibitor. Mirecka EA, Feuerstein S, Gremer L, Schröder GF, Stoldt M, Willbold D, Hoyer W. Sci Rep 6 33474 (2016)
  9. Alternative conformations of the Tau repeat domain in complex with an engineered binding protein. Grüning CS, Mirecka EA, Klein AN, Mandelkow E, Willbold D, Marino SF, Stoldt M, Hoyer W. J. Biol. Chem. 289 23209-23218 (2014)
  10. Comparative studies of disordered proteins with similar sequences: application to Aβ40 and Aβ42. Fisher CK, Ullman O, Stultz CM. Biophys. J. 104 1546-1555 (2013)
  11. The off-rate of monomers dissociating from amyloid-β protofibrils. Grüning CS, Klinker S, Wolff M, Schneider M, Toksöz K, Klein AN, Nagel-Steger L, Willbold D, Hoyer W. J. Biol. Chem. 288 37104-37111 (2013)
  12. Modeling amyloid-beta as homogeneous dodecamers and in complex with cellular prion protein. Gallion SL. PLoS ONE 7 e49375 (2012)
  13. A new motif in the N-terminal of acetylcholinesterase triggers amyloid-β aggregation and deposition. Hou LN, Xu JR, Zhao QN, Gao XL, Cui YY, Xu J, Wang H, Chen HZ. CNS Neurosci Ther 20 59-66 (2014)
  14. Coupling of Zinc-Binding and Secondary Structure in Nonfibrillar Aβ40 Peptide Oligomerization. Xu L, Shan S, Chen Y, Wang X, Nussinov R, Ma B. J Chem Inf Model 55 1218-1230 (2015)
  15. Protein aggregation into insoluble deposits protects from oxidative stress. Carija A, Navarro S, de Groot NS, Ventura S. Redox Biol 12 699-711 (2017)
  16. Cryo-electron Microscopy Imaging of Alzheimer's Amyloid-beta 42 Oligomer Displayed on a Functionally and Structurally Relevant Scaffold. Wu J, Blum TB, Farrell DP, DiMaio F, Abrahams JP, Luo J. Angew Chem Int Ed Engl 60 18680-18687 (2021)
  17. Origin of metastable oligomers and their effects on amyloid fibril self-assembly. Hasecke F, Miti T, Perez C, Barton J, Schölzel D, Gremer L, Grüning CSR, Matthews G, Meisl G, Knowles TPJ, Knowles TPJ, Willbold D, Neudecker P, Heise H, Ullah G, Hoyer W, Muschol M. Chem Sci 9 5937-5948 (2018)
  18. Analysis of conformational variation in macromolecular structural models. Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. PLoS ONE 7 e39993 (2012)
  19. Varied Probability of Staying Collapsed/Extended at the Conformational Equilibrium of Monomeric Aβ40 and Aβ42. Song W, Wang Y, Colletier JP, Yang H, Xu Y. Sci Rep 5 11024 (2015)
  20. Side-chain moieties from the N-terminal region of Aβ are Involved in an oligomer-stabilizing network of interactions. Przygońska K, Poznański J, Mistarz UH, Rand KD, Dadlez M. PLoS ONE 13 e0201761 (2018)
  21. A Hairpin Motif in the Amyloid-β Peptide Is Important for Formation of Disease-Related Oligomers. Khaled M, Rönnbäck I, Ilag LL, Gräslund A, Strodel B, Österlund N. J Am Chem Soc 145 18340-18354 (2023)
  22. Data on correlation between Aβ42 structural aggregation propensity and toxicity in bacteria. Carija A, Navarro S, Ventura S. Data Brief 7 143-147 (2016)
  23. NMR structure of the water soluble Aβ17-34 peptide. Fonar G, Samson AO. Biosci. Rep. 34 e00155 (2014)
  24. Protein folding, misfolding and aggregation: The importance of two-electron stabilizing interactions. Cieplak AS. PLoS ONE 12 e0180905 (2017)
  25. A β-barrel-like tetramer formed by a β-hairpin derived from Aβ. Samdin TD, Jones CR, Guaglianone G, Kreutzer AG, Freites JA, Wierzbicki M, Nowick JS. Chem Sci 15 285-297 (2023)
  26. Affibody-Binding Ligands. Barozzi A, Lavoie RA, Day KN, Prodromou R, Menegatti S. Int J Mol Sci 21 (2020)
  27. Affibody-Mediated Sequestration of Amyloid β Demonstrates Preventive Efficacy in a Transgenic Alzheimer's Disease Mouse Model. Boutajangout A, Lindberg H, Awwad A, Paul A, Baitalmal R, Almokyad I, Höidén-Guthenberg I, Gunneriusson E, Frejd FY, Härd T, Löfblom J, Ståhl S, Wisniewski T. Front Aging Neurosci 11 64 (2019)
  28. An Affibody Molecule Is Actively Transported into the Cerebrospinal Fluid via Binding to the Transferrin Receptor. Meister SW, Hjelm LC, Dannemeyer M, Tegel H, Lindberg H, Ståhl S, Löfblom J. Int J Mol Sci 21 (2020)
  29. Construction and Validation of a New Naïve Sequestrin Library for Directed Evolution of Binders against Aggregation-Prone Peptides. Hjelm LC, Lindberg H, Ståhl S, Löfblom J. Int J Mol Sci 24 836 (2023)
  30. Evaluation of the Impact of Protein Aggregation on Cellular Oxidative Stress in Yeast. Carija A, Ventura S, Navarro S. J Vis Exp (2018)
  31. Molecular dynamics simulations reveal the importance of amyloid-beta oligomer β-sheet edge conformations in membrane permeabilization. Matthes D, de Groot BL. J Biol Chem 299 103034 (2023)
  32. Sequence-based identification of amyloidogenic β-hairpins reveals a prostatic acid phosphatase fragment promoting semen amyloid formation. Heid LF, Agerschou ED, Orr AA, Kupreichyk T, Schneider W, Wördehoff MM, Schwarten M, Willbold D, Tamamis P, Stoldt M, Hoyer W. Comput Struct Biotechnol J 23 417-430 (2024)


Reviews citing this publication (34)

  1. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S, Frejd FY. FEBS Lett. 584 2670-2680 (2010)
  2. Engineered protein scaffolds as next-generation antibody therapeutics. Gebauer M, Skerra A. Curr Opin Chem Biol 13 245-255 (2009)
  3. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. Nygren PA. FEBS J. 275 2668-2676 (2008)
  4. On the lag phase in amyloid fibril formation. Arosio P, Knowles TP, Linse S. Phys Chem Chem Phys 17 7606-7618 (2015)
  5. Amyloid polymorphism: structural basis and neurobiological relevance. Tycko R. Neuron 86 632-645 (2015)
  6. ATR-FTIR: a "rejuvenated" tool to investigate amyloid proteins. Sarroukh R, Goormaghtigh E, Ruysschaert JM, Raussens V. Biochim. Biophys. Acta 1828 2328-2338 (2013)
  7. Nanobodies and recombinant binders in cell biology. Helma J, Cardoso MC, Muyldermans S, Leonhardt H. J. Cell Biol. 209 633-644 (2015)
  8. Small molecule inhibitors of amyloid β peptide aggregation as a potential therapeutic strategy for Alzheimer's disease. Nie Q, Du XG, Geng MY. Acta Pharmacol. Sin. 32 545-551 (2011)
  9. Bridging the gap: from protein misfolding to protein misfolding diseases. Luheshi LM, Dobson CM. FEBS Lett. 583 2581-2586 (2009)
  10. Hydrophobicity of proteins and interfaces: insights from density fluctuations. Jamadagni SN, Godawat R, Garde S. Annu Rev Chem Biomol Eng 2 147-171 (2011)
  11. Non-immunoglobulin scaffolds: a focus on their targets. Škrlec K, Štrukelj B, Berlec A. Trends Biotechnol. 33 408-418 (2015)
  12. Engineered affinity proteins--generation and applications. Grönwall C, Ståhl S. J. Biotechnol. 140 254-269 (2009)
  13. Affibody Molecules in Biotechnological and Medical Applications. Ståhl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren PÅ, Löfblom J. Trends Biotechnol. 35 691-712 (2017)
  14. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules. Wärmländer S, Tiiman A, Abelein A, Luo J, Jarvet J, Söderberg KL, Danielsson J, Gräslund A. Chembiochem 14 1692-1704 (2013)
  15. An Account of Amyloid Oligomers: Facts and Figures Obtained from Experiments and Simulations. Nagel-Steger L, Owen MC, Strodel B. Chembiochem 17 657-676 (2016)
  16. New concepts and aids to facilitate crystallization. Bukowska MA, Grütter MG. Curr. Opin. Struct. Biol. 23 409-416 (2013)
  17. Protein engineering to stabilize soluble amyloid β-protein aggregates for structural and functional studies. Härd T. FEBS J. 278 3884-3892 (2011)
  18. The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. Abelein A, Abrahams JP, Danielsson J, Gräslund A, Jarvet J, Luo J, Tiiman A, Wärmländer SK. J. Biol. Inorg. Chem. 19 623-634 (2014)
  19. A brief overview of amyloids and Alzheimer's disease. Ow SY, Dunstan DE. Protein Sci. 23 1315-1331 (2014)
  20. Affibody molecules as engineered protein drugs. Frejd FY, Kim KT. Exp. Mol. Med. 49 e306 (2017)
  21. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Aleksis R, Oleskovs F, Jaudzems K, Pahnke J, Biverstål H. Biochimie 140 176-192 (2017)
  22. Multicomponent peptide assemblies. Raymond DM, Nilsson BL. Chem Soc Rev 47 3659-3720 (2018)
  23. Exploring critical determinants of protein amyloidogenesis: a review. Sarkar N, Dubey VK. J. Pept. Sci. 19 529-536 (2013)
  24. Perspectives on Inhibiting β-Amyloid Aggregation through Structure-Based Drug Design. Mishra P, Ayyannan SR, Panda G. ChemMedChem 10 1467-1474 (2015)
  25. In situ Protein Detection for Companion Diagnostics. Gremel G, Grannas K, Sutton LA, Pontén F, Zieba A. Front Oncol 3 271 (2013)
  26. Looking at the Disordered Proteins through the Computational Microscope. Das P, Matysiak S, Mittal J. ACS Cent Sci 4 534-542 (2018)
  27. Natural Products Targeting Amyloid Beta in Alzheimer's Disease. Lee JH, Ahn NH, Choi SB, Kwon Y, Yang SH. Int J Mol Sci 22 2341 (2021)
  28. Biotechnologically engineered protein binders for applications in amyloid diseases. Haupt C, Fändrich M. Trends Biotechnol. 32 513-520 (2014)
  29. Exploring amyloid oligomers with peptide model systems. Samdin TD, Kreutzer AG, Nowick JS. Curr Opin Chem Biol 64 106-115 (2021)
  30. Understanding amyloid fibril formation using protein fragments: structural investigations via vibrational spectroscopy and solid-state NMR. Martial B, Lefèvre T, Auger M. Biophys Rev 10 1133-1149 (2018)
  31. Advancements of the sFIDA method for oligomer-based diagnostics of neurodegenerative diseases. Kulawik A, Heise H, Zafiu C, Willbold D, Bannach O. FEBS Lett. 592 516-534 (2018)
  32. Natural Compounds as Inhibitors of Aβ Peptide Aggregation: Chemical Requirements and Molecular Mechanisms. Pagano K, Tomaselli S, Molinari H, Ragona L. Front Neurosci 14 619667 (2020)
  33. Phage display derived peptides for Alzheimer's disease therapy and diagnosis. Zhang X, Zhang X, Gao H, Qing G. Theranostics 12 2041-2062 (2022)
  34. Targeting Amyloid Aggregation: An Overview of Strategies and Mechanisms. Giorgetti S, Greco C, Tortora P, Aprile FA. Int J Mol Sci 19 (2018)

Articles citing this publication (157)

  1. Antiparallel beta-sheet: a signature structure of the oligomeric amyloid beta-peptide. Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne YF, Narayanaswami V, Goormaghtigh E, Ruysschaert JM, Raussens V. Biochem. J. 421 415-423 (2009)
  2. Influence of preformed Asp23-Lys28 salt bridge on the conformational fluctuations of monomers and dimers of Abeta peptides with implications for rates of fibril formation. Reddy G, Straub JE, Thirumalai D. J Phys Chem B 113 1162-1172 (2009)
  3. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsén L, Härd T. Proc. Natl. Acad. Sci. U.S.A. 107 15039-15044 (2010)
  4. Characteristics of amyloid-related oligomers revealed by crystal structures of macrocyclic β-sheet mimics. Liu C, Sawaya MR, Cheng PN, Zheng J, Nowick JS, Eisenberg D. J. Am. Chem. Soc. 133 6736-6744 (2011)
  5. A hexameric peptide barrel as building block of amyloid-β protofibrils. Lendel C, Bjerring M, Dubnovitsky A, Kelly RT, Filippov A, Antzutkin ON, Nielsen NC, Härd T. Angew. Chem. Int. Ed. Engl. 53 12756-12760 (2014)
  6. Identification of physiological and toxic conformations in Abeta42 aggregates. Masuda Y, Uemura S, Ohashi R, Nakanishi A, Takegoshi K, Shimizu T, Shirasawa T, Irie K. Chembiochem 10 287-295 (2009)
  7. Mechanisms for the Insertion of Toxic, Fibril-like β-Amyloid Oligomers into the Membrane. Jang H, Connelly L, Arce FT, Ramachandran S, Kagan BL, Lal R, Nussinov R. J Chem Theory Comput 9 822-833 (2013)
  8. Sequestration of the Abeta peptide prevents toxicity and promotes degradation in vivo. Luheshi LM, Hoyer W, de Barros TP, van Dijk Härd I, Brorsson AC, Macao B, Persson C, Crowther DC, Lomas DA, Ståhl S, Dobson CM, Härd T. PLoS Biol. 8 e1000334 (2010)
  9. Role of β-hairpin formation in aggregation: the self-assembly of the amyloid-β(25-35) peptide. Larini L, Shea JE. Biophys. J. 103 576-586 (2012)
  10. Secondary structure conversions of Alzheimer's Abeta(1-40) peptide induced by membrane-mimicking detergents. Wahlström A, Hugonin L, Perálvarez-Marín A, Jarvet J, Gräslund A. FEBS J. 275 5117-5128 (2008)
  11. BRICHOS domains efficiently delay fibrillation of amyloid β-peptide. Willander H, Presto J, Askarieh G, Biverstål H, Frohm B, Knight SD, Johansson J, Linse S. J. Biol. Chem. 287 31608-31617 (2012)
  12. Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. Castillo V, Ventura S. PLoS Comput. Biol. 5 e1000476 (2009)
  13. Transformation of amyloid β(1-40) oligomers into fibrils is characterized by a major change in secondary structure. Sarroukh R, Cerf E, Derclaye S, Dufrêne YF, Goormaghtigh E, Ruysschaert JM, Raussens V. Cell. Mol. Life Sci. 68 1429-1438 (2011)
  14. Dynamics of amyloid β fibrils revealed by solid-state NMR. Scheidt HA, Morgado I, Rothemund S, Huster D. J. Biol. Chem. 287 2017-2021 (2012)
  15. Structural insights into Aβ42 oligomers using site-directed spin labeling. Gu L, Liu C, Guo Z. J. Biol. Chem. 288 18673-18683 (2013)
  16. X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Aβ(17-36). Spencer RK, Li H, Nowick JS. J. Am. Chem. Soc. 136 5595-5598 (2014)
  17. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations. Han W, Schulten K. J. Am. Chem. Soc. 136 12450-12460 (2014)
  18. Aβ dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. O'Malley TT, Oktaviani NA, Zhang D, Lomakin A, O'Nuallain B, Linse S, Benedek GB, Rowan MJ, Mulder FA, Walsh DM. Biochem. J. 461 413-426 (2014)
  19. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water. Lee C, Ham S. J Comput Chem 32 349-355 (2011)
  20. Human serum albumin inhibits Abeta fibrillization through a "monomer-competitor" mechanism. Milojevic J, Raditsis A, Melacini G. Biophys. J. 97 2585-2594 (2009)
  21. Micelle-like architecture of the monomer ensemble of Alzheimer's amyloid-β peptide in aqueous solution and its implications for Aβ aggregation. Vitalis A, Caflisch A. J. Mol. Biol. 403 148-165 (2010)
  22. Monte Carlo study of the formation and conformational properties of dimers of Aβ42 variants. Mitternacht S, Staneva I, Härd T, Irbäck A. J. Mol. Biol. 410 357-367 (2011)
  23. Aggregation and fibril morphology of the Arctic mutation of Alzheimer's Aβ peptide by CD, TEM, STEM and in situ AFM. Norlin N, Hellberg M, Filippov A, Sousa AA, Gröbner G, Leapman RD, Almqvist N, Antzutkin ON. J. Struct. Biol. 180 174-189 (2012)
  24. Monomeric Aβ(1-40) and Aβ(1-42) Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil. Roche J, Shen Y, Lee JH, Ying J, Bax A. Biochemistry 55 762-775 (2016)
  25. Common features at the start of the neurodegeneration cascade. Hervás R, Oroz J, Galera-Prat A, Goñi O, Valbuena A, Vera AM, Gómez-Sicilia A, Losada-Urzáiz F, Uversky VN, Menéndez M, Laurents DV, Bruix M, Carrión-Vázquez M. PLoS Biol. 10 e1001335 (2012)
  26. Sequestration of a β-hairpin for control of α-synuclein aggregation. Mirecka EA, Shaykhalishahi H, Gauhar A, Akgül Ş, Lecher J, Willbold D, Stoldt M, Hoyer W. Angew. Chem. Int. Ed. Engl. 53 4227-4230 (2014)
  27. Cellular polyamines promote amyloid-beta (Aβ) peptide fibrillation and modulate the aggregation pathways. Luo J, Yu CH, Yu H, Borstnar R, Kamerlin SC, Gräslund A, Abrahams JP, Wärmländer SK. ACS Chem Neurosci 4 454-462 (2013)
  28. Targeting the early steps of Abeta16-22 protofibril disassembly by N-methylated inhibitors: a numerical study. Chebaro Y, Derreumaux P. Proteins 75 442-452 (2009)
  29. Visualization of transient protein-protein interactions that promote or inhibit amyloid assembly. Karamanos TK, Kalverda AP, Thompson GS, Radford SE. Mol. Cell 55 214-226 (2014)
  30. Comparing the folding free-energy landscapes of Abeta42 variants with different aggregation properties. Mitternacht S, Staneva I, Härd T, Irbäck A. Proteins 78 2600-2608 (2010)
  31. A strategy for designing a peptide probe for detection of β-amyloid oligomers. Hu Y, Su B, Kim CS, Hernandez M, Rostagno A, Ghiso J, Kim JR. Chembiochem 11 2409-2418 (2010)
  32. Transient formation of intermediate conformational states of amyloid-β peptide revealed by heteronuclear magnetic resonance spectroscopy. Yamaguchi T, Matsuzaki K, Hoshino M. FEBS Lett. 585 1097-1102 (2011)
  33. Turn nucleation perturbs amyloid β self-assembly and cytotoxicity. Doran TM, Anderson EA, Latchney SE, Opanashuk LA, Nilsson BL. J. Mol. Biol. 421 315-328 (2012)
  34. Alzheimer's protective A2T mutation changes the conformational landscape of the Aβ₁₋₄₂ monomer differently than does the A2V mutation. Das P, Murray B, Belfort G. Biophys. J. 108 738-747 (2015)
  35. Interaction between amyloid beta peptide and an aggregation blocker peptide mimicking islet amyloid polypeptide. Rezaei-Ghaleh N, Andreetto E, Yan LM, Kapurniotu A, Zweckstetter M. PLoS ONE 6 e20289 (2011)
  36. Non-chaperone proteins can inhibit aggregation and cytotoxicity of Alzheimer amyloid β peptide. Luo J, Wärmländer SK, Gräslund A, Abrahams JP. J. Biol. Chem. 289 27766-27775 (2014)
  37. Polymorphic triple beta-sheet structures contribute to amide hydrogen/deuterium (H/D) exchange protection in the Alzheimer amyloid beta42 peptide. Ma B, Nussinov R. J. Biol. Chem. 286 34244-34253 (2011)
  38. Antiparallel triple-strand architecture for prefibrillar Aβ42 oligomers. Gu L, Liu C, Stroud JC, Ngo S, Jiang L, Guo Z. J. Biol. Chem. 289 27300-27313 (2014)
  39. Exploring the aggregation free energy landscape of the amyloid-β protein (1-40). Zheng W, Tsai MY, Chen M, Wolynes PG. Proc. Natl. Acad. Sci. U.S.A. 113 11835-11840 (2016)
  40. Recombinant amyloid beta-peptide production by coexpression with an affibody ligand. Macao B, Hoyer W, Sandberg A, Brorsson AC, Dobson CM, Härd T. BMC Biotechnol. 8 82 (2008)
  41. Amyloid fibril recognition with the conformational B10 antibody fragment depends on electrostatic interactions. Haupt C, Morgado I, Kumar ST, Parthier C, Bereza M, Hortschansky P, Stubbs MT, Horn U, Fändrich M. J. Mol. Biol. 405 341-348 (2011)
  42. Amyloid-β protofibrils: size, morphology and synaptotoxicity of an engineered mimic. Dubnovitsky A, Sandberg A, Rahman MM, Benilova I, Lendel C, Härd T. PLoS ONE 8 e66101 (2013)
  43. Structures of oligomers of a peptide from β-amyloid. Pham JD, Chim N, Goulding CW, Nowick JS. J. Am. Chem. Soc. 135 12460-12467 (2013)
  44. Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Sangwan S, Zhao A, Adams KL, Jayson CK, Sawaya MR, Guenther EL, Pan AC, Ngo J, Moore DM, Soriaga AB, Do TD, Goldschmidt L, Nelson R, Bowers MT, Koehler CM, Shaw DE, Novitch BG, Eisenberg DS. Proc. Natl. Acad. Sci. U.S.A. 114 8770-8775 (2017)
  45. Charge dependent retardation of amyloid β aggregation by hydrophilic proteins. Assarsson A, Hellstrand E, Cabaleiro-Lago C, Linse S. ACS Chem Neurosci 5 266-274 (2014)
  46. Intra-membrane oligomerization and extra-membrane oligomerization of amyloid-β peptide are competing processes as a result of distinct patterns of motif interplay. Zhang YJ, Shi JM, Bai CJ, Wang H, Li HY, Wu Y, Ji SR. J. Biol. Chem. 287 748-756 (2012)
  47. Mapping the interactions between the Alzheimer's Aβ-peptide and human serum albumin beyond domain resolution. Algamal M, Milojevic J, Jafari N, Zhang W, Melacini G. Biophys. J. 105 1700-1709 (2013)
  48. Structural basis of IL-23 antagonism by an Alphabody protein scaffold. Desmet J, Verstraete K, Bloch Y, Lorent E, Wen Y, Devreese B, Vandenbroucke K, Loverix S, Hettmann T, Deroo S, Somers K, Henderikx P, Lasters I, Savvides SN. Nat Commun 5 5237 (2014)
  49. A foldamer-dendrimer conjugate neutralizes synaptotoxic β-amyloid oligomers. Fülöp L, Mándity IM, Juhász G, Szegedi V, Hetényi A, Wéber E, Bozsó Z, Simon D, Benkő M, Király Z, Martinek TA. PLoS ONE 7 e39485 (2012)
  50. Crystal structure reveals conservation of amyloid-β conformation recognized by 3D6 following humanization to bapineuzumab. Feinberg H, Saldanha JW, Diep L, Goel A, Widom A, Veldman GM, Weis WI, Schenk D, Basi GS. Alzheimers Res Ther 6 31 (2014)
  51. Observation of β-Amyloid Peptide Oligomerization by Pressure-Jump NMR Spectroscopy. Barnes CA, Robertson AJ, Louis JM, Anfinrud P, Bax A. J Am Chem Soc 141 13762-13766 (2019)
  52. A fibril-like assembly of oligomers of a peptide derived from β-amyloid. Pham JD, Spencer RK, Chen KH, Nowick JS. J. Am. Chem. Soc. 136 12682-12690 (2014)
  53. Identification of neurotoxic cross-linked amyloid-β dimers in the Alzheimer's brain. Brinkmalm G, Hong W, Wang Z, Liu W, O'Malley TT, Sun X, Frosch MP, Selkoe DJ, Portelius E, Zetterberg H, Blennow K, Walsh DM. Brain 142 1441-1457 (2019)
  54. Molecular structure of the NQTrp inhibitor with the Alzheimer Aβ1-28 monomer. Tarus B, Nguyen PH, Berthoumieu O, Faller P, Doig AJ, Derreumaux P. Eur J Med Chem 91 43-50 (2015)
  55. Polymorphism of oligomers of a peptide from β-amyloid. Pham JD, Demeler B, Nowick JS. J. Am. Chem. Soc. 136 5432-5442 (2014)
  56. An azobenzene photoswitch sheds light on turn nucleation in amyloid-β self-assembly. Doran TM, Anderson EA, Latchney SE, Opanashuk LA, Nilsson BL. ACS Chem Neurosci 3 211-220 (2012)
  57. A truncated and dimeric format of an Affibody library on bacteria enables FACS-mediated isolation of amyloid-beta aggregation inhibitors with subnanomolar affinity. Lindberg H, Härd T, Löfblom J, Ståhl S. Biotechnol J 10 1707-1718 (2015)
  58. Cyclic peptides as inhibitors of amyloid fibrillation. Luo J, Abrahams JP. Chemistry 20 2410-2419 (2014)
  59. Dynamics of metastable β-hairpin structures in the folding nucleus of amyloid β-protein. Cruz L, Rao JS, Teplow DB, Urbanc B. J Phys Chem B 116 6311-6325 (2012)
  60. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide. Rauth S, Hinz D, Börger M, Uhrig M, Mayhaus M, Riemenschneider M, Skerra A. Biochem. J. 473 1563-1578 (2016)
  61. Minimalist design of water-soluble cross-beta architecture. Biancalana M, Makabe K, Koide S. Proc. Natl. Acad. Sci. U.S.A. 107 3469-3474 (2010)
  62. N-terminal engineering of amyloid-β-binding Affibody molecules yields improved chemical synthesis and higher binding affinity. Lindgren J, Wahlström A, Danielsson J, Markova N, Ekblad C, Gräslund A, Abrahmsén L, Karlström AE, Wärmländer SK. Protein Sci. 19 2319-2329 (2010)
  63. Solid-state NMR analysis of the β-strand orientation of the protofibrils of amyloid β-protein. Doi T, Masuda Y, Irie K, Akagi K, Monobe Y, Imazawa T, Takegoshi K. Biochem. Biophys. Res. Commun. 428 458-462 (2012)
  64. Staphylococcal display for combinatorial protein engineering of a head-to-tail affibody dimer binding the Alzheimer amyloid-β peptide. Lindberg H, Johansson A, Härd T, Ståhl S, Löfblom J. Biotechnol J 8 139-145 (2013)
  65. Assembly of Peptides Derived from β-Sheet Regions of β-Amyloid. Truex NL, Wang Y, Nowick JS. J. Am. Chem. Soc. 138 13882-13890 (2016)
  66. High-affinity binding to staphylococcal protein A by an engineered dimeric Affibody molecule. Lindborg M, Dubnovitsky A, Olesen K, Björkman T, Abrahmsén L, Feldwisch J, Härd T. Protein Eng. Des. Sel. 26 635-644 (2013)
  67. Structures of Abeta-related peptide--monoclonal antibody complexes. Gardberg A, Dice L, Pridgen K, Ko J, Patterson P, Ou S, Wetzel R, Dealwis C. Biochemistry 48 5210-5217 (2009)
  68. Terminal sidechain packing of a designed beta-hairpin influences conformation and stability. Eidenschink L, Crabbe E, Andersen NH. Biopolymers 91 557-564 (2009)
  69. A synchrotron-based hydroxyl radical footprinting analysis of amyloid fibrils and prefibrillar intermediates with residue-specific resolution. Klinger AL, Kiselar J, Ilchenko S, Komatsu H, Chance MR, Axelsen PH. Biochemistry 53 7724-7734 (2014)
  70. Syntheses of tricyclic pyrones and pyridinones and protection of Abeta-peptide induced MC65 neuronal cell death. Rana S, Hong HS, Barrigan L, Jin LW, Hua DH. Bioorg. Med. Chem. Lett. 19 670-674 (2009)
  71. An amyloid inhibitor octapeptide forms amyloid type fibrous aggregates and affects microtubule motility. Biswas A, Kurkute P, Jana B, Laskar A, Ghosh S. Chem. Commun. (Camb.) 50 2604-2607 (2014)
  72. Interaction of PiB-derivative metal complexes with beta-amyloid peptides: selective recognition of the aggregated forms. Martins AF, Dias DM, Morfin JF, Lacerda S, Laurents DV, Tóth É, Geraldes CF. Chemistry 21 5413-5422 (2015)
  73. Mechanical resistance in unstructured proteins. Jónsson SÆ, Mitternacht S, Irbäck A. Biophys. J. 104 2725-2732 (2013)
  74. Synthetic dimeric Aβ(28-40) mimics the complex epitope of human anti-Aβ autoantibodies against toxic Aβ oligomers. Roeder AM, Roettger Y, Stündel A, Dodel R, Geyer A. J. Biol. Chem. 288 27638-27645 (2013)
  75. Dominance of misfolded intermediates in the dynamics of α-helix folding. Lin MM, Shorokhov D, Zewail AH. Proc. Natl. Acad. Sci. U.S.A. 111 14424-14429 (2014)
  76. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides. Gill AC. PLoS ONE 9 e87354 (2014)
  77. A Detailed Analysis of the Morphology of Fibrils of Selectively Mutated Amyloid β (1-40). Adler J, Baumann M, Voigt B, Scheidt HA, Bhowmik D, Häupl T, Abel B, Madhu PK, Balbach J, Maiti S, Huster D. Chemphyschem 17 2744-2753 (2016)
  78. Associating a negatively charged GdDOTA-derivative to the Pittsburgh compound B for targeting Aβ amyloid aggregates. Martins AF, Oliveira AC, Morfin JF, Laurents DV, Tóth É, Geraldes CF. J. Biol. Inorg. Chem. 21 83-99 (2016)
  79. Coassembly of Peptides Derived from β-Sheet Regions of β-Amyloid. Truex NL, Nowick JS. J. Am. Chem. Soc. 138 13891-13900 (2016)
  80. Conformational and aggregation properties of the 1-93 fragment of apolipoprotein A-I. Petrlova J, Bhattacherjee A, Boomsma W, Wallin S, Lagerstedt JO, Irbäck A. Protein Sci. 23 1559-1571 (2014)
  81. Conversion of Abeta42 into a folded soluble native-like protein using a semi-random library of amphipathic helices. Arslan PE, Mulligan VK, Ho S, Chakrabartty A. J. Mol. Biol. 396 1284-1294 (2010)
  82. Fibril aggregation inhibitory activity of the beta-sheet breaker peptides: a molecular docking approach. Chini MG, Scrima M, D'Ursi AM, Bifulco G. J. Pept. Sci. 15 229-234 (2009)
  83. Short Peptides as Inhibitors of Amyloid Aggregation. Neddenriep B, Calciano A, Conti D, Sauve E, Paterson M, Bruno E, Moffet DA. Open Biotechnol J 5 39-46 (2011)
  84. Synthesis and chemoselective intramolecular crosslinking of a HER2-binding affibody. Ekblad T, Tolmachev V, Orlova A, Lendel C, Abrahmsén L, Karlström AE. Biopolymers 92 116-123 (2009)
  85. A peptide probe for detection of various beta-amyloid oligomers. Hu Y, Su B, Zheng H, Kim JR. Mol Biosyst 8 2741-2752 (2012)
  86. A β-hairpin-binding protein for three different disease-related amyloidogenic proteins. Shaykhalishahi H, Mirecka EA, Gauhar A, Grüning CS, Willbold D, Härd T, Stoldt M, Hoyer W. Chembiochem 16 411-414 (2015)
  87. Aggregation of Chameleon Peptides: Implications of α-Helicity in Fibril Formation. Kim B, Do TD, Hayden EY, Teplow DB, Bowers MT, Shea JE. J Phys Chem B 120 5874-5883 (2016)
  88. Identification of proteins that specifically recognize and bind protofibrillar aggregates of amyloid-β. Wahlberg E, Rahman MM, Lindberg H, Gunneriusson E, Schmuck B, Lendel C, Sandgren M, Löfblom J, Ståhl S, Härd T. Sci Rep 7 5949 (2017)
  89. Impact of subunit linkages in an engineered homodimeric binding protein to α-synuclein. Gauhar A, Shaykhalishahi H, Gremer L, Mirecka EA, Hoyer W. Protein Eng. Des. Sel. 27 473-479 (2014)
  90. Influence of sequence and lipid type on membrane perturbation by human and rat amyloid β-peptide (1-42). Brown AM, Bevan DR. Arch. Biochem. Biophys. 614 1-13 (2017)
  91. Modeling the binding mechanism of Alzheimer's Aβ1-42 to nicotinic acetylcholine receptors based on similarity with snake α-neurotoxins. Maatuk N, Samson AO. Neurotoxicology 34 236-242 (2013)
  92. Nano-assembly of amyloid β peptide: role of the hairpin fold. Maity S, Hashemi M, Lyubchenko YL. Sci Rep 7 2344 (2017)
  93. Spontaneous Formation of β-sheet Nano-barrels during the Early Aggregation of Alzheimer's Amyloid Beta. Sun Y, Kakinen A, Wan X, Moriarty N, Hunt CPJ, Li Y, Andrikopoulos N, Nandakumar A, Davis TP, Parish CL, Song Y, Ke PC, Ding F. Nano Today 38 101125 (2021)
  94. Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. Frame NM, Kumanan M, Wales TE, Bandara A, Fändrich M, Straub JE, Engen JR, Gursky O. J Mol Biol 432 1978-1995 (2020)
  95. X-ray Crystallographic Structure of a Compact Dodecamer from a Peptide Derived from Aβ16-36. Salveson PJ, Spencer RK, Kreutzer AG, Nowick JS. Org. Lett. 19 3462-3465 (2017)
  96. A Hexamer of a Peptide Derived from Aβ16-36. Kreutzer AG, Spencer RK, McKnelly KJ, Yoo S, Hamza IL, Salveson PJ, Nowick JS. Biochemistry 56 6061-6071 (2017)
  97. Fibrillation-prone conformations of the amyloid-β-42 peptide at the gold/water interface. Bellucci L, Bussi G, Di Felice R, Corni S. Nanoscale 9 2279-2290 (2017)
  98. Hybrid peptides attenuate cytotoxicity of beta-amyloid by inhibiting its oligomerization: implication from solvent effects. Sun X, Wu WH, Liu Q, Chen MS, Yu YP, Ma Y, Zhao YF, Li YM. Peptides 30 1282-1287 (2009)
  99. Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level. Chandra B, Bhowmik D, Maity BK, Mote KR, Dhara D, Venkatramani R, Maiti S, Madhu PK. Biophys. J. 113 805-816 (2017)
  100. Rational design of amyloid beta peptide-binding proteins: pseudo-Abeta beta-sheet surface presented in green fluorescent protein binds tightly and preferentially to structured Abeta. Takahashi T, Ohta K, Mihara H. Proteins 78 336-347 (2010)
  101. Structure modeling and dynamics driven mutation and phosphorylation analysis of Beta-amyloid peptides. Singh SK, Singh A, Prakash V, C SK. Bioinformation 10 569-574 (2014)
  102. A theoretical study on the molecular determinants of the affibody protein Z(Aβ3) bound to an amyloid β peptide. Wang X, Sun X, Kuang G, Ågren H, Tu Y. Phys Chem Chem Phys 17 16886-16893 (2015)
  103. An aggregation inhibitor specific to oligomeric intermediates of Aβ42 derived from phage display libraries of stable, small proteins. Linse S, Sormanni P, O'Connell DJ. Proc Natl Acad Sci U S A 119 e2121966119 (2022)
  104. Development of a high affinity Affibody-derived protein against amyloid β-peptide for future Alzheimer's disease therapy. De Genst E, Muyldermans S. Biotechnol J 10 1668-1669 (2015)
  105. Effects of N-Terminal Residues on the Assembly of Constrained β-Hairpin Peptides Derived from Aβ. Samdin TD, Wierzbicki M, Kreutzer AG, Howitz WJ, Valenzuela M, Smith A, Sahrai V, Truex NL, Klun M, Nowick JS. J Am Chem Soc 142 11593-11601 (2020)
  106. Elucidating the multi-targeted anti-amyloid activity and enhanced islet amyloid polypeptide binding of β-wrapins. Orr AA, Shaykhalishahi H, Mirecka EA, Jonnalagadda SVR, Hoyer W, Tamamis P. Comput Chem Eng 116 322-332 (2018)
  107. Emergence of Alternative Structures in Amyloid Beta 1-42 Monomeric Landscape by N-terminal Hexapeptide Amyloid Inhibitors. Chakraborty S, Das P. Sci Rep 7 9941 (2017)
  108. Fibrils of Truncated Pyroglutamyl-Modified Aβ Peptide Exhibit a Similar Structure as Wildtype Mature Aβ Fibrils. Scheidt HA, Adler J, Krueger M, Huster D. Sci Rep 6 33531 (2016)
  109. Interactions between Curcumin Derivatives and Amyloid-β Fibrils: Insights from Molecular Dynamics Simulations. Jakubowski JM, Orr AA, Le DA, Tamamis P. J Chem Inf Model 60 289-305 (2020)
  110. Peptide backbone modification in the bend region of amyloid-β inhibits fibrillogenesis but not oligomer formation. Johnson EC, Lanning JD, Meredith SC. J. Pept. Sci. 22 368-373 (2016)
  111. Structural Changes of Amyloid Beta in Hippocampus of Rats Exposed to Ozone: A Raman Spectroscopy Study. Rivas-Arancibia S, Rodríguez-Martínez E, Badillo-Ramírez I, López-González U, Saniger JM. Front Mol Neurosci 10 137 (2017)
  112. Structural modelling of the DNAJB6 oligomeric chaperone shows a peptide-binding cleft lined with conserved S/T-residues at the dimer interface. Söderberg CAG, Månsson C, Bernfur K, Rutsdottir G, Härmark J, Rajan S, Al-Karadaghi S, Rasmussen M, Höjrup P, Hebert H, Emanuelsson C. Sci Rep 8 5199 (2018)
  113. TLR4 inhibitor attenuates amyloid-β-induced angiogenic and inflammatory factors in ARPE-19 cells: Implications for age-related macular degeneration. Chen L, Bai Y, Zhao M, Jiang Y. Mol Med Rep 13 3249-3256 (2016)
  114. ALS mutations in the TIA-1 prion-like domain trigger highly condensed pathogenic structures. Sekiyama N, Takaba K, Maki-Yonekura S, Akagi KI, Ohtani Y, Imamura K, Terakawa T, Yamashita K, Inaoka D, Yonekura K, Kodama TS, Tochio H. Proc Natl Acad Sci U S A 119 e2122523119 (2022)
  115. Amyloid-β oligomers are captured by the DNAJB6 chaperone: Direct detection of interactions that can prevent primary nucleation. Österlund N, Lundqvist M, Ilag LL, Gräslund A, Emanuelsson C. J Biol Chem 295 8135-8144 (2020)
  116. An enzyme-linked immunosorbent assay to compare the affinity of chemical compounds for β-amyloid peptide as a monomer. Jiang C, Feng Y, Huang X, Xu Y, Zhang Y, Zhou N, Shen X, Chen K, Jiang H, Liu D. Anal Bioanal Chem 396 1745-1754 (2010)
  117. An explicitly designed paratope of amyloid-β prevents neuronal apoptosis in vitro and hippocampal damage in rat brain. Paul A, Kumar S, Kalita S, Kalita S, Sarkar D, Bhunia A, Bandyopadhyay A, Mondal AC, Mandal B. Chem Sci 12 2853-2862 (2020)
  118. Aβ(M1-40) and Wild-Type Aβ40 Self-Assemble into Oligomers with Distinct Quaternary Structures. Bouchard JL, Davey TC, Doran TM. Molecules 24 (2019)
  119. Controlling the Oligomerization State of Aβ-Derived Peptides with Light. Salveson PJ, Haerianardakani S, Thuy-Boun A, Kreutzer AG, Nowick JS. J. Am. Chem. Soc. 140 5842-5852 (2018)
  120. Flow-cytometric screening of aggregation-inhibitors using a fluorescence-assisted intracellular method. Lindberg H, Sandersjöö L, Meister SW, Uhlén M, Löfblom J, Ståhl S. Biotechnol J 12 (2017)
  121. Insights into Cerebral Amyloid Angiopathy Type 1 and Type 2 from Comparisons of the Fibrillar Assembly and Stability of the Aβ40-Iowa and Aβ40-Dutch Peptides. Rajpoot J, Crooks EJ, Irizarry BA, Amundson A, Van Nostrand WE, Smith SO. Biochemistry 61 1181-1198 (2022)
  122. Molecular insights into Aβ42 protofibril destabilization with a fluorinated compound D744: A molecular dynamics simulation study. Saini RK, Shuaib S, Goyal B. J. Mol. Recognit. 30 (2017)
  123. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer's disease brain tissue. Ghosh U, Thurber KR, Yau WM, Tycko R. Proc Natl Acad Sci U S A 118 (2021)
  124. Out-of-Register Parallel β-Sheets and Antiparallel β-Sheets Coexist in 150-kDa Oligomers Formed by Amyloid-β(1-42). Gao Y, Guo C, Watzlawik JO, Randolph PS, Lee EJ, Huang D, Stagg SM, Zhou HX, Rosenberry TL, Paravastu AK. J Mol Biol 432 4388-4407 (2020)
  125. Porins and Amyloids are Coded by Similar Sequence Motifs. Villain E, Nikekhin AA, Kajava AV. Proteomics 19 e1800075 (2019)
  126. Pyroglutamate-Modified Amyloid β (11- 40) Fibrils Are More Toxic than Wildtype Fibrils but Structurally Very Similar. Scheidt HA, Adler J, Zeitschel U, Höfling C, Korn A, Krueger M, Roßner S, Huster D. Chemistry 23 15834-15838 (2017)
  127. Small-molecule sequestration of amyloid-β as a drug discovery strategy for Alzheimer's disease. Heller GT, Aprile FA, Michaels TCT, Limbocker R, Perni M, Ruggeri FS, Mannini B, Löhr T, Bonomi M, Camilloni C, De Simone A, Felli IC, Pierattelli R, Knowles TPJ, Dobson CM, Vendruscolo M. Sci Adv 6 (2020)
  128. A Disulfide-Stabilized Aβ that Forms Dimers but Does Not Form Fibrils. Zhang S, Yoo S, Snyder DT, Katz BB, Henrickson A, Demeler B, Wysocki VH, Kreutzer AG, Nowick JS. Biochemistry 61 252-264 (2022)
  129. Affibody Functionalized Beads for the Highly Sensitive Detection of Cancer Cell-Derived Exosomes. Sayyadi N, Zhand S, Razavi Bazaz S, Warkiani ME. Int J Mol Sci 22 12014 (2021)
  130. Ajmalicine and Reserpine: Indole Alkaloids as Multi-Target Directed Ligands Towards Factors Implicated in Alzheimer's Disease. Kashyap P, Kalaiselvan V, Kumar R, Kumar S. Molecules 25 (2020)
  131. Albumin Alters the Conformational Ensemble of Amyloid-β by Promiscuous Interactions: Implications for Amyloid Inhibition. Xie H, Guo C. Front Mol Biosci 7 629520 (2020)
  132. Amyloid Beta Aggregation in the Presence of Temperature-Sensitive Polymers. Funtan S, Evgrafova Z, Adler J, Huster D, Binder WH. Polymers (Basel) 8 (2016)
  133. Amyloid-β/Drug Interactions from Computer Simulations and Cell-Based Assays. Nguyen PH, Del Castillo-Frias MP, Berthoumieux O, Faller P, Doig AJ, Derreumaux P. J. Alzheimers Dis. 64 S659-S672 (2018)
  134. An engineered monomer binding-protein for α-synuclein efficiently inhibits the proliferation of amyloid fibrils. Agerschou ED, Flagmeier P, Saridaki T, Galvagnion C, Komnig D, Heid L, Prasad V, Shaykhalishahi H, Willbold D, Dobson CM, Voigt A, Falkenburger B, Hoyer W, Buell AK. Elife 8 (2019)
  135. An in vitro workflow of neuron-laden agarose-laminin hydrogel for studying small molecule-induced amyloidogenic condition. Namchaiw P, Bunreangsri P, Eiamcharoen P, Eiamboonsert S, P Poo-Arporn R. PLoS One 17 e0273458 (2022)
  136. Anti-Parallel β-Hairpin Structure in Soluble Aβ Oligomers of Aβ40-Dutch and Aβ40-Iowa. Fu Z, Van Nostrand WE, Smith SO. Int J Mol Sci 22 (2021)
  137. Bleomycin modulates amyloid aggregation in β-amyloid and hIAPP. Kumari A, Sharma R, Shrivastava N, Somvanshi P, Grover A. RSC Adv 10 25929-25946 (2020)
  138. Co-aggregation of α-synuclein with amyloid-β stabilizes β-sheet-rich oligomers and enhances the formation of β-barrels. Huang F, Liu Y, Wang Y, Xu J, Lian J, Zou Y, Wang C, Ding F, Sun Y. Phys Chem Chem Phys 25 31604-31614 (2023)
  139. Cooperative structural transitions in amyloid-like aggregation. Steckmann T, Bhandari YR, Chapagain PP, Gerstman BS. J Chem Phys 146 135103 (2017)
  140. Destabilization potential of beta sheet breaker peptides on Abeta fibril structure: an insight from molecular dynamics simulation study. Jani V, Sonavane U, Joshi R. RSC Adv 11 23557-23573 (2021)
  141. Dissecting the behaviour of β-amyloid peptide variants during oligomerization and fibrillation. Shi JM, Zhang L, Liu EQ. J. Pept. Sci. 23 810-817 (2017)
  142. Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Abedin F, Kandel N, Tatulian SA. Sci Rep 11 19262 (2021)
  143. Effects of acidic oligosaccharide sugar chain on amyloid oligomer-induced impairment of synaptic plasticity in rats. Chang L, Li F, Chen X, Xu S, Wang C, Chen H, Wang Q. Metab Brain Dis 29 683-690 (2014)
  144. Immunological fingerprint of 4CMenB recombinant antigens via protein microarray reveals key immunosignatures correlating with bactericidal activity. Bartolini E, Borgogni E, Bruttini M, Muzzi A, Giuliani M, Iozzi S, Petracca R, Martinelli M, Bonacci S, Marchi S, Brettoni C, Donati C, Torricelli G, Guidotti S, Domina M, Beninati C, Teti G, Felici F, Rappuoli R, Castellino F, Del Giudice G, Masignani V, Pizza M, Maione D. Nat Commun 11 4994 (2020)
  145. Influence of Cortisol on the Fibril Formation Kinetics of Aβ42 Peptide: A Multi-Technical Approach. Nucara A, Ripanti F, Sennato S, Nisini G, De Santis E, Sefat M, Carbonaro M, Mango D, Minicozzi V, Carbone M. Int J Mol Sci 23 6007 (2022)
  146. Initial Structural Models of the Aβ42 Dimer from Replica Exchange Molecular Dynamics Simulations. Blinov N, Khorvash M, Wishart DS, Cashman NR, Kovalenko A. ACS Omega 2 7621-7636 (2017)
  147. Mechanism of Fibril and Soluble Oligomer Formation in Amyloid Beta and Hen Egg White Lysozyme Proteins. Perez C, Miti T, Hasecke F, Meisl G, Hoyer W, Muschol M, Ullah G. J Phys Chem B 123 5678-5689 (2019)
  148. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation. Xie H, Rojas A, Maisuradze GG, Khelashvili G. ACS Chem Neurosci 13 987-1001 (2022)
  149. Modulation of Amyloid-β42 Conformation by Small Molecules Through Nonspecific Binding. Liang C, Savinov SN, Fejzo J, Eyles SJ, Chen J. J Chem Theory Comput 15 5169-5174 (2019)
  150. Monitoring the Conformational Changes of the Aβ(25-35) Peptide in SDS Micelles: A Matter of Time. Santoro A, Buonocore M, Grimaldi M, Napolitano E, D'Ursi AM. Int J Mol Sci 24 971 (2023)
  151. Phenylalanine Mutation to Cyclohexylalanine Facilitates Triangular Trimer Formation by β-Hairpins Derived from Aβ. Haerianardakani S, Kreutzer AG, Salveson PJ, Samdin TD, Guaglianone GE, Nowick JS. J Am Chem Soc 142 20708-20716 (2020)
  152. Probing differences among Aβ oligomers with two triangular trimers derived from Aβ. Kreutzer AG, Guaglianone G, Yoo S, Parrocha CMT, Ruttenberg SM, Malonis RJ, Tong K, Lin YF, Nguyen JT, Howitz WJ, Diab MN, Hamza IL, Lai JR, Wysocki VH, Nowick JS. Proc Natl Acad Sci U S A 120 e2219216120 (2023)
  153. Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42). Lu Y, Shi XF, Salsbury FR, Derreumaux P. J Chem Phys 146 145101 (2017)
  154. The Effect of (-)-Epigallocatechin-3-Gallate on the Amyloid-β Secondary Structure. Acharya A, Stockmann J, Beyer L, Rudack T, Nabers A, Gumbart JC, Gerwert K, Batista VS. Biophys J 119 349-359 (2020)
  155. Tuning Functional Amyloid Formation Through Disulfide Engineering. Balistreri A, Kahana E, Janakiraman S, Chapman MR. Front Microbiol 11 944 (2020)
  156. αB-Crystallin Chaperone Inhibits Aβ Aggregation by Capping the β-Sheet-Rich Oligomers and Fibrils. Sun Y, Ding F. J Phys Chem B 124 10138-10146 (2020)
  157. β-Hairpin Alignment Alters Oligomer Formation in Aβ-Derived Peptides. Ruttenberg SM, Kreutzer AG, Truex NL, Nowick JS. Biochemistry 63 212-218 (2024)


Related citations provided by authors (1)

  1. Selection and characterization of Affibody ligands binding to Alzheimer amyloid beta peptides.. Grönwall C, Jonsson A, Lindström S, Gunneriusson E, Ståhl S, Herne N J Biotechnol 128 162-83 (2007)